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Abstract
This work describes a method for finding causal expla-
nations for world events that are reported to an agent.
These reports may come from the agent’s sensors or
other agents. Some of these reports might be false, so
the agent should exercise caution in believing what it is
told. The agent’s knowledge about the causal relations
and plausibilities of events are represented in a Bayesian
network. When the agent obtains a report, it builds an
explanation by abductive reasoning, which is a kind of
commonsense logic that enables reasoning from effects
to causes. We show how abductive reasoning can use
knowledge in a Bayesian network to infer plausible, de-
cisive, consistent, relevant, and complete explanations.
An abductive metareasoning process monitors and con-
trols the abductive reasoning process in order to detect,
explain, and respond to possible errors in reasoning and
to detect and isolate false reports. The combined abduc-
tive reasoning and metareasoning process is capable of
inferring very accurate explanations, often surpassing
the accuracy of the “most probable explanation,” due to
its ability to exercise caution in forming beliefs and to
accurately detect and ignore false reports, and performs
well even when knowledge of plausibilities is less pre-
cise.

This work describes how an agent can use commonsense
abductive reasoning to find explanations for reports that pu-
tatively describe events in its world. These explanations can
play the role of qualitative beliefs that are processed by a
knowledge-based system for, e.g., robot planning tasks. A
Bayesian network is used to represent causal world knowl-
edge. Inferring explanations from a Bayesian network is not
as straightforward as finding the most probable explanation,
i.e., the most probable complete set of beliefs about every
aspect of the world, for a variety of reasons. First, explana-
tions should include only the causal ancestors of the reported
events (Pearl 1988, pp. 285–286). Second, the most proba-
ble explanation for some report might only be marginally
more probable than a different explanation. In these cases,
it might be helpful to gather more evidence to differentiate
among the possible explanations before deciding. Third, the
most probable explanation for some report might have very
low probability. For example, a report might describe a very
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improbable but true event. But if reports might be false, i.e.,
noisy, then the agent might find it wise initially to discount
very improbable explanations. These commonsense consid-
erations are integrated into the abductive reasoning process.

We also enhance the abductive reasoning process by
adding an abductive metareasoning component. Metarea-
soning, or thinking about thinking, is a way for an agent
to reflect on its beliefs and how it came to those beliefs,
in order to detect possible mistakes, and to respond appro-
priately. Systems that include a metareasoning component
have enjoyed renewed interest in recent years, as evidenced
by workshops such as the AAAI-2008 Metareasoning Work-
shop and the volume that followed, Metareasoning: Think-
ing about thinking (Cox and Raja 2011). In that volume,
Perlis connects commonsense reasoning with metareason-
ing:

Commonsense reasoning is the form of metareasoning
that monitors an activity for mistakes and then deals
with them, sparing the main activity the embarrassment
of making a fool of (or destroying) itself (Perlis 2011).

In the system we describe, a metareasoning component mon-
itors the base-level abductive reasoning process for failures
to explain. An agent’s goal is to make sense of reports, i.e., to
infer, with some confidence, the causes of those reports, and
the causes of those causes, and so on. It does so by consult-
ing the Bayesian network and inferring states of variables
that are ancestors to the reported variables. If the agent is
unable to accomplish this task, then maybe the agent can
identify the cause or causes of the impasse. Perhaps the
reports are false, perhaps more evidence would shed more
light on the situation, or perhaps the agent was too cautious
and should reconsider less plausible explanations.

After describing the system, we evaluate its performance
across a variety of randomly generated Bayesian networks.
Our evaluation shows that commonsense abductive reason-
ing and metareasoning is very effective at finding accurate
and complete explanations for reports, while also detecting
noisy reports. It also out-performs the most probable expla-
nation (MPE) in terms of accuracy, since the MPE is deter-
mined without the various commonsense considerations out-
lined above, such as plausibility, decisiveness, and the pos-
sibility that some reports obtained by the agent are actually
just noise.

Knowledge Representation and Reasoning in Robotics: Papers from the AAAI Spring Symposium

31



Abductive Reasoning with Bayesian Networks
By abduction, and abductive inference, we mean reasoning
that follows a pattern approximately as follows (Josephson
and Josephson 1994):

D is a collection of data (findings, observations,
givens).
Hypothesis H can explain D (would, if true, explain D).
No other hypothesis can explain D as well as H does.
—
Therefore, H is probably correct.

In a process of trying to explain some evidence, the object is
to arrive at an explanation that can be confidently accepted.
An explanation that can be confidently accepted is an ex-
planation that can be justified as being the best explanation
in consideration of various factors such as plausibility, con-
sistency, and completeness, and in contrast with alternative
explanations. Thus, an explanation-seeking process—an ab-
ductive reasoning process—aims to arrive at a conclusion
that has strong abductive justification. We hope that read-
ers recognize abductive reasoning is a distinct and familiar
pattern, and has a kind of intuitively recognizable eviden-
tial force. It is reasonable to say it is part of commonsense
logic. It can be recognized in a wide range of cognitive pro-
cesses including diagnosis, scientific theory formation, lan-
guage comprehension, and perception.

Notation
This work investigates the use of Bayesian networks (Pearl
1988) to represent causal relations and probabilistic knowl-
edge for abductive reasoning. In the Bayesian networks we
consider, each variable has two discrete states. We denote
variables with uppercase letters, e.g.,X , and states with low-
ercase letters, e.g., x. Bold uppercase letters such as X in-
dicate sets of variables and bold lowercase letters such as
x indicate their corresponding states. The set x̄ denotes the
complement of states x. In the network, an edge from X ′ to
X means that X is causally dependent on X ′. We may also
say that X ′ is a parent of X . The set of parents of a vari-
able X is denoted Π(X). Each variable has a conditional
probability table which defines the probability of the vari-
able holding each of its states given the states of its parents.
Finally, we denote the agent’s doxastic state, i.e. its belief
state, as the set of variable states b.

Certain states of certain variables may be incompatible
with certain states of other variables. A set of variables x
is incompatible with another set y, for our purposes, if and
only if some x ∈ x is incompatible with some y ∈ y. When
the agent’s beliefs do not include both states of an incom-
patible pair, we say its beliefs are consistent (we are only
considering pairwise inconsistency). Incompatibility can be
represented in the Bayesian network with constraint vari-
ables (Pearl 1988, pp. 225–226). Each pair of variables that
have incompatible states, say variables X and Y with in-
compatible states x and y, are parents of a unique constraint
variable Cxy , which is fixated to observed state cxy . Con-
straint variables have conditional probability tables that en-
sure if either of the incompatible states x and y is observed

or assumed, then the other state has zero probability. The
conditional probability table is as follows.

x̄, ȳ x̄, y x, ȳ x, y
cxy 1.0 1.0 1.0 0.0
c̄xy 0.0 0.0 0.0 1.0

It should be noted that the constraint variables produce
side effects, in the sense that their presence alters the distri-
butions of variables that are ancestors to those in the incom-
patible pair. Crowley, Boerlage, and Poole (2007) argue that
ancestor variables should not be affected because CXY is
not evidence for the ancestors of X and Y . They provide an
algorithm for building “antifactors” and “antinetworks,” es-
sentially more variables in the network, that counteract such
effects of the constraint variables. However, we do not agree
with their reservations. It seems reasonable that since only
one of x or y is true, or neither is true, each of their causes
are less likely than if x and y were not incompatible states.
Definition 1. Suppose X is believed to have state x. Then a
possible explanation of x is a partial instantiation y 6= ∅ of
parents Y of X such that b ∪ y is consistent.
Definition 2. A possible explanation has an associated plau-
sibility. As we use the term here, plausibility is a graded con-
fidence that does not necessarily have all the formal proper-
ties of a probability. Suppose that y is a possible explanation
of x. We investigate two ways to calculate the plausibility of
y, denoted Pl(y). The first method is simply the posterior
(where \ denotes set difference),

Pl(y) = P (y|b \ y).

The second method, which we call the estimated prior, is
defined as,

Pl(y) = maxP (x|v),

where v is a set of states of X’s parents V = Π(X) that
agree with y (so y ⊆ v). In other words, estimated prior
is the maximum prior probability of x with parent state as-
signments (partially) specified by y. We investigate the use
of estimated plausibilities because they avoid the potentially
large computational cost of computing posteriors (Cooper
1990). Calculating the estimated prior is simply a matter of
finding the row in the conditional probability table for X ,
among those rows that agree with states y, that gives the
maximum conditional probability for x.

In order to establish the ground truth of the probabilistic
model, which is to be inferred by the agent, a direct sample
of the whole network is taken, respecting conditional prob-
abilities and incompatibilities. This process involves fixat-
ing variable states, starting from the top variables and pro-
ceeding down the graph in the direction of parent variables
to child variables and randomly selecting a variable state
based on the conditional probability table for each variable,
while respecting incompatibilities. Some variable states in
the ground truth set are communicated to the agent in the
form of reports. The agent’s goal is to explain the reports.

Furthermore, we say that any belief requires explanation
if it has parents in the network. Possible explanations range
across the various combinations of states of its parents. The
agent generates possible explanations for reports and beliefs,
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calculates their plausibility, and then executes the abduction
algorithm in order to decide which possible explanations
should turn into beliefs.

Abduction Algorithm
One might imagine that a practical goal of an abductive rea-
soner is to find the most plausible, consistent, and complete
composite explanation of the evidence. However, Bylander
et al. (1991) show that abduction problems that involve an
incompatibility relation among pairs of hypotheses cannot
be practically solved. Specifically, they prove that it is NP-
complete to determine whether a consistent, complete ex-
plaining set exists for such an abduction problem. They also
prove that it is NP-hard to find a most-plausible consistent,
complete, composite explanation.

Thus, we take an efficient greedy approach to the abduc-
tion problem, similar to that implemented in Josephson &
Josephson’s PEIRCE-IGTT system (1994). Their system re-
alizes an algorithm called EFLI: “essentials first, leveraging
incompatibility,” which iteratively accepts one explanation
and rejects incompatible explanations, until either all evi-
dence is explained or no other candidate explainers for the
unexplained evidence are available. Explainers are grouped
into contrast sets, where each contrast set contains all the
plausible explanations for some report. Essential explana-
tions are accepted first. An essential explanation is the sole
member of a contrast set, so it is the only plausible expla-
nation for some report. Without accepting it, some evidence
would remain unexplained. Then, explanations are ordered
for acceptance by the degree to which the best explanation in
a contrast set surpasses the second best explanation, in terms
of plausibility.

We say that the best explanation for evidence x is the
most plausible, most decisive partial assignment of parent
variable states of x. Of course, the explanation must be con-
sistent with prior beliefs. We find it advantageous to require
that the best explanation meet a minimum plausibility η and
a minimum decisiveness δ ≥ ∆ Threshold. The EFLI ab-
duction algorithm automates the process of finding the best
explanation according to these desiderata.

We summarize the EFLI algorithm after introducing the
following definitions. Further details of the algorithm may
be found in previous work (Eckroth and Josephson 2013).
Definition 3. A contrast set C = {y1, . . . ,yk} is an or-
dered set of possible explanations for some state x, ordered
by plausibility, most plausible first. The decisiveness of the
contrast set is defined as,

δ =

{
[Pl(y1)− Pl(y2)] /

∑
i Pl(yi) if ‖C‖ > 1,

1.0 otherwise.

The most decisive contrast set is the contrast set with the
greatest δ. Finally, the ∆ Threshold parameter specifies a
lower bound on δ; any contrast set with decisiveness less
than ∆ Threshold will not be considered.

Definition 4. EFLI abduction algorithm.

1. Generate possible explanations for unexplained reports
and beliefs.

Figure 1: System architecture. Domain-specific components
are separate from domain-general reasoning and metarea-
soning components. Reports are obtained from the world,
which might be noisy. The plausibility of each report is cal-
culated with the probabilistic model. Each report requires
explanation, as do any unexplained beliefs. Possible expla-
nations are generated and reviewed by the abductive rea-
soning procedure, typically resulting in an expanded belief
state. Newly-acquired beliefs might themselves require ex-
planation, and the process starts again. If any reports or be-
liefs remain unexplained, which we call anomalies, abduc-
tive metareasoning is activated in order to determine the
causes of the anomalies. Abductive metareasoning might
find new explainers, revise the belief state, and/or leave the
anomalies unexplained. Reports that remain unexplained are
deemed to be noise.

2. Generate contrast sets.
3. For each possible explanation y that does not satisfy the

minimum plausibility requirement, i.e., Pl(y) < η, re-
move it from any contrast sets in which it is a member.

4. If there are no non-empty contrast sets, then there is noth-
ing to accept, so halt.

5. Otherwise,
(a) Find most decisive non-empty contrast set C; let δ be

its decisiveness.
(b) If δ < ∆ Threshold, then halt.
(c) Otherwise,

i. Find the most plausible possible explanation, y in C.
ii. Add the states specified by y to the belief state.

iii. For each state z incompatible with any of the states
specified by y, add z̄ to the belief state.

iv. Go to step 1.

Abductive Metareasoning
Reports and beliefs that require explanation and remain un-
explained after abductive reasoning are considered anoma-
lous. The presence of anomalies activates an abductive
metareasoning procedure that attempts to both determine the
causes of the anomalies and resolve them. Possible reso-
lutions include temporarily lowering the minimum plausi-
bility η requirement to allow consideration of certain pos-
sible explanations, gathering more evidence, and retracting
previously accepted explanations. Alternatively, anomalies
may be left unresolved; anomalous reports that remain unre-
solved are deemed to be noise.

If an agent could be sure that the reports it receives about
the world are truthful, then every anomaly would be resolv-

33



able and should be resolved, even if their resolutions re-
quired retracting previously accepted explanations or recon-
sidering implausible explanations. However, in more realis-
tic environments, it is not necessarily the case that all reports
are true reports, so the agent should be somewhat cautious
about revising its beliefs or accepting implausible explain-
ers. Some reports might be unexplainable partly because
they are noise and do not warrant any explanation. Thus,
part of the challenge of metareasoning is to identify which
reports are unexplainable due to false beliefs and which are
due to false reports (and hence, not due to false beliefs). The
metareasoning task can be construed as an abductive one by
treating the anomalies as a kind of meta-evidence that re-
quire explanation by meta-hypotheses. Such a metareason-
ing process is able to utilize the same abductive reasoning
machinery as the base-level reasoner.

An anomaly might have multiple possible causes. Each is
detailed in its own section below. For each possible cause, a
meta-hypothesis is generated, which specifies the cause, the
resolution, the anomaly or anomalies it is said to explain,
and an estimated plausibility score. Two meta-hypotheses
are incompatible if they are capable of explaining (and thus
resolving) one or more anomalies in common. Abductive
reasoning is activated on the set of meta-hypotheses, which
compete to explain the anomalies. The result is a set of ac-
cepted meta-hypotheses, and the resolutions that are spec-
ified by the accepted meta-hypotheses are applied. If any
anomalies remain (or new anomalies appear), metareason-
ing is activated again. Care is taken not to generate meta-
hypotheses that have already been considered, ensuring that
the metareasoning cycle halts.

Implausible Explainers
A report or belief x might be anomalous because at least
one possible explanation in the contrast set for x does not
meet the minimum plausibility requirement η. These im-
plausible possible explanations of x are characterized by
E = {y|y is a possible explanation of x∧Pl(y) < η}. The
corresponding resolution is to perform abductive reasoning
again but allow members of E to explain x, i.e., ignore the
minimum plausibility requirement η just in order to find an
explanation for x.

For each anomaly x that might be anomalous due to
implausible explainers (i.e., E 6= ∅), a meta-hypothesis
is established. The meta-hypothesis is a possible explana-
tion of x only if the resolution, when applied in a sim-
ulated environment, actually produces an explanation for
x. The plausibility of the meta-hypothesis is estimated by
[Pl(x) + Pl(y)]/2, where y is the most plausible member
of E. This plausibility estimate has been empirically shown
to work reasonably well.

Incompatible Explainers
Another possible cause of an anomaly x is that each possi-
ble explanation y of x is already disbelieved (i.e., ȳ ⊆ b for
every such y), because some other explanation z, which is
incompatible with y, was accepted to explain evidence x′.
These incompatible explanations of x are characterized by

the set of pairs E = {(y, z)} where y is a possible explana-
tion of x that is incompatible with some accepted explana-
tion z. The corresponding resolution is to perform abductive
reasoning again after retracting the acceptance of z and re-
moving it from consideration.

For each anomaly x that might be anomalous due to in-
compatible explainers, a meta-hypothesis is established that
is said to explain x only if the resolution yields an explana-
tion for x. Its plausibility is estimated by 1−δ where δ is the
decisiveness of the contrast set in which y (the incompatible
accepted explainer) was most plausible.

Insufficient Evidence
The last possible cause of an anomaly x is that the contrast
set for x is not sufficiently decisive, i.e., δ < ∆ Threshold,
indicating there is not enough evidence supporting one pos-
sible explanation over others. Perhaps if more evidence
is obtained, some possible explanation with become suffi-
ciently more decisive than the alternatives, or new possible
explanations will be found.

For each anomaly x whose contrast set was not suffi-
ciently decisive, a meta-hypothesis is established with es-
timated plausibility (1− δ) ∗Pl(x). The corresponding res-
olution involves gathering more evidence about variables
that might shed more insight on the causes of x. Rele-
vant variables are the parents and children of x. However,
these other variables are not necessarily observable; even if
some reports about these variables are obtained, these re-
ports might be noisy. Furthermore, in practice, observing
states of variables might be costly. It might involve reorient-
ing sensors or asking humans for feedback. Thus, caution
must be exercised when evaluating whether an anomaly is
due to insufficient evidence. The other two possible causes
and resolutions of anomalies examined and manipulated the
agent’s doxastic state (a relatively cheap operation) and did
not interact with the world. An insufficient evidence meta-
hypothesis is different in this way, and its resolution is only
attempted if it is the estimated to be the most plausible ex-
planation for an anomaly.

Noise Detection
Not all anomalies should trigger revision of the doxastic
state or gathering more evidence. Some reports might be
unexplainable because they are false, i.e., noisy reports.
Though some of these noisy reports might be explainable by
accepting implausible but false explainers, for example, the
correct action is to ignore the anomalous reports and simply
leave them unexplained. When no meta-hypothesis is a pos-
sible explanation of an anomaly, the anomaly is deemed to
be noise, and left unexplained. In this way, noise is a “fall-
back” explanation of an anomaly, employed only when no
other explanation is forthcoming.

Experimental Methodology
A Bayesian network representing probabilistic knowledge
is generated randomly for each experiment. Random gener-
ation includes random network configurations and variable
states, and random conditional probability tables. Averaged
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across 360 randomly generated networks, the networks have
33.7 variables (ignoring constraint variables), with standard
deviation (s.d.) of 5.2, and 1.3 parent variables (s.d. = 0.1).
The network has an average depth of 6.3 (s.d. = 1.3), and
contains 3.0 (s.d. = 2.2) incompatible variable state pairs.

Some experiments include different variations of the qual-
ity of plausibility estimates. Plausibilities are calculated ei-
ther as posteriors or estimated priors, which were defined
earlier. Plausibility values are represented either as decimal
values (with precision to two decimal places) or on a 5-point
scale, i.e., 0 = very implausible, 0.25 = implausible, 0.5 =
uncertain plausibility, 0.75 = plausible, 1.0 = very plausible.
When the 5-point scale is in use, the original plausibility
value is translated to the nearest value on the 5-point scale.
When plausibilities are represented as decimal values, we
say that they have granularity = 100; when the 5-point scale
is used, we say they have granularity = 5.

Noise
On average, under noise-free conditions, 16.5 (s.d. = 1.7)
variable states are reported, with abductive reasoning per-
formed after each batch of between 1 and 5 reports. These
reported states are randomly chosen and may come from
anywhere in the network. They are taken from the sam-
pled variable states that represent the ground truth. When
the noise level is set to n%, each report has an n% chance of
being subject to perturbation or deletion, in order to simulate
noise. We utilize four types of noise:
Distortion noise: A true variable state x is reported as x̄.
Duplication noise: Along with a true report x, the state x̄

is also reported.
Insertion noise: A random variable Y , with true state y, is

reported to have state ȳ. The true state y might or might
not be reported as well.

Deletion noise: An observation is simply deleted from the
set of reported observations.

We say that the agent has detected a noisy report if it fails
(refuses) to explain the report. Each of distortion, duplica-
tion, and insertion noise may be detected by the agent, but
deletion noise cannot be detected in this manner since there
is no corresponding report.

Metrics
We refer to the following metrics.
Accuracy: The percent of beliefs in the agent’s final belief

state that are true according to the direct sample of vari-
able states that constitutes the ground truth.

MPE Accuracy: The percent of variable states in the most
probable explanation (MPE) that are true. All reports
(some of which might be noisy) are treated as observed
states when calculating the MPE.

Coverage: The percent of beliefs, not including reports,
that require explanation and are in fact explained.

AccCov Mean: 2 ∗ Accuracy ∗ Coverage/(Accuracy +
Coverage), i.e., the harmonic mean of Accuracy and Cov-
erage.

Other metrics measure the accuracy of noise detection. Let
r = rT ∪ rF be the set of reports, with rT the set of true
reports and rF the set of false reports (noise). Let n ⊆ r be
the set of reports that the agent either disbeliefs (r is reported
but the agent believes r̄) or leaves unexplained. This set n is
the set of reports that the agent believes to be noise.

Noise True Positives:
TP = ‖n ∩ rF ‖, noise correctly identified

Noise False Positives:
FP = ‖n ∩ rT ‖, true reports deemed to be noise

Noise True Negatives:
TN = ‖b ∩ rT ‖, true reports correctly identified

Noise False Negatives:
FN = ‖b ∩ rF ‖, true reports deemed to be noise

Noise False Positive Rate: Noise FPR = FP/(FP + TN)

Noise True Positive Rate: Noise TPR = TP/(TP + FN)

Noise Mean: The harmonic mean of (1 - Noise FPR) and
Noise TPR.

Note that noise detection accuracy is shown with receiver
operating characteristic (ROC) curves as a way of visualiz-
ing the trade off between low Noise FPR and high Noise
TPR.

Experimental Hypotheses
The following hypotheses guide our experimental investiga-
tions:

Hypothesis I: Abductive reasoning with abductive metar-
easoning gives good performance in terms of accuracy,
coverage, and noise detection. Metareasoning gives better
performance on these metrics compared to no metarea-
soning. Best performance is achieved when the minimum
plausibility η > 0 and ∆ Threshold > 0, thus demon-
strating the utility of these parameters. Finally, each of
the three types of meta-hypotheses were accepted, at least
in some cases, proving that each kind of meta-hypothesis
has a useful role.

Hypothesis II: Abductive reasoning with abductive metar-
easoning yields greater Accuracy than MPE Accuracy,
particularly in noisy conditions and parameters η > 0 and
∆ Threshold > 0. This is because the MPE method does
not exercise caution when assigning variable states; ab-
ductive reasoning and metareasoning, on the other hand,
only accept possible explanations if they are plausible and
decisive. Additionally, MPE does not distinguish between
true and noisy reports, but rather includes all reports in the
most probable explanation.

Hypothesis III: Good performance is maintained under
various conditions: more and less noise, reduced plausi-
bility granularity, and less accurate plausibilities using es-
timated priors instead of posteriors. This outcome would
demonstrate the robustness of the approach.

Hypothesis IV: When plausibility estimates are missing or,
equivalently, Pl(y) = 1 for every possible explanation y,
performance is significantly and strongly degraded. This
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Figure 2: Accuracy, MPE Accuracy, and Coverage metrics
for a range of minimum plausibility η settings and two
∆ Threshold settings. Plausibilities were calculated as pos-
teriors, and the noise level was 20%.

outcome would show that the probabilistic model is con-
tributing information about plausibility and not just ex-
planatory relations as determined solely by the network
structure.

Results
Hypothesis I
Figures 2 and 3 support the following conclusions:

• Abductive reasoning with abductive metareasoning per-
forms well. Maximum performance for both AccCov
Mean and Noise Mean is found at ∆ Threshold = 0.2
and minimum plausibility η = 0.6. In these cases, aver-
age AccCov Mean is 0.93 (s.d. = 0.05), with Accuracy
0.90 (s.d. = 0.08) and Coverage 0.97 (s.d. = 0.04). Av-
erage Noise TPR for the same parameters is 0.80 (s.d. =
0.26), Noise FPR is 0.19 (s.d. = 0.11), and Noise Mean
0.78 (s.d. = 0.20).

• When abductive metareasoning is active, ∆ Threshold >
0 gives better Accuracy, at the cost of Coverage, and min-
imum plausibility η > 0 gives better noise detection.

• Metareasoning gives better accuracy, coverage, and noise
detection than no metareasoning. The differences are mi-
nor but significant. With ∆ Threshold = 0.2 and η = 0.6,
abductive metareasoning yields an average of 0.01 greater
Accuracy, 0.05 greater Coverage, 0.03 greater AccCov
Mean, 0.03 greater Noise TPR, 0.09 less Noise FPR, and
0.09 greater Noise Mean (p < 0.01 for each metric except
Noise TPR, which has p < 0.05).

Figure 3: ROC curves for noise detection. Plausibilities were
calculated as posteriors, and the noise level was 20%. The
curves are drawn according to increasing minimum plau-
sibility η setting, from 0 to 0.8. A line is shown where
FPR=TPR, representing the expected accuracy of a random
noise detection process.

η Accuracy (R2) MPE Acc. (R2) Noise FPR (R2)
0 -0.0041 (0.57) -0.0040 (0.63) 0.0029 (0.50)
0.2 -0.0030 (0.41) -0.0038 (0.61) 0.0021 (0.35)
0.4 -0.0020 (0.20) -0.0037 (0.59) 0.0016 (0.11)
0.6 -0.0013 (0.09) -0.0035 (0.58) 0.0014 (0.08)
0.8 -0.0010 (0.05) -0.0033 (0.53) 0.0015 (0.06)

Table 1: Impact of increased noise level % on Accuracy,
MPE Accuracy, and Noise FPR metrics for different mini-
mum plausibility η values. Only the Accuracy, MPE Accu-
racy, and Noise FPR metrics were significantly impacted by
increased noise level. ∆ Threshold = 0.2 in all cases. The
ratio and R2 values are derived from linear regression mod-
els. A ratio r means that for every 1% increase in the noise
level, the metric increased by r.

• Each meta-hypothesis was accepted in order to explain
anomalies. With ∆ Threshold = 0.2 and η = 0.6, for ex-
ample, the incompatible explainers meta-hypothesis was
accepted an average of 2.19 times (in a single experimen-
tal run), with s.d. = 0.17; implausible explainers was ac-
cepted 5.04 times (s.d. = 0.42); and insufficient evidence
was accepted 9.48 times (s.d. = 0.49).

These outcomes essentially validate the abductive reason-
ing and metareasoning system design and operation.

Hypothesis II
As seen in Figures 2 and 4, abductive reasoning generally
outperforms the most probable explanation (MPE) for the
same Bayesian network in terms of Accuracy. This is true in
all represented parameters except for the combination of low
values of η, no ∆ Threshold, and either no noise or no metar-
easoning. Across all cases represented in Figure 4, abductive
reasoning with metareasoning yields, on average, Accuracy
greater than MPE Accuracy by 0.03, and the difference is
significant (p < 0.001).
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Figure 4: Accuracy, MPE Accuracy, and Coverage metrics
for abductive reasoning with abductive metareasoning and a
range of noise levels. Plausibilities were calculated as poste-
riors. In every case, ∆ Threshold = 0.2.

Hypothesis III

Figure 5 supports the claims of Hypothesis III that abduc-
tive reasoning with abductive metareasoning maintains good
performance even when plausibilities are estimated accord-
ing to the estimated priors calculation, and not the more ac-
curate Bayesian posterior calculation. Furthermore, perfor-
mance is maintained in experiments with lower plausibility
granularity, in which plausibilities are represented as one of
five discrete values (very implausible, implausible, uncertain
plausibility, plausible, very plausible; or, equivalently, [0.0,
0.25, 0.5, 0.75, 1]). This result agrees with previous findings
(Pradhan et al. 1996).

Table 1 shows that increased noise degrades performance,
but the impact is reduced with larger minimum plausibility
η values. Nevertheless, the impact on performance is small.
For example, with η = 0.6, a 10% increase in noise only
decreases Accuracy by 0.013 (average value at 20% noise is
0.899) and increases Noise FPR by 0.014 (average value at
20% noise is 0.19). Coverage and Noise TPR are not signif-
icantly affected by the noise level. Furthermore, MPE Ac-
curacy suffers more than the Accuracy achieved abductive
reasoning with metareasoning. Note that the MPE Accuracy
slightly responds to changes in minimum plausibility η. This
is because the MPE is calculated according to all acquired
reports, and when η is high, more anomalies are manifested,
and metareasoning sometimes acquires more reports by ap-
plying the insufficient evidence resolution.

Figure 5: Accuracy and Coverage metrics for abductive
reasoning with abductive metareasoning, ∆ Threshold =
0.2. The plausibility calculation and granularity varied. The
noise level was 20%.

Hypothesis IV
To evaluate whether mostly-accurate plausibility estimates
are beneficial for abductive reasoning with abductive metar-
easoning, we compare performance with normal posterior
plausibilities to performance with no plausibilities, or equiv-
alently, every plausibility is set to 1. This change effectively
eliminates any role for the minimum plausibility η param-
eter, as well as the ∆ Threshold parameter since δ = 0 in
all contrast sets except those that have only one possible ex-
planation (and hence δ = 1). Performance was significantly
worse across 240 cases, compared against abductive reason-
ing with metareasoning and η = 0.6, ∆ Threshold = 0.2.
Each experiment included a 20% chance of noise. Accuracy
decreased, on average, by 0.14, Coverage increased by 0.03,
Noise TPR decreased by 0.50, and Noise FPR decreased by
0.15 (for each metric, p < 0.001).

Related Work
Our use of the term explanation differs from other uses in the
context of Bayesian networks. For example, the term some-
times refers to the most probable explanation (MPE), which
is a complete assignment of variable states, or the maximum
a posteriori (MAP) assignment of variable states for a subset
of all variables. However, MPE suffers from the “overspeci-
fication problem” (Shimony 1993), as does MAP if too many
variables are chosen to be members of the explanation set.
The overspecification problem arises when variables that are
irrelevant, e.g., downstream effects of the observations, are
included in the explanation.

Yuan and Lu (2007) develop an approach they call the
Most Relevant Explanation (MRE) and refine it in subse-
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quent work (Yuan, Lim, and Littman 2011). The MRE “aims
to automatically identify the most relevant target variables
by searching for a partial assignment of the target variables
that maximizes a chosen relevance measure.” One such rel-
evance measure is likelihood, though the authors show that
the generalized Bayes factor (Fitelson 2007) provides more
discriminative power. Our approach is similar in that we also
evaluate partial assignments of parent (target) variables and
evaluate each assignment according to a kind of relevance
measure. In our system, when a possible explanation is suf-
ficiently plausible and decisive, it is considered relevant, and
if it is compatible with existing beliefs, it is accepted. Yuan
and Lu’s MRE differs from our system, however, in that the
target variables for the MRE must be established ahead of
time, while the abductive reasoning system automatically
seeks explanations for unexplained reports and beliefs.

The variety of definitions for what constitutes an expla-
nation in a Bayesian network illustrates the difficulty in us-
ing nothing more than the probability calculus to infer com-
monsense causal explanations. It is apparent that the most
common use of a Bayesian network is not to arrive at com-
monsense causal explanations, as we have done, but rather
to determine the most probable state assignments for a set of
variables (the maximum a posteriori, or MAP, variable as-
signments). Abductive reasoning, as described in this work,
explicitly seeks causal explanations for reports. The causal
explanations found by abductive reasoning do not necessar-
ily match the MAP variable assignments; i.e., they might
not be the most probable assignments and might commit to
different states for the same variables. On the other hand,
abductive reasoning attempts to maximize explanatory cov-
erage, while preferring more plausible explainers, by operat-
ing with a notion of unexplained evidence that is lacking in
Bayesian MAP inference. The variables that make up a MAP
assignment must be chosen ahead of time, but the probabil-
ity calculus does not offer any insight. Other factors, such
as the causal relations represented in a Bayesian network,
should inform the process of determining which variables
contribute to an explanation. Abductive reasoning exploits
both the causal relations and plausibility of variable states
in order to arrive at commonsense explanations of evidence,
while a purely Bayesian MAP process does not.

Finally, the combined abductive reasoning and abductive
metareasoning system used in our experiments was previ-
ously detailed and analyzed (Eckroth and Josephson 2013).
In that work, rather than a Bayesian network the system
was tasked with finding explanations for sensor reports of
moving objects. Both simulated and real-world aerial track-
ing experiments were conducted, and similar performance
gains were found with abductive metareasoning. The rea-
soning and metareasoning systems are domain-general, and
experiments with object tracking and Bayesian networks use
exactly the same inference algorithms and code-base.

Conclusion
Each of our experimental hypotheses is strongly supported
by this work. They tell us that commonsense abductive rea-
soning and metareasoning is a very effective strategy for us-
ing Bayesian networks to infer the true causal explanations

of reports. Due to the general usefulness of Bayesian net-
works, we expect that our system will prove beneficial in a
variety of tasks. Further work aims to demonstrate its bene-
fits in real-world applications.
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