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Abstract

A central problem in applying logical knowledge representa-
tion formalisms to traditional robotics is that the treatment of
belief change is categorical in the former, while probabilistic
in the latter. A typical example is the fundamental capability
of localization where a robot uses its many probabilistic sen-
sors to situate itself in a dynamic world. Domain designers are
then left with the rather unfortunate task of abstracting prob-
abilistic sensors in terms of categorical ones, or more drasti-
cally, completely abandoning the inner workings of sensors
to black-box probabilistic tools and then interpreting their
outputs in an abstract way. Building on a first-principles ap-
proach by Bacchus, Halpern and Levesque, and a recent con-
tinuous extension to it by Belle and Levesque, we provide an
axiomatization that shows how localization can be realized as
a basic action theory, thereby demonstrating how such capa-
bilities can be enabled in a single logical framework.

Introduction
For the past several years, action formalisms such as the situ-
ation calculus (Reiter 2001) and dynamic logic (Demolombe
2003) have received considerable attention as a means of
providing a theoretical and computational foundation for au-
tonomous agents situated in dynamic worlds. It is a chal-
lenging problem: in the least, reasonable features of action
and change such as the frame and ramification problems
need addressing, but if the robot has limited information then
acting, sensing, knowledge and belief change also need to be
taken into account. To this end, in the case of the situation
calculus, for example, one usually provides a set of logical
sentences called a basic action theory (Reiter 2001) which
explicates in a precise way the properties of the world and
their relation to the agent’s sensors and effectors. When that
is further supported using complex actions and procedures,
one obtains a powerful and general paradigm for designing
intelligent agents, seen for example in (Giacomo et al. 1996;
Burgard et al. 1999; Lakemeyer and Levesque 2007).

Although a tight pairing of sensor data and high-level con-
trol is indeed what is desired, typical sensor data is best
treated probabilistically (Thrun, Burgard, and Fox 2005)
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while many knowledge change accounts are categorical
(De Giacomo and Levesque 2000). A domain designer is
now left with the rather unfortunate task of abstracting prob-
abilistic sensors in terms of categorical ones, or more dras-
tically, completely abandoning the inner workings of sen-
sors to black-box probabilistic tools and then interpreting
their outputs in an abstract way. Regardless of application
domains where such a move might be appropriate, for rea-
sons computational or otherwise, both of these limitations
are very serious since they challenge the underlying theory
as a genuine characterization of the agent. Other major con-
cerns include: (a) the loss of granularity, as it is not clear at
the outset which aspect of the sensor data is being approxi-
mated and by how much, and (b) the domain designer is at
the mercy of her intuition to imagine the various ways sen-
sors might get used.

A first-principles proposal by Bacchus, Halpern and
Levesque (Bacchus, Halpern, and Levesque 1999), BHL
henceforth, is perhaps the most general account to rectify
this problem. Embedded in the usual machinery of a ba-
sic action theory, the BHL scheme enriches the situation
calculus with an account of probabilistic nondeterminism.
The enrichment allows us to talk about belief change in
the formalism, which is compatible with earlier accounts
on knowledge (Scherl and Levesque 2003) while also fol-
lowing Bayesian conditioning (Pearl 1988). In contrast to
many probabilistic formalisms (see the penultimate section
for more on this), it allows for partial specifications, i.e. dis-
tributions where only some of the fluents in the domain may
be provided, as well as strict uncertainty (disjunctions and
quantification). Recently, we (Belle and Levesque 2013a)
have further extended the framework to reason about noise
that is continuous. We take these results as encouragement
to now consider the most basic capability needed for an au-
tonomous agent to situate itself: the localization problem.
Roughly speaking, given a spatial characterization of the
robot’s environment, the robot is to identify its pose (loca-
tion, orientation) to a reasonable certainty using its sensors.

Localization has been addressed using a number of algo-
rithmic techniques for more than two decades in the robotics
literature (Cox 1991; Thrun, Burgard, and Fox 2005). Our
objective will not be to compete with these techniques; in
fact, this paper will not concern itself with algorithms at all.
Rather, we want to show how localization can be understood
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as part of a larger effort in a single logical framework. To the
best of our knowledge, this has not been attempted before.
Nevertheless, we remark that owing to the first-order nature
of the formalism, our account of localization, among other
capabilities, is significantly more general than most, if not
all, probabilistic formalisms.

The agenda for this paper will be as follows. We first in-
troduce the preliminaries for reasoning about degrees of be-
lief in the logical language of the situation calculus. We then
iteratively develop the steps needed to localize a robot in an
uncertain world. As one would expect (and desire), given the
domain axiomatization, we show that localization is realized
entirely within the logic in terms of belief change. Perhaps
most significantly, we demonstrate how the framework sub-
sumes probabilistic formalisms by using the full range of sit-
uation calculus successor state axioms and sensing axioms.
We then discuss related work and conclude.

The Situation Calculus
The language L of the situation calculus (McCarthy and
Hayes 1969) is a many-sorted dialect of predicate calcu-
lus, with sorts for actions, situations and objects. A sit-
uation represents a world history as a sequence of ac-
tions. A set of initial situations correspond to the ways the
world might be initially. Successor situations are the re-
sult of doing actions, where the term do(a, s) denotes the
unique situation obtained on doing a in situation s. The term
do(α, s), where α is the sequence [a1, . . . , an] abbreviates
do(an, do(. . . , do(a1, s) . . . )). Initial situations are defined as
those without a predecessor:1

Init(s) � ¬∃a, s′. s = do(a, s′).

We let the constant S0 denote the actual initial situation, and
we use the variable ι to range over initial situations only.

In each model of L, the situations can be structured into a
set of trees, where the root of each tree is an initial situation
and the edges are actions. In dynamical domains, we want
the values of predicate and functions to vary from situation
to situation. For this purpose, L includes fluents whose last
argument is always a situation. Here we assume without loss
of generality that all fluents are functional.

We follow some notational conventions. Free variables
are assumed to be implicitly quantified from the outside. We
often suppress the situation argument in a formula φ, or use
a distinguished variable now. Either way, φ[t] is used to de-
note the formula with that variable replaced by t.

Basic action theory
Following (Reiter 2001), we model dynamic domains in L
by means of a basic action theoryD that consists of

1The formalism used in this paper is the situation calculus as
characterized by Reiter in (Reiter 2001). Nevertheless, for conve-
nience, we often introduce formula and term abbreviations that are
meant to expand as L-formulas. For example, we might introduce
a new formula A by A � φ, where φ ∈ L. Then any expression
E(A) containing A is assumed to mean E(φ). Analogously, if we
introduce a new term t by t = u � φ(u) then any expression E(t) is
assumed to mean ∃u(E(u) ∧ φ(u)).

1. sentencesD0 that describe what is true in the initial states,
including S0;

2. precondition axioms that describe the conditions under
which actions are executable;

3. successor state axioms that describe the changes to fluents
on executing actions;

4. domain-independent foundational axioms, the details of
which need not concern us here. See (Reiter 2001).

An agent reasons about actions by means of the entailments
of D, for which standard Tarskian models suffice. We as-
sume henceforth that models also assign the usual interpre-
tations to =, <, >, 0, 1,+,×, /,−, e, π and xy (exponentials).2

Following (Belle and Levesque 2013a), in the sequel, we
will be assuming that f1, . . . , fk are all the fluents in L, and
that they only take a single situation term as an argument.
See (Belle and Levesque 2013a) for a discussion on this lim-
itation. Note that we still allow these fluents to range over
any set, including the reals.

Belief, likelihood and continuous noise
The BHL model of belief enriches the standard situation
calculus to reason about noisy sensors and belief change,
by building on a treatment of knowledge by Scherl and
Levesque (2003). A major limitation of their work is the
restriction to discrete noise, in contrast to the continuous
noise usually encountered in robotics (Thrun, Burgard, and
Fox 2005). This limitation has been recently lifted in (Belle
and Levesque 2013a), which we briefly review below and is
based on two distinguished binary fluents l and p.

The term l(a, s) is intended to denote the likelihood of ac-
tion a in situation s. The axioms for l vary from domain to
domain (we will see an example shortly), but they have the
general form of l(A(~x), s) = u ≡ φA(~x, u, s) which character-
izes the conditions under which action type A has likelihood
u in s. Readers may note that they have a form paralleling
the precondition axioms.

Next, the p fluent determines a probability distribution on
situations. The term p(s′, s) denotes the relative density ac-
corded to situation s′ when the agent happens to be in situa-
tion s. The properties of p in initial states, which vary from
domain to domain, are specified by axioms as part of D0,
as one would for any other functional fluent. Now, to give p
the required properties, so that it behaves like a probability
density, three axioms (listed in Table 1) are needed:

− (i). Assumed to be part of D0, this is a nonnegative con-
straint on p. While this is indeed a stipulation about initial
states ι only, by means of the next item, the nonnegative
constraint continues to hold everywhere.

− (ii). This successor state axiom states that, given an appro-
priate action likelihood axiom, the density of situations s′
relative to do(a, s) is the density of their predecessors s′′
times the likelihood of a contingent on the successful ex-
ecution of a at s′′. One consequence of (i) and (ii) is that

2Alternatively, one could specify axioms for characterizing the
field of real numbers in D. Whether or not reals with exponentia-
tion is first-order axiomatizable remains a major open question.
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(p(s′, s) > 0) will be true only when s′ and s share the
same history of actions. Both of these items, in fact, are
inherited from BHL.

− (iii). This sentence is to be included in D0 to impress ex-
actly one initial situation for any vector of fluent values,
which follows (Levesque, Pirri, and Reiter 1998) for real-
izing a precise space of initial situations.

In (Belle and Levesque 2013a), we showed that these 3
axioms are all that is needed to define belief and belief
change in presence of continuity. If φ is a formula with a
single free variable of sort situation, then the degree of be-
lief in φ is simply defined as a logical term by the following
abbreviation:

Bel(φ, s) = u � u =
1
γ

∫
~x

Density(~x, φ, s)

where the normalization factor γ is understood throughout as
the same expression as the numerator but with φ replaced by
true,

∫
x is a logical term formalized using second-order logic

that corresponds to mathematical integration (see (Belle and
Levesque 2013a)), and Density(~x, φ, s) is an abbreviation
that returns the density associated with φ at s:

Density(~x, φ, do(α, s)) = u �
∃ι.
∧

f (ι) = x ∧ φ[do(α, ι)] ∧ u = p(do(α, ι), do(α, S0)) ∨
¬[∃ι.

∧
f (ι) = x ∧ φ[do(α, ι)]] ∧ u = 0.

The intuition is as follows. Using (iii), we obtain a bijection
between initial situations and fluent values. By integrating
over ~x in the usual mathematical sense, we simply pick the
appropriate initial situation, test whether φ holds after doing
α and use the corresponding p value. In this presentation, we
have assumed for simplicity that all fluents take values over
R, and so for discrete fluents, one would simply replace the
integral with a summation (over its possible values) where
appropriate. This, then, summarizes the proposal. Basically,
the following components were needed:

• abbreviations Bel and Density that expand as L-
expressions;

• an initial theory about S0, including (iii) to accommodate
multiple initial situations and p’s initial constraint (i);

• action likelihood axioms using l;

• successor and precondition axioms as usual, including (ii)
for p.

In the sequel, we assume that all basic action theories will
include (i), (ii) and (iii).

It is worth noting that the account of belief change us-
ing Bel follows Bayesian conditioning (Belle and Levesque
2013a), which will be demonstrated below.

Axiomatizing Localization
One of the significant features about the BHL scheme and
its continuous variant is that robot localization, among other
capabilities, follows logically from a basic action theory. No
new foundational axioms are necessary. In fact, localization
is a certain degree of belief regarding position and orienta-
tion, and so by reasoning about belief change in terms of

i. ∀ι, s. p(s, ι) ≥ 0 ∧ (p(s, ι) > 0 ⊃ Init(s)).
ii. p(s′, do(a, s)) = u ≡

∃s′′ [s′ = do(a, s′′) ∧ Poss(a, s′′)∧
u = p(s′′, s) × l(a, s′′)]

∨ ¬∃s′′ [s′ = do(a, s′′) ∧ Poss(a, s′′) ∧ u = 0].
iii. (∀~x∃ι

∧
fi(ι) = xi) ∧ (∀ι, ι′.

∧
fi(ι) = fi(ι′) ⊃ ι = ι′).

Table 1: Axioms inD for p.

projection (Reiter 2001), the robot would get localized. On
the one hand, this is perhaps expected as many state estima-
tion techniques in robotics are based on Bayesian condition-
ing, but on the other, we are demonstrating this capability in
a very rich first-order framework.

In this section, we develop a simple example and a basic
action theory corresponding to this example. Localization
will then be demonstrated in terms of logical entailments
of the action theory. We think many of the features of our
example are suggestive of how one would approach more
complex domains. In the main, the example involves the fol-
lowing steps:
• a characterization of the environment (walls, doors, etc.);
• a characterization of the uncertainty of the robot about

this environment (its position and orientation); and
• a characterization of the robot’s actions and sensors, and

how they depend on and affect the environment.
The basic action theory D developed for these charac-

terizations will be built using three fluents h, v and θ that
will determine the pose of the robot, a single rigid predi-
cate Solid used to axiomatize the environment, two action
types move(z,w) and rotate(z) that determine how the robot
moves and how these affect the fluents using successor state
axioms, a single sensing action sonar(z), and convenient ab-
breviations that expand into formulas involving the afore-
mentioned logical symbols. Of course, we assumeD to also
mention Poss, l and p, which are distinguished L-symbols.
We reiterate that we will not need any machinery beyond
Reiter’s situation calculus (Reiter 2001).

Environment
The very first item on the agenda is the notion of a map,
which for our purpose will simply mean an axiomatic for-
mulation of the physical space. Our example is as follows.
We imagine two walls that are parallel to each other and 10
units long, as in Figure 1. The one on the extreme left of the
robot, which we refer to as WALL-E in the sequel, is without
any doors, while the one that is adjacent to the robot, re-
ferred to as WALL-A, has 3 open doors. The doors extend for
one unit each. We are imagining a coordinate system that has
WALL-E on the Y-axis, and puts the bottom edge of WALL-E
at the origin.

We develop a simple axiomatization to describe this phys-
ical space. (For more general formalizations, see (Ge and
Renz 2013; Lee, Renz, and Wolter 2013), and references
therein.) We think of the walls in terms of continuous solid
segments, that is, WALL-E is considered to be a single chunk,
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iv. {Solid(0, 0, 10), Solid(5, 0, 1), Solid(5, 2, 1),
Solid(5, 4, 3), Solid(5, 8, 2)}.

v. Poss(a) ≡ true.

vi. h(do(a, s)) = u ≡
¬∃z,w(a = move(z,w)) ∧ u = h(s) ∨
∃z,w(a = move(z,w) ∧ u = max(δ(s), h(s) − z ·

cos(w))).
vii. v(do(a, s)) = u ≡

¬∃z,w(a = move(z,w)) ∧ u = ypos(s) ∨
∃z,w(a = move(z,w) ∧ u = v(s) + z · sin(w)).

viii. θ(do(a, s)) = u ≡
¬∃z(a = rotate(z) ∧ u = θ(s)) ∨
∃z(a = rotate(z) ∧ u = (((θ(s) + z)mod 360) −

180)).
ix. {l(move(z,w), s) = 1, l(rotate(z), s) = 1}.
x. l(sonar(z), s) = u ≡

Blocked(s) ∧ u = N(δ/ cos(θ) − z; 0, 1)[s] ∨
¬Blocked(s)∧u = N((δ+λ)/ cos(θ)− z; 0, 1)[s].

Table 2: A basic action theory for the domain.

while WALL-A is thought of as 4 components. We will be ig-
noring the thickness of walls for simplicity. In precise terms,
let Solid(x, y, d) indicate that beginning at the coordinate
(x, y), one finds a solid structure of length d extending from
(x, y) to (x, y + d). Of course, we are using a rigid predicate
because walls are stationary; for dynamic objects, such as
the robot, fluents will be used. With this idea, we could char-
acterize (say) WALL-E by including Solid(0, 0, 10) in D0.
For both walls, then, D0 is assumed to include the formu-
las (iv) from Table 2.

Figure 1: Two walls and a robot.

It should be clear that one may easily extract various di-
rectional and spatial relationships between such objects as
appropriate. For example, although entirely obvious here, to
calculate the distance between the walls, one may define an

abbreviation λ as follows:

λ = u � ∃x, y, d, x′, y′, d′. Solid(x, y, d) ∧ Solid(x′, y′, d′) ∧
x , x′ ∧ u = |x − x′|.

Robot: physical actions
Here, we characterize the robot’s position, its world-
changing actions, and their relationships.

The pose of the robot is given by three fluents: h, v and θ,
where (h, v) is the robot’s location, and θ is the orientation.
We let θ range from −180 to 180 (degrees), with θ = 0 indi-
cating that the robot is perpendicular to WALL-E and directed
towards it, and θ = 90 indicating that the robot is perpendic-
ular to the X-axis and directed towards the positive half of
the Y-axis.

We imagine two physical action types at the robot’s dis-
posal, move(z,w) and rotate(z). We are thinking that the
robot is capable of moving z units along the orientation w
(degrees) wrt its angular frame. That is, for w = 0, the robot
move would z units towards WALL-E, and for w = 90, the
robot would move z units along the positive Y-axis, i.e. par-
allel to WALL-E. The robot can also orient itself in-place,
using rotate(z). For these actions, one also needs to specify
their preconditions, and their likelihood axioms. For sim-
plicity, we assume these and all other actions in domain
(including the sensing action to be discussed shortly) are
always executable, given by (v). Likelihood axioms may
be used to specify probabilistic nondeterminism. Again, for
simplicity, we consider probabilistic nondeterminism only
with sensing actions, and so these physical actions are as-
sumed to be deterministic, given by (ix).

The values of fluents change after actions, of course. The
formula (ii) already specifies how p behaves in successor sit-
uations. We now do the same for h, v and θ. Since move(z)
and rotate(z) are the only physical actions, the successor
state axioms for h, v and θ will only mention these actions.
They are given as (vi), (vii) and (viii) respectively. Let us
consider them in order.

In the case of h, we would like (say) move(z, 0) to bring
the robot z units towards the wall on its left, but that motion
should stop if the robot hits the wall. For this, it is perhaps
easiest to first infer the distance between the robot and the
closest wall on its left. This can be done as follows. For an
arbitrary coordinate (x∗, y∗), we define an abbreviation for
the nearest wall on its left:

NearestLeft(x∗, y∗) = d � ∃x, y, d. Solid(x, y, d) ∧ y∗ ∈ [y, y + d] ∧
. . . ∧ d = (x∗ − x).

We use u ∈ [v,w] to mean u ≥ v ∧ u ≤ w, and the ellipsis
stands for

¬∃x′, y′, d′. Solid(x′, y′, d′)∧ y∗ ∈ [y′, y′ +d′] ∧ (x∗ − x′) < (x∗ − x).

To now extract the distance between the robot and the near-
est wall on its left, simply define an abbreviation δ as fol-
lows:

δ(s) = u � u = NearestLeft(h(s), v(s)).
This now allows us to dissect (vi). It says that move(z,w)
is the only action affecting h, thereby incorporating Reiter’s
monotonic solution the frame problem, and it decrements h
by z cos(w) units but stops if the robot hits the nearest wall
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on its left. Note that, then, the value of h will become δ. For
example, if θ = 0, then the new value of h is simply decre-
mented by z, and if θ = 180, which would mean the robot is
facing away from WALL-A then h would be incremented by
z (since cos(180) is -1.)

For the fluent v, the treatment is analogous, as shown in
(vii). That is, move(z,w) would increment v by z · sin(θ).
For example, if z = 90, then the move action would simply
increment v since the motion would be along the Y-axis in an
incremental fashion. Naturally, if one were to give a negative
argument, say −3, to move, then the robot would move from
(h, v) to (h, v − 3).

Finally, θ is manipulated using rotate(z) in an incremental
manner while keeping its range in [−180, 180] in (viii).

Robot: sensors
The robot is assumed to have a sonar unit on its frontal sur-
face, that is, along θ. We take this sensor to be noisy. What
this means is that if the robot is facing WALL-A, then a read-
ing z from the sensor may differ from δ, but perhaps in some
reasonable way. Most sensors have additive Gaussian noise
(Thrun, Burgard, and Fox 2005), which is to say the likeli-
hood of z is obtained from a normal curve whose mean is
δ.

The complication here is that there are two walls and de-
pending on the robot’s pose, the sensor might be measur-
ing either δ or λ + δ. For example, if h ∈ [0, 1] and θ = 0,
we understand that the sonar’s signals would likely be cen-
tered around δ. However, if v < 1 but the robot’s orientation
is such that the sonar’s signals advance through the gap at
[1, 2], then the robot’s sonar unit would suggest values closer
to δ+λ rather than δ alone. To provide a satisfactory l axiom
for a sensor, let us first introduce an abbreviation for what it
means for a sensor’s signals to stop at WALL-A:

Blocked(s) � ∃x, y, d. Solid(x, y, d) ∧ h(s) = x + δ(s) ∧
(v + δ · tan(θ))[s] ∈ [y, y + d].

To make sense of this in (converse) terms of when sig-
nals would reach WALL-E, note that if v < 1 and yet
v + tan(θ) ∈ [1, 2], then the signal advances through the gap.
Analogously, if θ < 0 and v > 2 and yet v + tan(θ) ∈ [1, 2],
then the signal advances through as well. This then allows
us to define an l axiom for the sonar in (x). Intuitively, when
Blocked holds at situation s, we assume the sonar’s reading
to have additive Gaussian noise (with unit variance) centered
around δ, but when the sonar’s signals can reach WALL-E,
we assume its reading to have additive Gaussian noise (with
unit variance) centered around δ + λ.3

Initial constraints
The final step is to decide on a p specification for the do-
main. Recall that the p fluent is used to formalize the (prob-
abilistic) uncertainty that the robot has about the domain.
This perhaps accounts for a major difference between the
work here and almost all probabilistic formalisms. For us,

3The N term is an abbreviation for the mathematical formula
defining a Gaussian density.
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Figure 2: Belief change of v with normally distributed θ: af-
ter sensing 5.9, moving 2 units, and sensing 5.83.

in a sense, p is just another fluent function, allowing the do-
main modeler to provide incomplete and partial specifica-
tions. But since our objective in this paper will be to show,
in the least, that robot localization behaves as it does in stan-
dard probabilistic formalisms, we now discuss an example
with a fully known joint distribution. There are other possi-
bilities still, a discussion of which we defer to later.

Properties
Before looking at the example, let us briefly reflect on what
is expected. A reasonable belief change mechanism would
support the following.

• Suppose the agent believes v to be uniformly distributed
on [0,10]. If the robot then uses its sonar and senses a
value close to λ+ δ say 5.9, it should come to believe that
it is located at a door, which would deflate its beliefs about
every point not in [1, 2] ∨ [3, 4] ∨ [7, 8] (i.e. open gaps in
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WALL-A.).

• Suppose the robot moves 2 units away from the X axis and
then uses its sonar obtaining a reading of 5.8. It should
then believe, rather confidently, that it must be in [3, 4]
since that is the only trajectory that supports a door ini-
tially and a second door after 2 units.

We now confirm these intuitions below.

xi. p(ι, S0) =
{
.1 × N(θ(ι); 0, 9) if (h = 6 ∧ v ∈ [0, 10])[ι]
0 otherwise

Table 3: Uncertainty about θ.

Example
We now consider a p specification where the agent will be
uncertain about θ. The p we are thinking of is the one speci-
fied in Table 3. Here, the agent has the knowledge that h = 6,
believes v is uniformly distributed on [0,10], and θ is be-
lieved to be normally distributed around 0 with a variance of
9.4 This is a complete specification, in the sense that there is
a unique joint distribution corresponding to the p axiom.

Consider for the moment what would happen after sens-
ing once. As there is uncertainty regarding θ, it means that
sensing (say) 5.9 will not imply full confidence in v being
in [1,2], or [3,4], or [7,8]. Indeed, as discussed earlier, even
for v values less than 1, the orientation may cause the sonar
to sense WALL-E. Moreover, a larger range of θ values may
cause the sonar to sense WALL-E in the [3,4] interval rather
than the [1,2] interval due to its lack of wall obstructions,
causing a belief density change as shown in Figure 2. After
moving (say) 2 units and sensing values closer to λ + δ will
lead to a more definite localization, as also shown in Figure
2. Here are some properties of this basic action theory:

Theorem 1: Let D be a basic action theory that includes
the sentences in Table 2 and Table 3. Then:

1. D |= Bel(v ∈ [3, 4.57], S0) = .157
Intuitively, for the numerator of Bel, we are to integrate a
function q(x, y, z) (where x corresponds to the fluent h, y
corresponds to v and z corresponds to the fluent θ) that is
.1 · N(z; 0, 1) when y ∈ [3, 4.57] and 0 otherwise. We get∫ 4.57

3

∫
R .1 · N(z; 0, 1) dz dy = .157. The denominator is 1.

(Strictly speaking, we would need to perform integration
over x, y and z, but we avoided clutter and range only over
y and z as the x value is fixed.)

2. D |= Bel(v ∈ [3, 4], do(sonar(5.9), S0)) ≈ .31
D |= Bel(v ∈ [2.8, 4.2], do(sonar(5.9), S0)) ≈ .33
It is worth developing this in detail. Picking the second,

4We use the usual “case” notation with curly braces:

z =
{

t1 if ψ
t2 otherwise

� (ψ ⊃ z = t1) ∧ (¬ψ ⊃ z = t2).

Bel expands as:

1
γ

∫
y∈R

∫
z∈R

.1·N(z; 0, 9)·


N(.1; 0, 1) if ∃ι(. . . ∧ ψ)[ι]
N(4.9; 0, 1) if ∃ι(. . . ∧ ¬ψ)[ι]
0 otherwise

where the ellipses stands for:

h = 6 ∧ v ∈ [0, 10] ∧ θ = z ∧ v = y ∧
v(do(sonar(5.9), now)) ∈ [2.8, 4.2]

and ψ is:

(v+ tan θ ∈ [1, 2])∨(v+ tan θ ∈ [3, 4]) ∨(v+ tan θ ∈ [7, 8]).

Note the simplification of the l values for the sensing ac-
tion:N(δ+λ−5.9; 0, 1) = N(.1; 0, 1) andN(δ−5.9; 0, 1) =
N(4.9; 0, 1).
As pointed out earlier, what is interesting about Bel’s ex-
pansion is that since θ , 0, the sensor may read δ+λ even
if the robot is not located in [1, 2], [3, 4] and [7, 8]. The
reader may verify that if the agent believes θ = 0, belief
in [3, 4] after sensing 5.9 would be 1/3, but now, because
of the uncertainty regarding θ, it is slightly less than 1/3.

3. D |= Bel(v ∈ [3, 4],
do([sonar(5.9),move(2, 90)], S0)) ≈ .32

Here, the belief in [1, 2] after sensing 5.9, which is also
.33 owing to the open door at [1,2], is transferred to [3, 4]
after moving laterally by 2 units.

4. D |= Bel(v ∈ [3, 4],
do([sonar(5.9),move(2, 90), sonar(5.83)], S0)) ≈ .96

Only v values in the vicinity of [3,4] support a second
sensing reading of 5.83, which has the intended effect.

Discussions
As seen in much of the work in cognitive robotics (Lake-
meyer and Levesque 2007; Reiter 2001), a logical language
like the situation calculus allows for actions with complex
context-dependent prerequisites and effects. But in compar-
ison to standard (non-logical) probabilistic formalisms, the
advantages of our proposal are perhaps most evident in terms
of what is allowed in the initial specification of the p fluent.
The example used in the paper is comparable to a unique
joint probability distribution, which is standard. But that is
not the case for one of the form:

∀ι(p(ι, S0) = U(v; 0, 10)[ι])
∨

∀ι(p(ι, S0) = U(v; 13, 23)[ι])

This says that the agent believes v to be uniformly dis-
tributed on [0, 10] or on [13, 23], without being able to say
which. As one would expect (in logic), appropriate beliefs
will still be entailed, but perhaps they will not function as
straightforwardly as in Table 3. For example:
• initially, it will follow that the robot is certain that v <

[30, 40], but will believe v ∈ [7, 16] with a .3 probability;
• if sensors indicate that v is within (say) the range of [7,8],

then the disjunctive uncertainty about v will no longer be
significant.
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Much weaker specifications are possible still, where the
modeler may leave the nature of the distribution of some flu-
ents completely open, which would correspond more closely
to incomplete information in the usual non-probabilistic
sense, among others. All of these are supported here.

Related Work
There are three main strands of related work from the repre-
sentational aspect. They are probabilistic formalisms, rela-
tional probabilistic languages and finally action languages.
We discuss them in turn, but focus our attention on robot
localization where possible.

There are numerous probabilistic formalisms, see (Thrun,
Burgard, and Fox 2005) for a comprehensive overview, some
of which are at the heart of most traditional robotic systems.
Much of the results are algorithmic in nature (Dellaert et
al. 1999), in the sense of investigating sampling-based tech-
niques, approximating domains with Gaussian distributions,
and so on. At the outset, we mentioned already that this pa-
per is about a specification. So, wrt the underlying formal
characterization, almost all of these are based on Bayesian
conditioning (Pearl 1988). They also assume a full specifi-
cation of a joint distribution, specified compactly in the form
of (say) conjugate distributions such as Gaussians or depen-
dency structures such as Bayesian networks. Thus, in terms
of methodology, none of these are geared to handle strict
uncertainty, logical connectives, and partial specifications.
Similar limitations also apply to early work on diagnosis in
hybrid systems (McIlraith et al. 2000). Moreover, apart from
a few cases such as (Darwiche and Goldszmidt 1994) and
(Hajishirzi and Amir 2010) that are propositional, they do
not reason about rich actions explicitly.

Logical formalisms for probabilistic reasoning, such as
(Halpern 1990; Bacchus 1990), are equipped to handle
features such as disjunctions and quantifiers, but they do
not explicitly address actions. Relational probabilistic lan-
guages and Markov logics (Ng and Subrahmanian 1992;
Richardson and Domingos 2006) also do not model actions.
Recent temporal extensions, such as (Choi, Guzman-Rivera,
and Amir 2011), treat special cases such as Kalman filtering,
but not complex actions. Similar limitations apply to certain
fuzzy logic approaches for Bayesian filtering (Jetto, Longhi,
and Vitali 1999).

In this regard, action logics such as dynamic and process
logics are closely related. These, and others based on the sit-
uation calculus and the fluent calculus (Thielscher 2001), in
fact, are precisely the kind of logical languages we expect
to be used for high-level control. But most of the work in
the area, to the best of our knowledge, is limited in terms
of one or more of the following: (a) they are propositional,
(b) they have not been extended to handle noise that is con-
tinuous, and (c) they have not formalized and studied how
localization can be realized. For example, in the area of
dynamic logic, (Van Benthem, Gerbrandy, and Kooi 2009)
treat probabilistic nondeterminism, but (a), (b) and (c) hold
here. Related frameworks (Halpern and Tuttle 1993), in-
cluding recent probabilistic planning languages (Kushmer-
ick, Hanks, and Weld 1995; Younes and Littman 2004; San-
ner 2011), are also ones where (a), (b) and (c) hold. Finally,

proposals based on the situation and fluent calculi are first-
order (Bacchus, Halpern, and Levesque 1999; Poole 1998;
Boutilier et al. 2000; Mateus et al. 2001; Shapiro 2005;
Gabaldon and Lakemeyer 2007; Fritz and McIlraith 2009;
Belle and Lakemeyer 2011; Thielscher 2001), but none of
them deal with continuous sensor noise, with the exception
of (Belle and Levesque 2013a) that we build on. Also, (c)
holds for these.

It is worth also emphasizing the differences between our
work and recent work in Symbolic POMDPs, which are also
based on first-order formalisms such as the situation calcu-
lus (Boutilier, Reiter, and Price 2001). First, note that the
most recent results on such symbolic representations (San-
ner, Delgado, and de Barros 2011) assume either that the
state is discrete but observations are continuous, or that the
state is continuous but observations are discrete. (We al-
low for both states and observations to be continuous.) But
there is a more fundamental difference: on the one hand,
MDPs are essentially about providing a policy to be exe-
cuted. We have only discussed projection. On the other hand,
the framework here explicitly reasons about belief change
in presence of strict uncertainty, thereby offering a rich ac-
count of the agent’s evolving knowledge state. Thus, one
should view the framework here as an underlying logic of
belief upon which reward structures and such could be fur-
ther specified (Boutilier et al. 2000).

Conclusions and Outlook
This paper addresses a fundamental limitation when apply-
ing logical knowledge representation formalisms to robotics.
One is forced to abstract the sensing results in a categorical
fashion, or much worse, abandon its inner workings. In that
regard, this paper’s essential contribution was to explain and
suggest how the modeler may represent her domain in a ba-
sic action theory, and how that gets further used to localize
a mobile robot. We think this clarification and logical study
is original, and not only is it fully compatible with existing
probabilistic formalisms, but goes well beyond by allow-
ing complex action types and partial specifications. These
expressive capabilities are significant, because they are the
very reason why (first-order) logical languages are chosen
for modeling and reasoning in the first place. Giving them
up would not be preferable for many domain modelers.

There are many avenues for future work, and we highlight
two new directions. First, computation. It may seem that se-
mantic characterizations of the form offered in this paper
only serve as specifications, and may not play a role in rea-
soning. This may be true for arbitrary action theories, but
recently, we (Belle and Levesque 2013b) have shown how
regression can be formulated for this extension, by means of
which projection queries reduce to formulas about the initial
situation. Most significantly, the dynamic components of a
basic action theory will not be needed. Because of this, per-
haps, one may study Monte Carlo or other sampling-based
methods (Thrun, Burgard, and Fox 2005) to reason about
beliefs under certain restrictions to the language. Inciden-
tally, algorithmic techniques such as particle filters (Thrun,
Burgard, and Fox 2005) are precisely the ones used for ca-
pabilities such as localization, and so perhaps investigations
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along the line just mentioned may serve to algorithmically
relate the two frameworks in addition to a semantic relation
as considered here.

Second, we only discussed projection in this paper. If one
seeks to employ a formalism such as this one on an agent,
one would need syntactic structures to represent complex
actions and procedures. For the standard situation calculus,
a programming language called GOLOG has been proposed
(Reiter 2001). Only categorical beliefs are treated there, and
so, an extension for probabilistic beliefs is an exciting av-
enue for future work.
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