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Abstract 

This paper details two undergraduate robotics projects that 
highlight sophisticated, accessible interactions with spatial 
representations and computational reasoning for ground and 
aerial navigation. The results suggest that robotics education 
may now have the resources – both in hardware and 
software scaffolding – to bring computationally focused 
curricula to a wide audience. We argue that the field's 
computational facets will emerge its empowering force, and 
that emphasizing them at the undergraduate level will 
benefit students and professional practitioners alike. 

 Is Robotics CS?   

Certainly not! Robotics depends on insights and practices 

from many fields. In fact, it is robotics's breadth that 

ensures the success of its precollege educational programs 

such as VEX and FIRST: there are many distinct niches in 

which students can build an identity. What's more, an even 

wider variety of research pursuits share the aegis of 

robotics, as evidenced by the annual programs at IROS, 

RSS, AAAI, and ICRA.   

 

 Yet precisely because of its integrative success, robotics 

today enjoys forward-facing vistas similar to computer 

science's in the mid-twentieth century. On one hand, 

robotics benefits from the ingenuity and maturity of device 

design and control; over time, more accessible, powerful, 

and robust software abstractions will continue to emerge 

from those efforts.  

 

 Just as hardware dominates the connotations of the word 

“computer,” so does it underlie those of the word 

“robotics.” Physical embodiment, however, does not 

diminish computation’s importance in either case. Indeed, 
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one might argue that, today, computation’s influence far 

exceeds that of its enabling substrates.1 

 

 Drawing inspiration from this history, this paper argues 

that undergraduate robotics is poised to benefit from a 

focus on the computational facets of the field. Here, we 

present field-tested, cost- and curriculum-accessible 

resources to support precisely such a computational focus: 

 

• with the scaffolding provided by ROS, students with one 

semester of programming background can create, deploy, 

and use substantive representations of large, uncontrived, 

human-scale environments. 

•  we highlight deterministic and probabilistic algorithms 

for spatial reasoning and task-level control accessible for 

from-scratch implementation 

• we report, too, on recent platforms that make it possible 

to deploy these computational insights and skill-building 

without sacrificing robotics's hands-on approach. 

 

These items do not push forward the boundaries of 

knowledge representation and reasoning (KRR) per se. 

After all, spatial representations accessible to first-year 

undergraduates must build upon the field's well-established 

foundations. Yet we believe that this work does contribute 

to the efforts of robotics in general, and KRR in particular, 

because it offers a compelling, readily reproduceable 

onramp for talent into the field. By curricularizing and 

field-testing the compelling facets of robots' spatial 

representations and reasoning through hands-on projects, 

this work strives to advance the state-of-the-art of who will 

contribute to KRR's goals -- and those of similar groups -- 

in the future.  

 

In sum, although robotics is not CS, it is the field's 

computational and representational advances that will pay 
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the greatest future dividends. As a result, KRR will benefit 

from active partnerships and deliberate scaffolding within 

early-undergraduate CS curricula. This work provides one 

such scaffold, field tested with widely accessible resources. 

New platforms, old scaffolding 

Consider the ever-widening space of new robot platforms: 

novel mechanisms and form factors inspire both 

applications and imaginations. Comparing the space of 

new robot platforms and the space of new software for 

those platforms, however, evokes a stark contrast. Just as 

each advance in computer hardware enables an even larger 

cascade of computation, so too each new robot offers far 

greater opportunities to integrate its sensors, architect its 

behaviors, and interact with its environment. 

 Here, we highlight two platforms that enable a focus on 

computational representations and spatial reasoning. Both 

have software scaffolding via ROS drivers (Quigley et al., 

2009) and cost less than $300. Though we used these 

robots in undergraduate classrooms and laboratories, their 

capabilities would pique the interest of some graduate 

students and their accessibility would draw pre-college 

enthusiasts. 

Human-scale navigation with the Neato 

Shown in Figure 1 (left), the Neato vacuum robot is a 

capable, task-specific device akin to its older cousin, the 

iRobot Roomba. Its <$250 price tag and on-board 360-

degree laser range finder set it apart, however – especially 

as a basis for robotics education. A team of three first-year 

undergraduate students, with one Python course each, 

outfitted our Neato with an existing netbook, running ROS, 

and a shelf velcroed to the top of the platform.  

 

 

 

 

 

 

 

Figure 1. The knee-high sub-$300 Neato and shelf 
  

So attired, the knee-high Neato becomes a general-purpose 

ground robot, programmable in any ROS-accessible 

language (we used Python), and capable of navigating 

large, unaltered human-scale spaces. Figure 1 (right) shows 

a snapshot of the robot near a passerby in a large labyrinth 

of hallways. The next section summarizes results and the 

resulting curriculum that uses this robot. 

Aerial navigation with the AR.Drone2 

The Parrot AR.Drone2 and newer, smaller Crazyflie 

quadcopters, at $300 and $180, respectively, offer cost-

effective opportunities for robotics investigations to “get 

off the ground.” With extant ROS drivers, both can be 

controlled simply and easily through Python or C++; we 

followed other projects’ leads (Bills, Chen, and Saxena 

2011) in using the AR.Drone2, i.e., the drone, because of 

its on-board cameras (Figure 2). This paper's penultimate 

section details our investigations in autonomous navigation 

for the drone.  

 

 

 

 

 

Figure 2. The ARDrone.2 and an example image 

Building one’s own navigation stack? Neato! 

The past decade of ROS’s influence on robotics software is 

difficult to overestimate (Cousins, 2011). Yet, from an 

educational standpoint, ROS’s off-the-shelf algorithms are 

only a secondary contribution. Rather, it is ROS’s 

consistent abstraction of sensors, actuators, and 

communications streams that has transformed robotics 

education. These are the computational building blocks 

that allow efficient composition of algorithmic procedures 

and representations, whether from scratch or using existing 

routines. 

 

 Why do early CS students continue to implement 

mergesort and quicksort, in light of the many already-

optimized routines available at the push of a button? They 

do so because future computational creativity depends on 

two insights: “this is a subroutine I can use anywhere” and 

“this works because of specific structures and assumptions, 

and those may or may not apply in the future.” 

 

 In this latter spirit, a summer '13 trio of first-year 

undergraduate students agreed to build a Neato navigation 

stack from scratch. This project sought to revise the 

curriculum for a CS2-level Computational Robotics Lab, 

five sections of which ran in 2012 with three sections on 

offer in Spring '14.  
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Figure 3. Raw and Hough-transformed laser data 
  

With background of one Python-based programming 

course, the team accessed the Neato’s low-level serial API 

and gathered its sensor data and control primitives into a 

single Python script within a week. Using ROS, they were 

able to visualize the laser-scan rays as the robot moved 

(Figure 3, inset). 

Low-level reasoning 

With these raw data available, the students leveraged 

OpenCV’s (Pulli et al., 2012) built-in Hough transform to 

extract straight-line walls from the raw laser-scan rays 

(Figure 3, right). By correcting the robot’s heading toward 

the most-parallel of the Hough-extracted walls and by 

avoiding obstacles too close to the front of the robot, the 

team had implemented its own low-level reactive corridor-

follower. 

 

 Like many indoor environments, our academic corridors 

(the Libra Complex) alternate straight-line hallways with 

intersections of various sorts. By aligning to the dominant 

wall direction and measuring open space in each of four 

directions, the group succeeded in building their own 

intersection-recognizer that worked well over 95% of the 

time. Figure 3 shows the system identifying a three-way 

intersection whose branch extends to the left, i.e., a "TL." 

Topological representation and reasoning 

Robust intersection recognition can support further layers 

of capability, as long as the graph of hallways is known. A 

hand-built, topologically accurate but metrically 

approximate layout of the Libra Complex enabled the team 

to implement breadth-first search (BFS is an early CS 

topic) within that graph.  BFS provides simple and optimal, 

at least in a graph-node-counting sense, path-planner, 

which can delegate progress from node to node to the low-

level reasoning system. When faced with a choice, the 

axis-aligned topological map provides the basis for making 

the correct turn. Figure 4 shows three snapshots of a long 

run that encountered and avoided many unmodeled 

obstacles, static and dynamic, through the complex. 

 

 

 

 

 

 

 

 

Figure 4. Navigation in a large, hand-built graphical map 

Deliberative layers 

That five of the ten weeks remained after building this 

reliable human-scale navigation system testifies to three 

things: ROS’s excellent infrastructure, the Neato’s 

powerful sensing, and Python’s expressive power.2 At this 

midpoint the team sought to improve their system in two 

ways: first, it should not need to know its starting point, 

i.e., it should localize itself and then path-plan to the goal; 

second, the robot should be as deliberate as possible in 

localizing itself efficiently.  

 

 The grid-aligned graph representation provides a natural 

foundation for localization: it contains a discrete set of all 

of the locations the robot could be. What remains is 

choosing actions in order to cull possibilities until the pose 

ambiguity disappears, i.e., classic Markov localization 

(Nourbakhsh, 1998) or Monte Carlo Localization with 

environmentally anchored pose populations (Thrun et al., 

2001). 

 

 Again implementing from scratch, the team first tracked 

the possible locations of the robot as it made default 

intersection-choices through the map. With each new 

observation, the (uniformly weighted) viable hypotheses 

decreased until the robot knew its location; from there, it 

planned and executed a path using the graph-navigation 

routines. Figure 5 demonstrates one such run. 

 

 Yet, there remained (computational) degrees of freedom 

to exploit! Figure 5’s localization routine used default turn 

options at each intersection: straight if possible, then right, 

then left, then turning around. With the environmental 

graph in hand, the team wanted to make a probabilistically 

better-informed turning choice during localization.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Markov localization culling the set of 
possible poses to one, then followed by navigation 

 
 To that end the group measured the Shannon entropy 

(Shannon, 1948) of the distributions of the possible 
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subsequent intersections for each of the robot’s possible 

next turns. Figure 6 shows snapshots from the quicker 

alternative route that entropy provides for the same 

localization and navigation task run in Figure 5. The 

entropy metric offers at least two benefits: (1) insight into a 

fundamental, easily-implemented computational idea often 

missed in early CS curricula and (2) a sound basis for 

deliberative AI-level reasoning that few educational robots 

reach because of the overhead that can detract from 

computational considerations.  

 
 

 

 

 

 

 

 

Figure 6. Entropy-based choices more quickly 
localize the robot and complete the navigation task.  

 

 Even building these (i) reactive, (ii) navigation, and (iii) 

deliberative layers from empty files, the team found it had 

its final two weeks to explore additional platforms (the 

CrazyFlie with LeapMotion sensor) and alternative 

predictive-path-planning strategies. In the latter, the system 

makes a probabilistic “best-guess” as to the direction of the 

goal and heads in that direction. This turns out to be a less 

effective overall approach because the cost of actually 

traversing those best-guess hallways is so dear in the cases 

when the guess is, in fact, incorrect.  

 

 Such accessibility suggests that, with the right resources, 

representation and spatial reasoning can productively 

anchor robotics education without sacrificing deep 

understanding or hands-on deployment. This paper's final 

section summarizes the past and present curricula that this 

Neato project validates.  

2d-3d spatial coordination? Drone on! 

In parallel with the ground-robot investigation, a team of 

three junior-level undergraduate students sought to 

investigate the extent to which an aerial platform, the 

drone, could leverage 3d spatial representations for task 

execution. The results demonstrate that, with appropriate 

curricular scaffolding, the sophistication of student-

designed software can greatly exceed and extend that of 

the underlying robot hardware. 

 

 The team chose the task of escaping the lab, by which 

the drone would servo out of the door. They constructed a 

system to follow a straightforward error-reducing loop: 

 

 (0) First, use existing software (RGB-D SLAM) to build 

and access a 3d map of the lab 

 (1)  Take an image from the drone’s camera 

 (2)  Localize by matching with the map’s images 

 (3) Compute the heading from the pose estimate to the 

lab door and apply that velocity for two seconds 

 (4)  If out of the lab, land; otherwise, hover and goto (1). 

3d mapping on the shoulders of RGBD-SLAM 

ROS’s access to the community’s codebase makes it 

possible to incorporate the results of systems too 

complicated to hand-build in a single term. For instance, 

the drone team started with the ROS-based RGB-D SLAM 

source code (Endres et al., 2012). Out of the box, the 

algorithm provided Kinect-based 3d point-cloud maps of 

the lab, known as the hot-air lab, for the balloons adorning 

its walls (Figure 7). 

 

 The team did adapt that source in order to preserve 

separately both the RGB images (40 of them) that texture 

the map and the relative positions of those images’ 

viewpoints in the lab’s coordinate frame.  

 

 Those 40 images, in turn, provide the raw material for 

the drone’s localization. Each time the drone hovers, a 

novel image is taken and the system computes its closest 

match among the 40. The images’ poses are known; thus, 

the location of the best-matching image provides an 

estimate of the drone’s location. 

Leveraging OpenCV for 2d-2d matching 

In order to compute the best-matching of the map’s 40 

images to the drone’s novel image, the team implemented a 

pipeline of 2d-2d matching routines from ROS’s embedded 

OpenCV library. Figure 8 summarizes this pipeline, 

implemented using C++. 

 

 

 

 

 

 

 

Figure 7. Two renderings of RGBD-SLAM's 3d map 
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Figure 8. The drone's image-matching pipeline builds 
a confidence ranking for image-based localization 

after several layers of filtering SIFT features. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. (left) The nine matches made during one of 
the autonomous "escape" runs by the drone out of the 
lab. The wider images were taken live by the drone; 
the narrower ones were taken a week before and used 
by RGBD-SLAM to build the 3d map of the lab below. 
(right) Two 3d renderings of the drone's position 
(frame 2 and frame 8) during the same escape run.   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. (left) An overview of the field-tested computational robotics lab curriculum, designed for students 
with one semester of prior programming background (right) Student-proposed and –built capstone projects 

from that lab, including (1) A maze sensed and solved by a ground robot and offboard Kinect; (2) 
Autonomous flight through a hula-hoop via visual-servoing control; (3) forces superimposed on a robot 

seeking the magenta goal and avoiding the cyan obstacle using vision – the resulting control vector is in red; 
(4) A drone following an iCreate down a hallway; (5) a panoramic map created from an autonomous flight. 
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Visualizing the results 

An advantage of localization within a 3d map is that the 

system has a representation of the drone’s position 

throughout its flight. Figure 9 (top) shows nine matches 

(including one mismatch) of novel drone images with map 

images through one lab-escaping run; at bottom are two 

snapshots from the rendering of the drone’s path in 3d. 

 

 The group, with no prior experience in robotics, vision, 

or ROS, constructed a system that accomplished the escape 

task several times; improvements continue today. This 

result, produced without curricular support, suggests that – 

even in the actively developing areas of 3d maps, visual 

map-matching, and visual control of aerial robots – there 

exist untapped opportunities to build compelling curricula 

for a broad audience of students. What’s more, those 

curricula do not have to sacrifice computational 

sophistication for hands-on deployment. 

UG Robotics: computational and hands-on 

So, how would such robotics curricula look? We have 

explored one possibility in 2012's offering of five sections 

of computational robotics lab (Dodds, 2013). In that 

course, pairs of students use both ground platforms and the 

aerial drones in developing a new autonomous capability 

each week or two; those experiences culminate in a month-

long capstone projects of the students’ own design. Despite 

the limited platforms available, the projects' creativity 

illustrates the power of a computation-first approach to the 

field. Figure 10 summarizes the semester-long curriculum 

and highlights several of those capstones. 

 

 That such hands-on labs require only one semester of 

computational background testifies to the remarkable 

resources available to robotics educators today. Yet, the 

projects detailed in this work show that even more may be 

possible with careful scaffolding. In the spring of 2014, at 

least three more sections of the lab will be offered; we 

anticipate that the Neato and AR.Drone2, both new 

additions, will enable spatial representations and 

algorithmic reasoning to feature even more centrally in this 

next iteration. 

 

 Right now, robotics education is dominated by 

wonderful programs whose emphases are the engineering 

facets of the discipline. Without taking anything away 

from the importance of those efforts, work in knowledge 

representation and spatial reasoning seeks to expand those 

computational underpinnings of the field that outlast 

individual artifacts. Our approach to robotics education 

seeks precisely that goal, which is why this work pushes 

the limits of $300 platforms instead of relying on the 

capabilities of $3,000 (or higher-cost) ones. 

 

 More broadly, we hope these efforts contribute to the 

ongoing development and maturation of robotics's 

curricular resources. To the extent that robotics education 

can embrace its computational core – i.e., building 

appropriate task representations and leveraging algorithms 

that support them -- we believe new students and seasoned 

researchers alike will benefit from the emphasis and 

interactions that naturally arise from such an approach. 
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