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Abstract 

In our research, we aim (1) to recognize human internal 
states and behaviors (stress level, mood and sleep behaviors 
etc), (2) to reveal which features in which data can work as 
predictors and (3) to use them for intervention. We collect 
multi-modal (physiological, behavioral, environmental, and 
social) ambulatory data using wearable sensors and mobile 
phones, combining with standardized questionnaires and 
data measured in the laboratory. In this paper, we introduce 
our approach and some of our projects. 

Introduction and Our Approach  

Recently, we have so many devices to monitor our daily 

lives: pedometer, activity monitor, and sleep monitor etc. 

Many people wear them to quantify their personal 

behaviors; however, how can we use our collected data 

other than showing them in graphs? Our motivation to 

collect data is not only to visualize them but also to 

understand the meaning, recognize something internal 

behind the data (health condition or emotional states) and 

feedback them to users to help them to change their 

behaviors.  

Fig.1 Our approach to understand ambulatory data. 

In our studies, to understand human internal states and 

behaviors (sleep behaviors, stress, mood and performance 

level etc), we combine multi-modal ambulatory data from 

wearable sensors and mobile phones with data measured 

with gold standard methods in the laboratory or validated 

questionnaires (Fig. 1). Our interests lie in finding 

predictors for health and wellness and using them for 

treating or preventing disease or illness. In this paper, we 

will introduce some of our ongoing projects.  

Projects 

Understanding long-term sleep behavior at home 

Sleep is one of the major problems in modern society. 

Polysomnography is a gold standard to measure sleep; 

however, it requires people to visit a sleep laboratory and 

spend one night with many wires and sensors on the body 

which interfere with their sleep. Recently, many wearable 

devices have been commercialized as consumer versions of 

actigraphs (Fitbit, Jawbones, etc) to monitor daily activity 

and lack of movements that may correspond to sleep; 

however most of them are based only on accelerometer 

data and the accuracy to detect sleep stages is unclear. 

According to validated algorithms (Cole et al. 1992), 

accelerometer data has been used only to detect sleep and 

wake. Recent applications also utilize the amount of 

activity to infer greater likelihood of REM for alarm clock 

awakening. In our project, we combine electrodermal 

activity (EDA), skin temperature, and accelerometer and 

investigate how multi-modal data help us to understand 

sleep better. EDA refers to electrical changes in the surface 

of the skin activated by the sympathetic nervous system. It 

can be measured through skin conductance using 

electrodes on the skin surface (Boucsein, 1992). 

Traditionally, EDA has been measured with gelled 

electrodes on palms and fingers; however we have been 

using dry electrode based EDA measurement systems for 

more natural and comfortable long-term measurement. We 

compared sleep EDA and Polysomnography and confirmed 

that EDA shows peaks in NREM2 and SWS (Sano and 

Picard, 2011) (Fig.2). We have been working on 

sleep/wake detection using accelerometer, skin temperature 
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and electrodermal activity data. Combination of these three 

could improve the accuracy of sleep and wake detection. 

Fig. 2 Comparison between EDA and sleep stages  

Memory consolidation using multi-modal data 

We also have worked on how sleep sensor data can help 

estimate sleep dependent memory consolidation. Past 

studies have shown that sleep can enhance memory 

consolidation: consistent and significant performance 

improvement on a Visual Discrimination Task (VDT) 

became proportional to the amount of sleep in excess of six 

hours, and subjects with an average of eight hours then 

exhibited a correlation in performance to a particular 

pattern of sleep stages derived from the EEG: percent of 

SWS (Slow Wave Sleep) in the first quarter of the night, 

times percent of REM (Rapid Eye Movement) in the last 

quarter (Stickgold et al. 2000). We wanted to see if the 

non-EEG data from the sensor gives prediction of memory 

consolidation. We collected EEG (electroencephalogram), 

EDA and ACC data during sleep and VDT performance 

before and after sleep for N=24 healthy adults for 2 nights 

each for a total of 48 nights of data. We extracted features 

and applied machine learning techniques from the sleep 

data to classify whether the participants showed 

improvement in the memory task. Our results showed 60-

70% accuracy in a binary classification of task 

performance using EDA or EDA+ACC features, which 

showed significantly higher accuracy than the more 

traditional use of EEG-based sleep stages to predict VDT 

improvement (p< 0.05, Sano and Picard, 2013a). 

Stress recognition using mobile phone and 
wearable sensors 
In this project, we aim to find  objective markers in mobile 
phone and wearable sensor data that correspond to stress as 
evaluated by the Perceived Stress Scale (PSS) (Cohen, 
Kamarck, and Mermelstein. 1983). We collected 5 days of 
data for each of N=18 healthy adults: a wrist sensor (ACC 
and EDA), mobile phone usage (call (CALL), short 
message service (SMS), COMM: CALL+SMS, location 
(MOB) and screen on/off (SCREEN)) and surveys 
(personality, stress, mood, sleep, tiredness, general health, 
alcohol or caffeinated beverage intake and electronics 
usage). We applied sequential forward floating selection 
(SFFS) to understand which feature from each modality is 
related to stress level. In addition, we used machine 

learning to classify whether the participants had high or low 
PSS stress scores. We found stress related features in 
mobile phone data as well as in the survey and personality 
data (Table 1) (Sano and Picard, 2013b).  

Fig.3 Mean accuracy of classification (using 6 
different classifiers, N=48 nights) 

Table 1 Stress recognition results 

Classification 

accuracy 
Modality Best feature 

87.5% 
  

Post Survey 

Often felt so sad or down that you 

had trouble functioning in school or 

personal life 

Mobile phone 
usage (CALL, 

SMS, MOB, 

COMM, 
SCREEN) 

Mean duration of calls between 

9pm-12am,  

SD of % of SMSs between 9pm-

12am, 

Mean of SD of mobility radius, 

SD of total missed transactions, 

SD of % of screen ons between 6-

9pm 

 81.3% 

Big Five Test Neuroticism 

Evening 

phone survey 

SD of answer time 

75% 

MOB Mean of SD of mobility radius 

SCREEN 
SD of % of screen ons between 6-
9pm 
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