

A Computational Focus for Robotics Education

Zachary Dodds, Kristina Ming, Chris Eriksen,

Harvey Mudd College Computer Science 301 Platt Blvd. Claremont, CA 91711
contact: dodds@cs.hmc.edu

Abstract

This paper details two undergraduate robotics projects that
highlight sophisticated, accessible interactions with spatial
representations and computational reasoning for ground and
aerial navigation. The results suggest that robotics education
may now have the resources – both in hardware and
software scaffolding – to bring computationally focused
curricula to a wide audience. We argue that the field's
computational facets will emerge its empowering force, and
that emphasizing them at the undergraduate level will
benefit students and professional practitioners alike.

 Is Robotics CS?

Certainly not! Robotics depends on insights and practices

from many fields. In fact, it is robotics's breadth that

ensures the success of its precollege educational programs

such as VEX and FIRST: there are many distinct niches in

which students can build an identity. What's more, an even

wider variety of research pursuits share the aegis of

robotics, as evidenced by the annual programs at IROS,

RSS, AAAI, and ICRA.

 Yet precisely because of its integrative success, robotics

today enjoys forward-facing vistas similar to computer

science's in the mid-twentieth century. On one hand,

robotics benefits from the ingenuity and maturity of device

design and control; over time, more accessible, powerful,

and robust software abstractions will continue to emerge

from those efforts.

 Just as hardware dominates the connotations of the word

“computer,” so does it underlie those of the word

“robotics.” Physical embodiment, however, does not

diminish computation’s importance in either case. Indeed,

Copyright © 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

one might argue that, today, computation’s influence far

exceeds that of its enabling substrates.1

 Drawing inspiration from this history, this paper argues

that undergraduate robotics is poised to benefit from a

focus on the computational facets of the field. Here, we

present field-tested, cost- and curriculum-accessible

resources to support precisely such a computational focus:

• with the scaffolding provided by ROS, students with one

semester of programming background can create, deploy,

and use substantive representations of large, uncontrived,

human-scale environments.

• we highlight deterministic and probabilistic algorithms

for spatial reasoning and task-level control accessible for

from-scratch implementation

• we report, too, on recent platforms that make it possible

to deploy these computational insights and skill-building

without sacrificing robotics's hands-on approach.

These items do not push forward the boundaries of

knowledge representation and reasoning (KRR) per se.

After all, spatial representations accessible to first-year

undergraduates must build upon the field's well-established

foundations. Yet we believe that this work does contribute

to the efforts of robotics in general, and KRR in particular,

because it offers a compelling, readily reproduceable

onramp for talent into the field. By curricularizing and

field-testing the compelling facets of robots' spatial

representations and reasoning through hands-on projects,

this work strives to advance the state-of-the-art of who will

contribute to KRR's goals -- and those of similar groups --

in the future.

In sum, although robotics is not CS, it is the field's

computational and representational advances that will pay

1 This holds, we believe, atop both artificial and human machines… .

Shih-Chieh Hsiung, Xin Huang, and Zakkai Davidson

Knowledge Representation and Reasoning in Robotics: Papers from the AAAI Spring Symposium

18

the greatest future dividends. As a result, KRR will benefit

from active partnerships and deliberate scaffolding within

early-undergraduate CS curricula. This work provides one

such scaffold, field tested with widely accessible resources.

New platforms, old scaffolding

Consider the ever-widening space of new robot platforms:

novel mechanisms and form factors inspire both

applications and imaginations. Comparing the space of

new robot platforms and the space of new software for

those platforms, however, evokes a stark contrast. Just as

each advance in computer hardware enables an even larger

cascade of computation, so too each new robot offers far

greater opportunities to integrate its sensors, architect its

behaviors, and interact with its environment.

 Here, we highlight two platforms that enable a focus on

computational representations and spatial reasoning. Both

have software scaffolding via ROS drivers (Quigley et al.,

2009) and cost less than $300. Though we used these

robots in undergraduate classrooms and laboratories, their

capabilities would pique the interest of some graduate

students and their accessibility would draw pre-college

enthusiasts.

Human-scale navigation with the Neato

Shown in Figure 1 (left), the Neato vacuum robot is a

capable, task-specific device akin to its older cousin, the

iRobot Roomba. Its <$250 price tag and on-board 360-

degree laser range finder set it apart, however – especially

as a basis for robotics education. A team of three first-year

undergraduate students, with one Python course each,

outfitted our Neato with an existing netbook, running ROS,

and a shelf velcroed to the top of the platform.

Figure 1. The knee-high sub-$300 Neato and shelf

So attired, the knee-high Neato becomes a general-purpose

ground robot, programmable in any ROS-accessible

language (we used Python), and capable of navigating

large, unaltered human-scale spaces. Figure 1 (right) shows

a snapshot of the robot near a passerby in a large labyrinth

of hallways. The next section summarizes results and the

resulting curriculum that uses this robot.

Aerial navigation with the AR.Drone2

The Parrot AR.Drone2 and newer, smaller Crazyflie

quadcopters, at $300 and $180, respectively, offer cost-

effective opportunities for robotics investigations to “get

off the ground.” With extant ROS drivers, both can be

controlled simply and easily through Python or C++; we

followed other projects’ leads (Bills, Chen, and Saxena

2011) in using the AR.Drone2, i.e., the drone, because of

its on-board cameras (Figure 2). This paper's penultimate

section details our investigations in autonomous navigation

for the drone.

Figure 2. The ARDrone.2 and an example image

Building one’s own navigation stack? Neato!

The past decade of ROS’s influence on robotics software is

difficult to overestimate (Cousins, 2011). Yet, from an

educational standpoint, ROS’s off-the-shelf algorithms are

only a secondary contribution. Rather, it is ROS’s

consistent abstraction of sensors, actuators, and

communications streams that has transformed robotics

education. These are the computational building blocks

that allow efficient composition of algorithmic procedures

and representations, whether from scratch or using existing

routines.

 Why do early CS students continue to implement

mergesort and quicksort, in light of the many already-

optimized routines available at the push of a button? They

do so because future computational creativity depends on

two insights: “this is a subroutine I can use anywhere” and

“this works because of specific structures and assumptions,

and those may or may not apply in the future.”

 In this latter spirit, a summer '13 trio of first-year

undergraduate students agreed to build a Neato navigation

stack from scratch. This project sought to revise the

curriculum for a CS2-level Computational Robotics Lab,

five sections of which ran in 2012 with three sections on

offer in Spring '14.

19

Figure 3. Raw and Hough-transformed laser data

With background of one Python-based programming

course, the team accessed the Neato’s low-level serial API

and gathered its sensor data and control primitives into a

single Python script within a week. Using ROS, they were

able to visualize the laser-scan rays as the robot moved

(Figure 3, inset).

Low-level reasoning

With these raw data available, the students leveraged

OpenCV’s (Pulli et al., 2012) built-in Hough transform to

extract straight-line walls from the raw laser-scan rays

(Figure 3, right). By correcting the robot’s heading toward

the most-parallel of the Hough-extracted walls and by

avoiding obstacles too close to the front of the robot, the

team had implemented its own low-level reactive corridor-

follower.

 Like many indoor environments, our academic corridors

(the Libra Complex) alternate straight-line hallways with

intersections of various sorts. By aligning to the dominant

wall direction and measuring open space in each of four

directions, the group succeeded in building their own

intersection-recognizer that worked well over 95% of the

time. Figure 3 shows the system identifying a three-way

intersection whose branch extends to the left, i.e., a "TL."

Topological representation and reasoning

Robust intersection recognition can support further layers

of capability, as long as the graph of hallways is known. A

hand-built, topologically accurate but metrically

approximate layout of the Libra Complex enabled the team

to implement breadth-first search (BFS is an early CS

topic) within that graph. BFS provides simple and optimal,

at least in a graph-node-counting sense, path-planner,

which can delegate progress from node to node to the low-

level reasoning system. When faced with a choice, the

axis-aligned topological map provides the basis for making

the correct turn. Figure 4 shows three snapshots of a long

run that encountered and avoided many unmodeled

obstacles, static and dynamic, through the complex.

Figure 4. Navigation in a large, hand-built graphical map

Deliberative layers

That five of the ten weeks remained after building this

reliable human-scale navigation system testifies to three

things: ROS’s excellent infrastructure, the Neato’s

powerful sensing, and Python’s expressive power.2 At this

midpoint the team sought to improve their system in two

ways: first, it should not need to know its starting point,

i.e., it should localize itself and then path-plan to the goal;

second, the robot should be as deliberate as possible in

localizing itself efficiently.

 The grid-aligned graph representation provides a natural

foundation for localization: it contains a discrete set of all

of the locations the robot could be. What remains is

choosing actions in order to cull possibilities until the pose

ambiguity disappears, i.e., classic Markov localization

(Nourbakhsh, 1998) or Monte Carlo Localization with

environmentally anchored pose populations (Thrun et al.,

2001).

 Again implementing from scratch, the team first tracked

the possible locations of the robot as it made default

intersection-choices through the map. With each new

observation, the (uniformly weighted) viable hypotheses

decreased until the robot knew its location; from there, it

planned and executed a path using the graph-navigation

routines. Figure 5 demonstrates one such run.

 Yet, there remained (computational) degrees of freedom

to exploit! Figure 5’s localization routine used default turn

options at each intersection: straight if possible, then right,

then left, then turning around. With the environmental

graph in hand, the team wanted to make a probabilistically

better-informed turning choice during localization.

Figure 5. Markov localization culling the set of
possible poses to one, then followed by navigation

 To that end the group measured the Shannon entropy

(Shannon, 1948) of the distributions of the possible

2 The team’s enthusiasm and ability are also part of this list, to be sure!

20

subsequent intersections for each of the robot’s possible

next turns. Figure 6 shows snapshots from the quicker

alternative route that entropy provides for the same

localization and navigation task run in Figure 5. The

entropy metric offers at least two benefits: (1) insight into a

fundamental, easily-implemented computational idea often

missed in early CS curricula and (2) a sound basis for

deliberative AI-level reasoning that few educational robots

reach because of the overhead that can detract from

computational considerations.

Figure 6. Entropy-based choices more quickly
localize the robot and complete the navigation task.

 Even building these (i) reactive, (ii) navigation, and (iii)

deliberative layers from empty files, the team found it had

its final two weeks to explore additional platforms (the

CrazyFlie with LeapMotion sensor) and alternative

predictive-path-planning strategies. In the latter, the system

makes a probabilistic “best-guess” as to the direction of the

goal and heads in that direction. This turns out to be a less

effective overall approach because the cost of actually

traversing those best-guess hallways is so dear in the cases

when the guess is, in fact, incorrect.

 Such accessibility suggests that, with the right resources,

representation and spatial reasoning can productively

anchor robotics education without sacrificing deep

understanding or hands-on deployment. This paper's final

section summarizes the past and present curricula that this

Neato project validates.

2d-3d spatial coordination? Drone on!

In parallel with the ground-robot investigation, a team of

three junior-level undergraduate students sought to

investigate the extent to which an aerial platform, the

drone, could leverage 3d spatial representations for task

execution. The results demonstrate that, with appropriate

curricular scaffolding, the sophistication of student-

designed software can greatly exceed and extend that of

the underlying robot hardware.

 The team chose the task of escaping the lab, by which

the drone would servo out of the door. They constructed a

system to follow a straightforward error-reducing loop:

 (0) First, use existing software (RGB-D SLAM) to build

and access a 3d map of the lab

 (1) Take an image from the drone’s camera

 (2) Localize by matching with the map’s images

 (3) Compute the heading from the pose estimate to the

lab door and apply that velocity for two seconds

 (4) If out of the lab, land; otherwise, hover and goto (1).

3d mapping on the shoulders of RGBD-SLAM

ROS’s access to the community’s codebase makes it

possible to incorporate the results of systems too

complicated to hand-build in a single term. For instance,

the drone team started with the ROS-based RGB-D SLAM

source code (Endres et al., 2012). Out of the box, the

algorithm provided Kinect-based 3d point-cloud maps of

the lab, known as the hot-air lab, for the balloons adorning

its walls (Figure 7).

 The team did adapt that source in order to preserve

separately both the RGB images (40 of them) that texture

the map and the relative positions of those images’

viewpoints in the lab’s coordinate frame.

 Those 40 images, in turn, provide the raw material for

the drone’s localization. Each time the drone hovers, a

novel image is taken and the system computes its closest

match among the 40. The images’ poses are known; thus,

the location of the best-matching image provides an

estimate of the drone’s location.

Leveraging OpenCV for 2d-2d matching

In order to compute the best-matching of the map’s 40

images to the drone’s novel image, the team implemented a

pipeline of 2d-2d matching routines from ROS’s embedded

OpenCV library. Figure 8 summarizes this pipeline,

implemented using C++.

Figure 7. Two renderings of RGBD-SLAM's 3d map

21

Figure 8. The drone's image-matching pipeline builds
a confidence ranking for image-based localization

after several layers of filtering SIFT features.

Figure 9. (left) The nine matches made during one of
the autonomous "escape" runs by the drone out of the
lab. The wider images were taken live by the drone;
the narrower ones were taken a week before and used
by RGBD-SLAM to build the 3d map of the lab below.
(right) Two 3d renderings of the drone's position
(frame 2 and frame 8) during the same escape run.

Figure 10. (left) An overview of the field-tested computational robotics lab curriculum, designed for students
with one semester of prior programming background (right) Student-proposed and –built capstone projects

from that lab, including (1) A maze sensed and solved by a ground robot and offboard Kinect; (2)
Autonomous flight through a hula-hoop via visual-servoing control; (3) forces superimposed on a robot

seeking the magenta goal and avoiding the cyan obstacle using vision – the resulting control vector is in red;
(4) A drone following an iCreate down a hallway; (5) a panoramic map created from an autonomous flight.

22

Visualizing the results

An advantage of localization within a 3d map is that the

system has a representation of the drone’s position

throughout its flight. Figure 9 (top) shows nine matches

(including one mismatch) of novel drone images with map

images through one lab-escaping run; at bottom are two

snapshots from the rendering of the drone’s path in 3d.

 The group, with no prior experience in robotics, vision,

or ROS, constructed a system that accomplished the escape

task several times; improvements continue today. This

result, produced without curricular support, suggests that –

even in the actively developing areas of 3d maps, visual

map-matching, and visual control of aerial robots – there

exist untapped opportunities to build compelling curricula

for a broad audience of students. What’s more, those

curricula do not have to sacrifice computational

sophistication for hands-on deployment.

UG Robotics: computational and hands-on

So, how would such robotics curricula look? We have

explored one possibility in 2012's offering of five sections

of computational robotics lab (Dodds, 2013). In that

course, pairs of students use both ground platforms and the

aerial drones in developing a new autonomous capability

each week or two; those experiences culminate in a month-

long capstone projects of the students’ own design. Despite

the limited platforms available, the projects' creativity

illustrates the power of a computation-first approach to the

field. Figure 10 summarizes the semester-long curriculum

and highlights several of those capstones.

 That such hands-on labs require only one semester of

computational background testifies to the remarkable

resources available to robotics educators today. Yet, the

projects detailed in this work show that even more may be

possible with careful scaffolding. In the spring of 2014, at

least three more sections of the lab will be offered; we

anticipate that the Neato and AR.Drone2, both new

additions, will enable spatial representations and

algorithmic reasoning to feature even more centrally in this

next iteration.

 Right now, robotics education is dominated by

wonderful programs whose emphases are the engineering

facets of the discipline. Without taking anything away

from the importance of those efforts, work in knowledge

representation and spatial reasoning seeks to expand those

computational underpinnings of the field that outlast

individual artifacts. Our approach to robotics education

seeks precisely that goal, which is why this work pushes

the limits of $300 platforms instead of relying on the

capabilities of $3,000 (or higher-cost) ones.

 More broadly, we hope these efforts contribute to the

ongoing development and maturation of robotics's

curricular resources. To the extent that robotics education

can embrace its computational core – i.e., building

appropriate task representations and leveraging algorithms

that support them -- we believe new students and seasoned

researchers alike will benefit from the emphasis and

interactions that naturally arise from such an approach.

References

Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs,
J., Berger, E., Wheeler, R, and Ng, A. 2009. ROS: an open-
source Robot Operating System. ICRA Workshop on Open
Source Software, Kobe, Japan, 5/12-5/17/09.

Bills, C., Chen, J., and Saxena, A. 2011. Autonomous MAV Flight
in Indoor Environments using Single Image Perspective Cues.
ICRA Shanghai, China, 5/9-5/13/11.

Dodds, Z. 2013. www.cs.hmc.edu/~dodds/ROSatSIGCSE2013/

Endres, F., Hess, J., Engelhard, N., Sturm, J., Cremers, D.,
Burgard, W. 2012. An Evaluation of the RGB-D SLAM System.
ICRA pp. 1691-1697, St. Paul, MN, 5/14 – 5/18/12.

Cousins, Steve. 2011. Exponential Growth of ROS. IEEE
Robotics and Automation Magazine, pp. 19-20, March 2011.

Pulli, K, Baksheev, A., Kornyakov, K., and Eruhimov, V. 2012.
Real-time computer vision with OpenCV. Communications of the
ACM 55(6), pp.61-69, Jun 2012, ACM Press.

Shannon, C. 1948. A Mathematical Theory of Communication.
Bell System Technical Journal 27(3): 379–423, July/October,
1948.

Thrun, S., Fox, D., Burgard, W., and Dellaert, F. 2001. Robust
Monte Carlo Localization for Mobile Robots. Artificial
Intelligence 128(1), pp. 99-141, 2001.

Noubakhsh, I. 1998. Dervish: An office-navigating robot.
Artificial Intelligence and Mobile Robots, pp.73-90, MIT Press.

23

