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Abstract

A Human-Machine system is a complex system consisting of
many components and services that dynamically compose to
achieve a specific goal. The functional and non-functional
attributes of the components are considered to make ’who
does, what, and when’ decisions depending on the operational
context. However, non-functional properties are not given
sufficient importance compared to that of the functional re-
quirements during the developmental stages. This paper high-
lights the importance of non-functional properties in human-
machine systems and proposes a metamodel for modeling
those properties. A case study on assistive lane keeping in au-
tomobiles is presented to demonstrate how the non-functional
properties can be modeled. This is a part of the intermediate
results of a research in progress for modeling decision archi-
tectures for autonomous systems.

1 Introduction
In earlier times, function allocation in human-machine sys-
tems was primarily a design decision. Consider the case of
cruise control in today’s cars, the steering control is allo-
cated to the human driver while the automation is responsi-
ble for applying acceleration. This is an example for static
function allocation. Some of the traditional strategies for
function allocation are: (a) assigning each function to the
most capable agent, (b) allocating to machine every function
that can be automated, and (c) applying an appropriate allo-
cation policy (Inagaki 2003). However, in adaptive human-
machine systems the function allocation is a run-time prob-
lem. Consider the case of auto-pilot taking control of an
aircraft in emergency situations. In such systems, there is
some kind of control sharing and trading that happens. The
first example of adaptive cruise control is a control sharing
case, while the second one is a control trading problem. In
the latter case the software takes the control of system with
or without the consent of human.

In certain tasks, humans outperform automation while in
some others, it is the opposite. However, in most of semi-
autonomous systems involving humans, for example in cars,
many functions that human performs are provided by the au-
tomation also. Although the software component and the
human counterpart can perform the same functionality, it
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Figure 1: Models and their Interactions in a Human-
Machine System

the quality expected from the entire system and the con-
text that determines which one should be activated or de-
activated in compliance with the regulation authority such
as FAA for civil aviation. A typical human-machine sys-
tem maintains three kinds of models: (a) human model, (b)
environment model and (c) the internal state model of the
system as shown in Figure 1. The functionality is achieved
through the interaction of these three models. Most model-
ing languages provide support for the description of func-
tional behavior, while the non-functional requirements are
normally described using informal comments even though
these properties play a vital role in determining the quality
of the system. A decision making system estimates the qual-
ity provided by the human and that of the automation, and
decides the authority for control. For example, attributes
such as response time, accuracy and reliability may com-
prise the quality of the software component, while alertness,
skills and expectation-intention correlation may decide the
quality of the human.

Furthermore, selecting the services based on the quality
have advantage not only between human and automation
agents but also within the automation system itself. Since
the functionalites are viewed as services it is possible to
compose basic low level services in different fashion to pro-
vide different functionalities. For example, in cars, voice
recognition service can be used in an entertainment system
as well as in a navigation system. However, the bottle-
neck is more related to the business models existing in in-
dustries that develops such systems. The standard approach
for automobile OEMs is to develop systems by assembling
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components that have been completely or partly designed
and developed by external vendors (Sangiovanni-Vincentelli
and Di Natale 2007). Because of the increasing complex-
ity of automobile systems with large number of distributed
features, such an approach will also lead to various com-
positional issues commonly known as feature interactions.
Therefore, Service Oriented Architectures (SoA) are grad-
ually being adopted in these systems where various func-
tionalities are provided as services and the assembled com-
ponents are seen as service providers. This software engi-
neering paradigm has many advantages in Human-Machine
collaborative work. Advances in human behavior research
helps to model various human actions. These actions can be
seen as services provided by human, for example, steering,
braking, applying acceleration by the driver can be viewed
as services provided by the human driver. In some context,
humans provide high quality services while in some others
the machine counterpart does. For example, in the case of
assisted parking, human steering control service is delegated
to the machine still retaining the authority over acceleration
with the driver.

Non-Functional Properties (NFPs) and Quality of Ser-
vice (QoS) models can be applied in various software de-
velopment approaches also. Modern complex software sys-
tems are realized by mainly three paradigms - Component
Based Software Engineering (CBSE), Model Driven Soft-
ware Development (MDSE), and Service Oriented Archi-
tecture (SOA). In CBSE, the system is a combination of
interacting components, which have predefined interfaces
and perform a specific functionality (Brugali and Scandurra
2009). Models are first class entities in MDSE and the ap-
proach starts with defining abstract models and platform
specific details are progressively added to get the final im-
plementation (France and Rumpe 2007). SoA view systems
as a composition of various services to perform a function-
ality. In all these approaches, the final system can be viewed
as a Systems of Systems (SoS) with components, models, or
services as heterogeneous independently operable systems.
In such complex systems, the emergent behaviors caused by
the interaction of different components supplied by different
vendors cannot be overseen without a formal model based
approach (Ramaswamy, Monsuez, and Tapus 2013). The
problem gets further aggravated when these components are
used in safety critical systems such as autonomous driving
in automotive domain. In addition with the introduction of
drive-by-wire in automobiles, the compositional problem is
becoming more pervasive. Hence the concept of QoS is a
global issue not only to service oriented systems.

The problem of dynamic adaptation is to maintain the
QoS of the system at a certain level. In order to do that in a
system involving humans, the QoS of human models as well
as for automation models needs to be specified in a com-
mon framework. The challenge is that various attributes that
determine a NFP is heterogeneous in nature while consider-
ing human and machine models. Our paper tries to address
this problem by providing a common metamodel that can be
used to specify the QoS of human, machine, and their inter-
actions.

The paper is organized as follows: Section 2 provides re-

lated works. A reference architecture for a human-machine
system is described in section 3 in order to illustrate the con-
cept of service composition. The concepts of NFP and QoS
are explained in section 4 and a metamodel is proposed in
section 5. Section 6 demonstrates the application of NFP
models with the help of a case study on assistive lane keep-
ing in automobiles. Section 7 concludes the paper with fu-
ture research directions.

2 Related Works
Although there is little literature that deals directly with
modeling NFPs in human-machine systems, this section will
point out works in metrics used in human-machine systems
and application of NFPs in general software engineering.

Metrics for standardization for Human-Robot Interactions
(HRI) have been proposed by Olsen and Goodrich, 2003,
Burke et al. 2004, Steinfeld et al. 2006, and Saleh and Karray
2010. The proceedings of the workshop on ’the Metrics for
Human-Robot Interaction’ proposed several guidelines for
the analysis of human-robot experiments and forwarded a
handbook of metrics that would be acceptable to the HRI
community (Burghart and Steinfeld 2008).

Mylopoulos, Chung, and Nixon proposes two comple-
mentary approaches for using Non-Functional information
- process oriented and product oriented. Process oriented
approach used NFP to guide the development of software
systems. While in the product oriented approach, the non-
functional characteristics of the final product are explicitly
stated, making it possible to examine if products fall within
the constraints of non-functionality. There are three UML
profiles that are standardized by the Object Management
Group (OMG) that deal with modeling QoS for software
components - QoSFT, SPT, and MARTE profiles. In Dob-
son, Lock, and Sommerville a QoS ontology for service cen-
tric systems has been proposed.

3 Reference Architecture
Figure 2a shows an abstract architecture of a service oriented
system. The reference architecture is used here only as a
way to explain the concepts hiding all the technology and
platform specific details. The architecture is comprised of a
number of low level services that provide support for service
discovery, QoS negotiation, supervisors, etc.

Figure 2b shows a typical sequence of activities in the sys-
tem. The request for service can be generated either from
human or machine. The service description with all the re-
quired parameters and required levels of QoS is computed
with respect to the context. For example, emergency brak-
ing service will be at a high level while a music streaming
service will be at a lower level. Appropriate services found
from a repository are composed to check for conflict, redun-
dancy etc. and QoS is computed for the composed service.
The composed service is verfied with QoS specification and
the required service is activated. A supervisor continuously
monitors the quality level of the running services and recon-
figuration is done when anomalies are detected.
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(a) Reference Architecture

(b) Activity Flow

Figure 2: Service Oriented Architecture

4 Non-Functional Properties and Quality of
Service

Non-functional properties define how a functionality oper-
ates, for example, performance, availability, effectiveness,
etc. QoS is the aptitude of a service for providing a quality
level to the different demands of the clients (MARTE 2011).
There is no general consensus in the community about the
concepts of NFP and QoS. Non-Functional Requirements
are not implemented in the same way as functional ones.
NFPs are seen as by products when a functionality is imple-
mented. In software engineering terms, usability, integrity,
efficiency, correctness, reliability, maintainability, testabil-
ity, flexibility, reusablity, portability, interoperability, per-
formance, etc. constitute NFPs (Chung and do Prado Leite
2009). At the same time, what determines QoS is highly do-
main specific. For example, throughput and bandwidth de-
termines QoS for a network; performance, fault-tolerance,
availability and security for an embedded system; personal-
ity, empathy, engagement, and adaptation for social robots
(Tapus, Mataric, and Scassellati 2007); resource utilization,
run-time adaptation for service robots (Inglés-Romero et al.
2013).

In Steinfeld et al. the authors identified some common
metrics for tasks in navigation, perception, management,
and manipulation for Human-Robot Interaction. For exam-
ple, effectiveness of a navigation task can be measured by:

• Percentage of navigation tasks successfully completed
• Coverage of area
• Deviation from planned route

Figure 3: Model Relationships

• Obstacles that were successfully avoided

• Obstacles that were not avoided, but could be overcome

Efficiency can be measured by time to complete the task,
operator time for task, average time for obstacle extraction,
etc. Using the empirical data, the following three hypotheses
are proposed:
Hypothesis 1: There can be one or more quality attributes
that directly or indirectly influence the NFP of the system.
Hypothesis 2: The attributes that determine the NFP differs
with the context, viewpoint, and current state of the system.
Hypothesis 3: Even when two systems has same attributes
that determine the NFP, the quality levels of NFP does not
necessarily be the same.

5 NFP Metamodel
A Model is an abstraction of reality and hence, it is only
a specific viewpoint of the reality. The concept of hav-
ing multiple models for modeling different viewpoints are
termed as separation of concerns in Model Driven Engi-
neering (MDE) terminology. A model capturing the Non-
functional characteristics of a system does not encapsulate
the entire functional model of the system. It will capture a
subset of the model attributes as illustrated in Figure 3. In
this case, the NFP models conforms to a common abstract
NFP metamodel.

A metamodel can also be called as a modeling language
that is at a higher abstraction level than the model itself.
Currently, there are two ways for modeling a modeling lan-
guage. One approach is by using an extensible general pur-
pose modeling language like Unified Modeling Language
(UML) and the other by developing a Domain Specific Lan-
guage (DSL). This section proposes a metamodel using the
profiling mechanism of UML based on the hypotheses men-
tioned in the previous section.

In our NFP metamodel terminology, the attributes that de-
termines NFPs are called QoS attributes. Each NFP has at
least one QoS profile associated with it. A QoS profile con-
sists of a set of QoS attributes and a QoS policy that defines
how the attributes affect the quality of NFP. The policy can
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Figure 4: NFP Metamodel

be defined based on logic systems such as a first order logic,
temporal logic, predicate logic, etc. (Rosa, Cunha, and Justo
2002).

Figure 4 shows our metamodel diagram of NFP using
UML notation. NFP and QoS Profile are the first class enti-
ties in this metamodel. NFP can have multiple QoS profiles
associated with it. QoS Profile consists of QoS Attributes
and QoS Policy. Each QoS Profile must have at least one
QoS Policy associated with it. QoS attributes can be Quan-
titative or Qualitative. Quantitative attributes can be directly
measured or can be estimated. Quantitative attributes can
have metric units to specific along with it, for example: sec-
onds for responsiveness, bits per second for throughput, etc.
The quantitative attributes can be static, dynamic, or derived.
Static attributes will not change during the course of system
operation, for example, time required by a human driver to
press the brake pedal of the vehicle. Dynamic attributes can
change during system operation, for example, task load on
human driver during driving. Qualitative attributes refer to
discrete characteristic that may not be measured directly but
provide a high level abstraction that are meaningful in a do-
main, for example, for indicating an individual personality
traits such as introversion, agreeableness, etc. (Fong, Nour-
bakhsh, and Dautenhahn 2003). Sometimes a qualitative at-
tribute needs some quantitative measures also, for instance,
energetic person with a certain activity level (Tapus, Cris-
tian, and Matarić 2008).

6 Case Study: Assistive Lane Keeping
Assistive lane keeping is a perfect example for dynamic
function allocation in Human-Machine system. In this case
study, we specifcally consider system initiated invasive lane
keeping feature in vehicles. The automation part is the lat-
eral control of the vehicle to keep the vehicle in the same
lane. The system takes control by applying the required
torque on the steering wheel in case of lane departure situa-
tions. The case study is to demonstrate how NFPs of Human
and Machine can be formally modeled using the proposed
NFP metamodel. The Non-Functional property, efficiency

is modeled as an example. We define QoS for efficiency as
the response time in which the human will react to a critical
event (here lane departure).

Human Driver Behavior Model
Modeling the human driver in ACT-R architecture (Trafton
et al. 2013) is considered in this section. The ACT-R model
was selected because of the availability of large number
of tunable parameters in models representing various as-
pects of human driver such as memory, perception, control,
monitoring, and decision skills. A brief description of the
model with only relevant properties are described here (see
Salvucci 2006 for more detailed descriptions). In this model
there are control, monitoring, and decision making compo-
nents. The control component is responsible for low level
perception and, lateral and longitude control. Lateral con-
trol is based on two features - near point and far point. The
near point represents the vehicle’s current lane position. It
is measured at 10m from vehicle’s center. The far point can
be: (a) the vanishing point of a straight road, (b) the tangent
point for the curve, and (c) the lead vehicle. The control law
for steering angle can be expressed as (Salvucci and Gray
2004) :

∆ϕ = kfar∆θfar + knear∆θnear + kIθnear∆t (1)

where ϕ is the steering angle, θfar and θnear are visual an-
gles of near and far points, respectively, ∆ϕ, ∆θfar,∆θnear,
and ∆t are the difference of the respective parameters with
respect to the last cycle. In short, the control law im-
poses three constraints on the steering angle: a steady far
point(∆θfar = 0), a steady near point (∆θnear = 0), and a
near point at the center of the lane (θnear = 0). Similarly,
the longitude control law can be expressed as:

∆ψ = kcar∆thwcar+kfollow(thwcar−thwfollow)∆t (2)

where ψ is the acceleration value, thwcar is the time head-
way to the lead vehicle, ∆thwcar is the difference of thwcar

with respect to the previous cycle, and thwfollow is the time
headway for following a lead vehicle. The monitoring model
is defined by a random probability measure (pmonitor) that
checks left or right lane, and forward and backward with
equal likelihood. The decision model is defined by the safe
distance (dsafe) and the lead vehicle distance that is con-
sidered as safe by the driver. The memory is modeled as
total number of references that can be stored in declarative
knowledge, decay time for the memory, and memory cre-
ation time. The cognitive architecture is designed in such
a way to include limitation and constraints on models that
mimic the human system (refer Salvucci 2006 for more de-
tails). The NFP model for efficiency of the human driver is
shown in listing 2 in textual form. The model structure con-
forms to the proposed NFP metamodel. The template used
for textual representation is shown in listing 1.

import (external NFP and QoS_Profile Models}
NFP: (NFP name);
QoS_Profile: (Qos ID):(QoS Name);
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Qos_Attributes:
(comma separated list of

attributes
in the following format
ID:Name:Variable Type:Unit);

Qos_Policy: policy_function();

Listing 1: Textual Model Representation

import control_skill,monitor_skill,
decision_skill,memory_skill

NFP: efficiency_human;
QoS_Profile: rt:response_time;

Qos_Attributes:
cs:control_skill:derived:,
ms:monitor_skill:derived:,
ds:decision_skill:derived:,
mem:memory_skill:derived:;

Qos_Policy: rt.cs>thcs & rt.ms>thms & rt.ds>
thds;

-------------------------------------------
QoS_Profile: control_skill;

Qos_Attributes:
pt:prep_time:static:ms,
et:exec_time:static:ms,
kflt:kfar_lateral:dynamic:,
knearlt:knear_lateral:

dynamic:,
kilt:ki_lateral:dynamic:,
kfarln:kfar_speed:dynamic:,
knln:knear_speed:dynamic:,
kiln:ki_speed:dynamic:,

Qos_Policy: contrl_policy();
-------------------------------------------
QoS_Profile: monitor_skill;

Qos_Attributes:
pm:prob_monitor:dynamic:,

Qos_Policy: monitor_policy();
-------------------------------------------
QoS_Profile: decision_skill;

Qos_Attributes:
sd:safe_distance:dynamic:m,

Qos_Policy: decision_policy();
-------------------------------------------
QoS_Profile: memory_skill;

Qos_Attributes:
mem:memory:dynamic:,
ct:creation_time:static:sec,
dr:decay_rate:static:,

Qos_Policy: memory_policy();

Listing 2: Efficiency Model for Human Driver

Steering Automation Model
There are a number of control algorithms in the literature for
automated steering control for highway driving, lane keep-
ing, and lane changing situations (Guldner, Tan, and Pat-
wardhan 1997). The non-functional parameters of the ex-
ecution model in the final platform consist of both algo-
rithm as well as hardware platform specific details. Listing
3 shows an example NFP model for efficiency for automatic
steering control using vision sensors.

import platform_capability,sensor_capability
,algorithm_parameters

NFP: efficiency_machine;
QoS_Profile: rt:response_time;

Qos_Attributes:
et:execution_time:static:ms,

Qos_Policy: response_time_policy();
-------------------------------------------
QoS_Profile: platform_capability;

Qos_Attributes:
pt:process_load:dynamic:

number,
ra:resource_availability:

derived:,
sp:scheduling_policy:

qualitative,
Qos_Policy: decision_policy();
-------------------------------------------
import camera_capability
QoS_Profile: sensor_capability;

Qos_Attributes:
fc:front_camera,
fr:rear_camera,

Qos_Policy: camera_policy();
-------------------------------------------
QoS_Profile: camera_capability;

Qos_Attributes:
res:resolution:static:

pixelsperframe,
fr:framerate:static:fps,
intf:interface:static:kbps,

Qos_Policy: camera_policy();
-------------------------------------------
QoS_Profile: algorithm_parameters;

Qos_Attributes:
vel:vehicle_velocity:dynamic

:kmps,
fang:

front_wheel_steering_angle
:dynamic:rad,

sa:slip_angle:dynamic:rad,
Qos_Policy: algorithm_policy();

Listing 3: Efficiency Model for Automated steering control

Interaction Model
Listing 4 shows the NFP model for interaction between the
Human Driver and the Steering Automation system. The
policy interaction policy() defines the strategy for maxi-
mizing the efficiency of the entire system.

import efficiency_human, efficiency_machine
NFP: efficiency_interaction;
QoS_Profile: rt:response_time;

Qos_Attributes:
eh:efficiency_human:dynamic:

derived:,
em:efficiency_machine:

dynamic:derived:,
Qos_Policy: interaction_policy();

Listing 4: Efficiency Model for Interaction between Human
Driver and Automation
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7 Conclusion
The importance of Non-Functional properties in human-
machine systems were discussed. Modeling those proper-
ties are necessary in architectures where functionality alone
cannot be used for making both design time and run-time
decisions. Our NFP metamodel provides a generic base for
specifying the non-functional aspects of both human and
machine models. The challenge of dealing with heteroge-
neous attributes defining the human and automation models
are addressed by categorizing the attributes into profiles hi-
erarchically and then using policies to compare at a higher
abstraction level. In this direction, the next logical step is to
formally specify the interaction policies and analyzing what
logic systems, such as a first order logic, predicate logic, etc.
are suitable for providing formal proofs.
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