
Explaining Verifier Traces with Explanation Based Learning

Daniel Bryce
SIFT, LLC.

dbryce@sift.net

Abstract

Model checking is an important tool for verifying that sys-
tem designs will satisfy their requirements. Model check-
ers excel at reasoning about probabilistic systems, but can be
improved when explaining counter-examples. Probabilistic
counter-examples are sets of verifier traces that demonstrate
how and when the probability of satisfying a system property
is insufficient. Understanding a single verifier trace can be
challenging; reconciling multiple verifier traces is even more
difficult.
We present a new technique for explaining a set of verifier
traces that applies explanation based learning. Our approach
extracts causal proofs from verifier traces and then general-
izes over the proofs. Generalization is achieved through en-
coding and solving a weighted MaxSAT problem that maps
trace explanations onto a generalized explanation. We present
results on our model of an infantry fighting vehicle and show
that the reduction in verifier traces is typically two orders of
magnitude.

Introduction
Model checkers are powerful tools for the model based de-
sign of complex systems. Checking whether system mod-
els will fulfill design requirements can provide consider-
able savings and prevent operational disasters. Probabilis-
tic model checkers reason about models capturing stochastic
behavior, such as race conditions, failures, and interactions
with an unpredictable environment. In such models, it is of-
ten only possible to meet requirements probabilistically, and
as such, properties bound the acceptable probability that re-
quirements are met. When a property is not met, there can
be multiple traces of the system’s behavior whose collective
probability witnesses that the acceptable probability thresh-
old is not met. This set of traces is a probabilistic counter-
example, and includes useful information about how the sys-
tem model (mis)behaves. Creating causal explanations of
alternative system behaviors is the primary contribution of
this work.

We use a running example of a ramp subsystem of an in-
fantry fighting vehicle (IFV), illustrated in Figure 1. In the
IFV ramp model, one of the primary requirements is that

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the ramp will never become jammed and inoperable. Un-
fortunately, designing the system to satisfy this requirement
with probability 1.0 is prohibitively costly. Instead, we ac-
cept a lower, yet still high, probability that the ramp will not
become stuck. Existing tools are useful for verifying this
property, but not for explaining why the property is violated.
Prior works that explain probabilistic counter-examples, in-
clude the use of raw state-transition sequences (Aljazzar
and Leue 2010), regular expressions over state transition
sequences (Han, Katoen, and Berteun 2009), fault trees
(Kuntz, Leitner-Fischer, and Leue 2011), or fault modes of
system components (Musliner and Engstrom 2011). These
approaches either under-simplify the verifier traces so that
they are not easy to understand or over-simplify. We seek
explanations that can both simplify verifier traces consider-
ably and retain important causal interactions.

We describe an approach to generating explanations of
verifier traces in the counter-examples with explanation
based learning (EBL) (Mitchell, Keller, and Kedar-Cabelli
1986; DeJong and Mooney 1986). We extract a causal proof
(Kambhampati and Kedar 1994) of the system behavior re-
quired to violate a property. With causal proofs extracted
from multiple verifier traces, we construct a generalization.
Unlike EBL applied to theorem proving, the generalization
is more succinct than a simple disjunction of the causal
proofs. Our generalization approach identifies transitions
occurring in each of explanations and attempt the minimize
the number of transitions required to summarize the set of
explanations. We solve this generalization problem as a
weighted MaxSAT instance (Borchers and Furman 1998).

Developing generalized explanations involves three main
steps. We extract a causal proof from each verifier trace, re-
duce the proof, and then generalize over multiple proofs to
create a generalized explanation. The causal proofs repre-
sent the minimal causal structure required to explain how a
verifier trace violates the property. In our IFV model, the
causal proofs represent less than 5% of the verifier traces.
We also reduce the causal proofs to a smaller set of transi-
tions that maintain the integrity of the proof. This reduc-
tion can sometimes be dramatic, a greater than 75% reduc-
tion over the already small proof. Finally, generalizing over
reduced proofs combines many of the steps that are com-
mon to multiple causal proofs. The generalization provides
a more succinct explanation that also highlights the simi-

Formal Verification and Modeling in Human-Machine Systems: Papers from the AAAI Spring Symposium

9



Figure 1: Infantry fighting vehicle ramp model overview.

larities between causal proofs and underscores their differ-
ences. On average, generalized explanations compress the
set of reduced causal proofs by 50%. The most difficult
IFV model counter-example to explain averages 34 steps per
causal proof. Reducing the causal proofs results in an aver-
age of 8 steps per proof. The generalized explanation in-
cludes 14 steps (out of 32 steps across four reduced causal
proofs). An explanation with fourteen steps is complex, but
significantly more succinct than the ten thousand steps (1000
steps in each of 1000 verifier traces) simulated to verify the
property. On average, our approach can reduce the number
of transition steps among all verifier traces to a generalized
explanation with two orders of magnitude fewer transition
steps.

PRISM
PRISM (Hinton et al. 2006) is a model checker for prob-
abilistic systems including discrete and continuous time
Markov chains and probabilistic timed automata. In
this work, we focus on discrete time Markov chains
(DTMCs). The PRISM modeling language allows synchro-
nized, component-based models (such as those needed to
specify each component of the IFV model depicted in Fig-
ure 1). PRISM computes the cross product of the component
models to create a single product model (e.g., a DTMC), and
we discuss our algorithms in terms of this product model. In
the following, we detail the DTMC product model and the
probabilistic computation tree logic (PCTL) (Hansson and
Jonsson 1994) properties checked by PRISM.
PRISM DTMCs: A PRISM DTMC model defines the triple
(A, T, s0) where A is a set of propositions, S = 2A is a set
of states, T : S × S → [0, 1] is a probabilistic transition re-
lation, and s0 ⊆ A is an initial state. The transition relation
is specified by a set of transition rules and the states, by a set
of propositions. Each transition rule t:

g → λ1 : u1 + · · ·+ λn : un

states that if the guard g is satisfied (i.e., g ⊆ s) by the
current system state, then with probability λi a state update
ui will occur. Each guard g is a set of propositions and each

update ui is a pair of sets of propositions (u+
i , u

−
i ), added or

deleted from the state. We assume that among all transitions,
the guards are mutually exclusive and exhaustive.

For example, the IFV model includes a transition rule:

{mode(B1, nominal), currentLeq(B1, 8)} →
0.00013 : ({mode(B1, failed), voltageOut(B1, 0)},

{mode(B1, nominal)})+
0.99987 : ({}, {})

which states that when battery B1 is in its nominal mode
and the current drawn is no more than 8 units, then with
probability 0.00013, the battery will enter its failed mode,
set its output voltage to zero, and no longer be in its nominal
mode. With probability 0.99987 there will be no change.

A verifier trace π is a sequence of m + 1 transitions
((s0, t, u), · · · , (sm, t′, u′)) ending in state sm+1. Each
transition (si, t, u) results in a state si+1 = si\u− ∪ u+.
PRISM Properties: PRISM checks properties specified in
PCTL (Hinton et al. 2006). In this work, we discuss model
checking properties specified in a limited, but highly use-
ful, fragment of the PCTL language. We check bounded
“safety” properties, of the form

P≥P [G≤kψ]

where the P≥P [Φ] operator is a Boolean test on whether the
system model will satisfy Φ with probability no less than
P . The modal operator G≤kψ states that ψ must “globally”
be satisfied by every state in a verifier trace with up to k
transitions. For the sake of exposition, ψ is a disjunction of
negated literals (i.e., ψ = ¬a0∨. . .∨¬an) and is satisfied by
a state s if ∃ai.ai 6∈ s. Explaining a counter-example to ψ
involves explaining how ¬ψ = a0 ∧ . . .∧ an (a conjunction
of positive literals) is satisfied by each verifier trace.

For example, a desirable IFV model property ensures that
the ramp will remain functional with high probability:

P≥0.99[G≤1000¬stuck(ramp)]

This property asserts that (with probability no less than 0.99
over the first 1000 time steps) the ramp will not become
stuck. Counter-examples illustrate how the probability that
a trace will satisfy stuck(ramp) is greater than 0.01.
PRISM Model Checking: PRISM uses several algorithms
for model checking that are either based on statistical or
analytic model checking. Both types of algorithms com-
pute possible verifier traces to assess the probability that the
safety property is satisfied. Statistical approaches typically
use Monte Carlo sampling to generate verifier traces that be-
gin in the initial state by sampling a sequence of probabilis-
tic transitions.

The PCTL property P≥P [Φ] is satisfied if the probability
that a verifier trace will satisfy Φ is no less than P . If there
exists a set of verifier traces with probability greater than
1− P that do not satisfy Φ, then this set of verifier traces is
a probabilistic counter-example. The focus of this work is to
explain these probabilistic counter-examples, as we discuss
in the following section.

10



e1

stuck(ramp)

mode(ramp, nominal)

e553

torque(ramp,max)

mode(command, close)

e426

pos(ramp, close)

e223

mode(command, idle)

Figure 2: This causal proof is extracted from a verifier trace
and explains how the ramp can become stuck. Transition
steps are denoted by ovals, and state conditions by rectan-
gles.

Explaining Counter-Examples
Counter-examples are critical to understanding and improv-
ing system models. Unfortunately, in probabilistic systems
it is even more difficult to understand counter-examples be-
cause they include many verifier traces. Explaining a set of
verifier traces can lead to better understanding by removing
irrelevant information and generalizing over common fea-
tures. Our EBL-based approach to generating probabilis-
tic counter-example explanations accomplishes this by three
steps that are detailed in the following subsections. The
first step extracts a partially-ordered causal proof from each
verifier trace that includes only the transitions required to
violate the safety property. The second step reduces each
causal proof by removing causally connected, but unneces-
sary, transitions. The third step generalizes over a set of
causal proofs to highlight both the common and distinct tran-
sitions required by the counter-example.

Extracting Causal Proofs
We extract causal proof with a technique based upon
goal regression where the negation of the safety property
(our goal) is regressed. For example, our safety prop-
erty P≥P [G≤1000¬stuck(ramp)] from the previous section
would result in the goal stuck(ramp), and the causal proof
would illustrate how stuck(ramp) becomes true.

Regression involves maintaining a set of outstanding sub-
goals, and stepping backward through the verifier trace to
identify transitions that cause subgoals to become satisfied.
A transition satisfying a subgoal is added to the proof and
its guard is added to the set of subgoals. In this manner the
causal proof identifies which transitions and state conditions
must occur in a partially ordered sequence to satisfy a prop-
erty.
Causal Proofs: The causal proof c of the counter-example
trace π is a triple (E,O,L), where E is a set of transi-

tion steps, O is a set of ordering relations, and L is a set
of causal links. Each step e ∈ E maps to pair (t, u) de-
noting a transition and update. Each o ∈ O is a pair
(e, e′) indicating that e must precede e′. Each causal link
(e, a, e′) ∈ L indicates that the transition and update de-
noted by step e = (t, (u+, u−)) cause a to become true
(i.e., a ∈ u+), a is an element of the guard of the transi-
tion denoted by e′ = (t′, u′) (i.e., a ∈ g(t′)), and no other
transition can occur between e and e′ that will make a false.
Each causal proof includes unique steps e0, e∞ ∈ E which
denote steps for dummy transitions whose respective update
and guard denote the initial state and condition Φ. We define
the set of ordering relations so that:

O ={(e0, e)|e ∈ E\{e0}}∪
{(e, e∞)|e ∈ E\{e∞}}∪
{(e, e′)|(e, a, e′) ∈ L}

Regression: From a counter-example trace π and prop-
erty P≥P [G≤kψ], we construct a causal proof by regress-
ing the set of propositions appearing in ¬ψ. In regression,
we record the transitions and updates that are required to
satisfy ¬ψ directly or indirectly. We begin with a causal
proof ({e0, e∞}, {(e0, e∞)}, {}) containing only the steps
for the initial state and property, such that e∞ maps to a
dummy transition with the guard g = {a0, . . . , an} where
¬ψ = a0 ∧ . . .∧ an and e0 maps to a dummy transition and
update where u+ = s0. For each step (si, t, u) in the veri-
fier trace, we regress the subgoals over the transition-update
pair and create a step in the causal proof if it contributes
subgoals.

We initially define our goal Dm+1 = {a0, . . . , an}, and a
regression operation reg(Di+1, (si, t, u)) so that:

reg(Di+1, (si, t, u)) =

{
Di+1\u+ ∪ g(t): u+ ∩Di+1 6= ∅
Di+1 : otherwise

where Di = reg(Di+1, (si, t, u)) is the set of subgoals re-
quired to execute transition t (i.e., satisfy the guard g(t) of
t), and any subgoals not satisfied by the update u+. We
check each step in the verifier trace from the end to the be-
ginning to update the set of goals Di to be satisfied at each
time i.

From our example (Figure 2), if D1001 =
{stuck(ramp)}, it is not until time 554 that
D554 = {stuck(ramp)} is satisfied by a transi-
tion. The transition t and update u at time 553 define
g(t) = {mode(actuator, fail),mode(command, open)},
and u+ = {stuck(ramp)}. Regressing the goal
over this transition leads to the subgoals D553 =
{mode(actuator, fail),mode(command, open)}.

If at any step i, u+∩Di+1 6= ∅, then the step i contributes
to the causal proof. Contributing steps are added to the proof
as follows. We create a new step e ∈ E that maps to the
transition-update pair (t, u). For each proposition a ∈ u+ ∩
Di+1, we create a causal link (e, a, e′) ∈ L such that e′ is
the causal proof step mapping to the earliest verifier trace
step (sj , t

′, u′) such that j > i and a ∈ g(t′).
After regressing D554 above, the causal proof c adds

a step e553 for the corresponding transition-update pair, a

11



stuck(ramp)

mode(ramp, nominal) torque(ramp,max)

mode(command, close)pos(ramp, close)

mode(command, idle)

ē1

ē1

ē2 ē3

mode(actuator, stuck)

ē4
ē5

torque(actuator, max)

mode(actuator, nominal)

Figure 3: The generalized explanation created from two
causal proofs (including the proof illustrated in Figure 2).

causal link, and ordering, so that

c = ({e0, e∞, e553},
{(e0, e∞), (e553, e

∞), (e0, e553)},
{(e553, stuck(ramp), e∞)})

Causal Proof Reduction

We can sometimes extract causal proofs that are large. Due
to the nature of probabilistic systems, some proofs are large
because they include repeated transitions. For example, it is
possible to satisfy the subgoal mode(command, close) (in-
dicating a button was pressed to close the ramp) with a single
transition from a state where mode(command, idle) (c.f.,
step e223 in Figure 2). It is also possible to press the button
twice, changing the command mode from idle to close, close
to idle, and idle to close. Clearly, this repetition does not add
to the causal proof. In such cases, a single button press tran-
sition has the same effect as two or more. Eliminating such
unnecessary repetition leads to more succinct causal proofs.

In the two button press example above, we can preserve
the meaning of the proof by removing the last two transi-
tions; that is, the button press and release. We accomplish
this reduction in the general case using a simple greedy al-
gorithm (Nakhost and Müller 2010). We try removing each
causal link from the proof in turn and then check whether
the conditions previously satisfied by the causal link can be
satisfied by another step. If so, we remove the causal link
and adjust the proof to reflect the new support for the con-
dition (a causal link from a different step); if not, we do not
remove the causal link and try another. If at any time a step
does not produce any causal links, then it is removed. We
continue until no more causal links can be removed. In this
fashion,we can often reduce the size of causal proofs con-
siderably. Having smaller causal proofs can help to scale-up
generalization and achieve more succinct generalized expla-
nations that are more easily interpreted.

Generalized Explanations
Traditional applications of EBL generalize over multiple ex-
amples by taking the disjunction of the explanations derived
from each example. The causal proofs extracted from the
verifier traces are graphs. A disjunction of the graphs can
be naively represented by an and-or graph with a single “or”
node. We recognize that the causal proofs (“and” graphs)
can share common steps, and there is an opportunity to share
nodes in the graphs. We decide which nodes to join (and
thus minimize the size of the generalized explanation) by
encoding and solving a MaxSAT instance. We start with an
example to illustrate the benefits of generalization.

Example Figures 2 and 3 illustrate a causal proof explain-
ing a single verifier trace and a generalized explanation of
two causal proofs. Both figures illustrate subgoals (corre-
sponding to causal links) as boxes, and steps as ovals. The
boxes that are not supported by steps in the figures are sup-
ported by the dummy initial step (omitted for clarity).

The generalized explanation illustrates two alternative
ways to support the guard of the step ē1 causing the
ramp to become stuck. The first, corresponding to the
causal proof in Figure 2, supports the guard condition
torque(ramp,max) with a step e426 that maps to gener-
alized step ē3. This step is supported by two conditions
pos(ramp, close) and mode(command, close), meaning
that the ramp is commanded to close when already closed.
The second causal proof (not shown) supports the guard
condition torque(ramp,max) with a step correspond-
ing to generalized step ē2. This step is supported by
two conditions in its guard mode(actuator, stuck) and
pos(ramp, close), meaning the ramp actuator fails. As il-
lustrated by the generalized explanation, both proofs rely on
common steps and conditions, including the step ē1 (where
the ramp becomes stuck because of high torque) and condi-
tion pos(ramp, close). Generalizing over additional causal
proofs will illustrate new ways to support the existing con-
ditions as well as introduce new steps and conditions.

Generalization as Weighted MaxSAT The generalized
explanation is created by constructing a MaxSAT instance,
whose optimal solution is the best mapping of the steps in
causal proofs to steps in the generalized explanation. The
definition of a best mapping has two components, maxi-
mizing the probability mass associated with the generalized
steps and minimizing the number of generalized steps (to
make the explanation more succinct). In the following, we
describe our MaxSAT formulation.

Each causal proof ci ∈ C is a triple ci = (Ei, Oi, Li).
The generalized explanation c̄ of a set of causal proofs C is
defined similarly, c̄ = (Ē, Ō, L̄). The generalized explana-
tion maps each causal proof step ei ∈ Ei into a generalized
step ē ∈ Ē, such that i) if two generalized steps are ordered,
all corresponding causal proof steps are ordered the same,
and ii) each causal link between generalized steps exists be-
tween all corresponding causal proof steps. Both the gener-
alized explanation and casual proofs must be internally well
formed: i) there are no cycles in the ordering relations, and

12



oei,e′i : ∀(ei, e′i) ∈ Oi (1)

(oe′′i ,ei ∨ oe′i,e′′i ) : ∀(ei, x, e′i) ∈ L,∀e′′i ∈ Ei,where e′′i clobbers x (2)

¬oei,ei : ∀ei ∈ Ei (3)

(oei,e′i ∧ oe′i,e′′i )→ oei,e′′i : ∀ei, e′i, e′′i ∈ Ei (4)

Table 1: Clauses encoding causal proofs.

bē,ei ∧ bē′,e′i → (oē,ē′ ↔ oe,e′) : ∀ē, ē′ ∈ Ē,∀ei, e′i ∈ Ei (5)∨
ē,ē′

(bē,ei ∧ bē′,e′i) : (ei, x, e
′
i) ∈ Lx, Lx = {(ei, x, e′i) ∈ Li|ci ∈ C} (6)

¬bē,ei ∨ ¬bē′,ei : ∀ē, ē′ ∈ Ē,∀ei ∈ Ei,∀ci ∈ C (7)

¬bē,ei ∨ ¬bē,e′i : ∀ē ∈ Ē,∀ei, e′i ∈ Ei,∀ci ∈ C (8)

¬bē,ei ∨ ¬bē,ej : ∀ē ∈ Ē, ei ∈ Ei, ej ∈ Ej , u(ei) 6= u(ej) (9)

Table 2: Clauses encoding causal proof to generalized explanation mappings.

ws : ¬
∨

ei∈Ei,c∈C
bē,ei : ∀ē ∈ Ē (10)

wt :
∨
ē∈Ē

bē,ei : ∀ei ∈ Ei, ci ∈ C (11)

Table 3: Clauses stating optimization criteria of the
MaxSAT.

ii) no step that clobbers a causal link can be ordered between
steps producing and consuming the causal link.

We illustrate the formalization of these requirements
through the MaxSAT formulation of the constraints. A
MaxSAT instance defines a set of Boolean propositions and
a set of weighted clauses (disjunctions of Boolean literals).
An optimal solution is a truth assignment to propositions that
maximizes the sum of the weights of satisfied clauses.

The clauses in our formulation can be grouped into three
sets that: establish the consistency of causal proofs, map
causal proofs to the generalized explanation, or enforce op-
timization criteria. Each of the clauses in the first two sets
are hard, meaning that their weight is infinity and must be
satisfied. The optimization clauses are soft, meaning that
they should be satisfied but may not be satisfied.

The clauses that establish the consistency of a causal
proof ci ∈ C are summarized by Table 1, and are as fol-
lows. Equation 1 states that for each ordering constraint in
Oi, the ordering proposition oei,e′i must be true. Equation
2 states that for each causal link in a causal proof and step
e′′i that assigns a different value to the variable set by x (i.e.,
it clobbers x), e′′i must be ordered before or after the steps
in causal link. Equation 3 enforces that no step is ordered
before or after itself. Equation 4 captures step order transi-
tivity.

The clauses in Table 2 ensure that the mapping from
causal proof steps to generalized steps is consistent. Equa-
tion 5 ensures that orderings between generalized steps re-
spect the orderings between causal proof steps to which they
map (bē,ei denotes the mapping). Equation 6 states that two
generalized steps must map to respective causal proof steps
sharing a causal link. Equation 7 enforces that no causal
proof step maps to more than one generalized step. Equation
8 enforces that no more than one causal proof step from the
same causal proof maps to the same generalized step. Equa-
tion 9 ensures that no two dissimilar updates are represented
by the same generalized step.

The clauses in Table 3 list the optimization criteria for
the MaxSAT encoding. Equation 10 contributes weight ws

to the solution if there is no causal proof step mapped to a
generalized step – encouraging the generalization to use as
few generalized steps as possible. Equation 11 contributes
weight wt to the solution if there exists a generalized step to
which a particular causal proof step is mapped – encourag-
ing mapping causal proof steps to generalized steps. Clearly,
these two criterion are conflicting; the first discourages in-
troducing generalized steps and the second encourages map-
ping causal proof steps to generalized steps. We can obvi-
ate the first criterion by bounding the number of generalized
steps that are included in the generalized explanation. In
such a case, it may not be possible to bind all causal proof
steps to a generalized explanation step and maintain expla-
nation consistency. The weight wt will ensure the most im-
portant steps are mapped. To capture the most important
steps, we define the weight wt of each clause by the prob-
ability that the step ei will occur in the causal proof. In
practice we use weights wt =∞ and ws = 1, with a bound
of fifty generalized step nodes.

The result of solving the MaxSAT is an assignment to
the Boolean propositions that encodes a generalized expla-
nation, as illustrated by the graph in Figure 3.

13



Property	   Probability	  
	  Avg.	  Original	  

Steps	  

	  Avg.	  
Reduced	  
Steps	   	  Gen.	  Events	  	  

Extrac<on	  
Time	  	   Gen.	  Time	   MaxSAT	  Vars	  

MaxSAT	  
Clauses	  

P=?	  [	  G<=1000	  "Ramp_Ramp1_FFL_nominal_p"	  ]	   0.993	   34.0	   8.0	   14	   231	   18114	   39353	   1105111	  
P=?	  [	  F<=1000	  Command_Command1_posi<on_out=1	  ]	   1.000	   6.0	   2.5	   4	   6	   80	   973	   10751	  
P=?	  [	  G<=1000	  (Command_Command1_posi<on_out=2)=>Ramp_Ramp1_moving=0	  ]	   0.502	   26.0	   2.0	   3	   79	   33	   521	   4512	  
P=?	  [	  G<=1000	  (Command_Command1_posi<on_out=2)=>"RampBaRery_BaRery1_FFL_nominal_p"	  ]	   0.921	   30.5	   2.5	   4	   20	   71	   973	   11480	  
P=?	  [	  G<=1000	  (Command_Command1_posi<on_out=2)=>"Ramp_Ramp1_FFL_nominal_p"	  ]	   0.996	   16.8	   5.0	   10	   38	   2057	   9123	   221326	  
P=?	  [	  G<=1000	  (Command_Command1_posi<on_out=2)=>Ramp_Ramp1_posi<on=0	  ]	   0.032	   19.8	   2.2	   3	   16	   41	   722	   6834	  
P=?	  [	  F<=1000	  (!IndicatorLight_Light1_ramp_open&Ramp_Ramp1_open)	  ]	   0.006	   23.0	   5.3	   7	   107	   917	   3927	   85055	  
P=?	  [	  G<=1000	  Ramp_Ramp1_open=>IndicatorLight_Light1_ramp_open	  ]	   0.991	   27.0	   4.2	   9	   82	   1256	   5470	   14671	  
P=?	  [	  G<=1000	  IndicatorLight_Light1_ramp_open=>Ramp_Ramp1_open	  ]	   1.000	   -‐	   -‐	   -‐	   -‐	   -‐	   -‐	   -‐	  
P=?	  [	  G<=1000	  IndicatorLight_Light1_ramp_open<=>Ramp_Ramp1_open	  ]	   0.988	   30.2	   5.0	   10	   62	   1849	   8719	   197321	  
P=?	  [	  F<=1000	  (!IndicatorLight_Light1_ramp_closed&Ramp_Ramp1_closed)	  ]	   0.013	   21.0	   4.8	   7	   48	   1519	   6569	   150324	  
P=?	  [	  F<=1000	  (IndicatorLight_Light1_ramp_closed&!Ramp_Ramp1_closed)	  ]	   0.000	   -‐	   -‐	   -‐	   -‐	   -‐	   -‐	   -‐	  
P=?	  [	  G<=1000	  Ramp_Ramp1_closed=>IndicatorLight_Light1_ramp_closed	  ]	   0.982	   8.2	   1.8	   4	   116	   114	   414	   4196	  
P=?	  [	  G<=1000	  IndicatorLight_Light1_ramp_closed=>Ramp_Ramp1_closed	  ]	   1.000	   -‐	   -‐	   -‐	   -‐	   -‐	   -‐	   -‐	  
P=?	  [	  G<=1000	  IndicatorLight_Light1_ramp_closed<=>Ramp_Ramp1_closed	  ]	   0.988	   23.8	   4.5	   11	   79	   1765	   7707	   196905	  
P=?	  [	  F<=1000	  (!IndicatorLight_Light1_ramp_ajar&Ramp_Ramp1_ajar)	  ]	   0.017	   22.5	   3.2	   5	   54	   233	   1672	   29476	  
P=?	  [	  F<=1000	  (IndicatorLight_Light1_ramp_ajar&!Ramp_Ramp1_ajar)	  ]	   0.000	   -‐	   -‐	   -‐	   -‐	   -‐	   -‐	   -‐	  
P=?	  [	  G<=1000	  Ramp_Ramp1_ajar=>IndicatorLight_Light1_ramp_ajar	  ]	   0.979	   1.0	   1.0	   2	   14	   10	   93	   550	  
P=?	  [	  G<=1000	  IndicatorLight_Light1_ramp_ajar<=>Ramp_Ramp1_ajar	  ]	   0.976	   14.0	   3.0	   9	   116	   861	   2225	   63116	  

Figure 4: Experimental results explaining 20 properties. The results include the property, the probability that it holds, the
average number of steps extracted from each trace explaining the property, the average number of reduced steps, the number of
steps in the generalization, the total time (ms) to extract four causal proofs, the total time (ms) to generalize over four traces,
and the number of MaxSAT variables and clauses encoding the generalization problem.

Empirical Analysis
We evaluated our approach on several properties in the IFV
ramp model (summarized in Figure 4). Many of these in-
clude reachability properties (which use the operator F in-
stead of G). The explanations in these cases are of how the
property is satisfied, instead of how it is unsatisfied. To see
how this is possible, we note that we can translate reachabil-
ity properties to safety properties through negating them. In
these cases, explaining satisfaction of a reachability property
is equivalent to explaining the counter-example of a safety
property. In addition, the properties are of the form P=?[Φ],
where we estimate the probability that they are satisfied, and
thus explain the verifier traces not satisfying safety proper-
ties and those satisfying reachability properties.

In terms of scalability, the properties illustrate different
scenarios where the number of verifier traces explaining a
property and the number of steps per trace can vary. Fig-
ure 4 summarizes the average number of traces and steps
per trace for each property. The average number of steps
per casual proof can be quite large, and reducing the causal
proofs can have a dramatic effect on their size. The number
of generalized steps (when generalizing over proofs of four
verifier traces) tends to be much smaller than the sum of the
reduced number of causal proof steps, meaning that there are
frequently steps in common among the causal proofs that are
summarized. We also see that the extraction time and gener-
alization time are linked to the number of causal proof steps.
The size of the MaxSAT encoding also increases with the
number of steps and influences the generalization time.

Conclusion
We have presented a technique for generalizing over causal
proofs of multiple verifier traces to create succinct explana-
tions of probabilistic counter-examples. The compression
afforded by our techniques can make understanding verifier
traces much easier.

Acknowledgements: This work was supported by US Army
Research Laboratory Contract W911QX-13-C-0067.

References
Aljazzar, H., and Leue, S. 2010. Directed explicit state-space
search in the generation of counterexamples for stochastic model
checking. Software Engineering, IEEE Transactions on 36(1):37–
60.
Borchers, B., and Furman, J. 1998. A two-phase exact algorithm
for max-sat and weighted max-sat problems. Journal of Combina-
torial Optimization 2(4):299–306.
DeJong, G., and Mooney, R. 1986. Explanation-based learning:
An alternative view. Machine learning 1(2):145–176.
Han, T.; Katoen, J.-P.; and Berteun, D. 2009. Counterexample
generation in probabilistic model checking. Software Engineering,
IEEE Transactions on 35(2):241–257.
Hansson, H., and Jonsson, B. 1994. A logic for reasoning about
time and reliability. Formal aspects of computing 6(5):512–535.
Hinton, A.; Kwiatkowska, M.; Norman, G.; and Parker, D. 2006.
Prism: A tool for automatic verification of probabilistic systems. In
Tools and Algorithms for the Construction and Analysis of Systems.
Springer. 441–444.
Kambhampati, S., and Kedar, S. 1994. A unified framework for
explanation-based generalization of partially ordered and partially
instantiated plans. Artificial Intelligence 67(1):29–70.
Kuntz, M.; Leitner-Fischer, F.; and Leue, S. 2011. From probabilis-
tic counterexamples via causality to fault trees. Computer Safety,
Reliability, and Security 71–84.
Mitchell, T. M.; Keller, R. M.; and Kedar-Cabelli, S. T. 1986.
Explanation-based generalization: A unifying view. Machine
learning 1(1):47–80.
Musliner, D. J., and Engstrom, E. 2011. Prismatic: Unified hi-
erarchical probabilistic verification tool. Technical report, DTIC
Document.
Nakhost, H., and Müller, M. 2010. Action elimination and plan
neighborhood graph search: Two algorithms for plan improvement.
In ICAPS, 121–128.

14




