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Abstract

Robots are expected to carry out complex plans in real world
environments. This requires the robot to track the progress of
plan execution and detect failures which may occur. Planners
use very abstract world models to generate plans. Additional
causal, temporal, categorical knowledge about the execution,
which is not included in the planner’s model, is often avail-
able. Can we use this knowledge to increase robustness of
execution and provide early failure detection? We propose
to use a dedicated Execution Model to monitor the executed
plan based on runtime observations and rich execution knowl-
edge. We show that the combined used of causal, temporal
and categorical knowledge allows the robot to detect failures
even when the effects of actions are not directly observable. A
dedicated Execution model also introduces a degree of mod-
ularity, since the platform- and execution-specific knowledge
does not need to be encoded into the planner.

Introduction
Due to advancements in robotics, robots are expected to
carry out tasks in increasingly challenging domains. One
such domain is illustrated by the following scenario.

A new robot waiter has just been deployed in a modern
restaurant. Its first instructions are to fetch a mug from
the counter and bring it to the kitchen for cleaning.

However, a robot requires more detailed instructions in or-
der to successfully carry out the task, e.g., in the form of
a detailed list of actions to execute. If the robot is too far
from the counter, it should drive closer to the counter before
it attempts to grasp a mug.

Planning approaches (Ghallab, Nau, and Traverso 2004)
model such dependencies through preconditions and effects:
preconditions specify the situation in which the robot can
execute the action (e.g., being at the counter before trying to
pick up the object), effects capture the expectation about the
situation after execution (e.g., the drive action will change
the robot’s position).

To execute a plan robustly, the robot has to carry out two
closely related processes: track the progress of the execu-
tion and dispatch the next action when appropriate. We shall
refer to them jointly as execution monitoring.
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The first point is concerned with early detection of success
or failure. Typically, expectations about nominal execution
are compared with sensory data obtained during execution.
A major discrepancy between the two results in a failure.
This matching is not done all the time, but only in few crit-
ical points during execution. The plan’s structure is com-
monly used to identify these points, which often correspond
to missing preconditions and unachieved effects.

Assuming that the expectations used in execution mon-
itoring are simply the preconditions and effects of actions
has its limits. For instance, the effect of an action modeled
in the planning domain may not be observable using sensors,
although there may be other indirect effects of executing the
actions that could be monitored. Additionally, since a plan
is typically generated before execution is started, the plan-
ner operates on initial knowledge about the environment.
For example, consider the task of getting a mug from the
counter. If the initial knowledge specifies that there are mul-
tiple mugs on the counter, most planners would select one
of these, e.g., mug1, and generate a plan to grasp this spe-
cific mug — we refer to this as early commitment. What
would happen then if that particular mug is not found on
the counter? The plan would fail in the absence of mug1 —
however, note that if there were other mugs on the counter,
fetching any of them would fulfill the task.

This paper studies what forms of knowledge are useful
for execution monitoring, and how this knowledge is uti-
lized. Some types of knowledge can be accommodated into
the planning domain without leading to a combinatorial ex-
plosion of the planning problem. When this is possible, we
obtain plans that are more robust to certain types of failures.
As we show in this paper, including categorical knowledge
in the planning domain can be used to avoid failures result-
ing from early commitment. Knowledge of a non-categorical
nature may also be necessary for determining success or fail-
ure of execution. For example, effects may manifest them-
selves post factum, or begin to hold during action execu-
tion. The particular temporal relations that should be veri-
fied may depend on the action, or on the perception traces,
or both. This additional knowledge could be modeled in
the planning domain — however, this may over-burden the
planning process. More importantly, including execution-
specific knowledge in the model used by the planner defeats
the purpose of having a general purpose planner in the first
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place, as execution-level knowledge is often dependent on
the particular robot platform used. Keeping the planning
domain decoupled from a particular robot platform allows
robot developers to re-use the planning solution across dif-
ferent platforms.

We propose to include knowledge useful for execution
monitoring into a dedicated Execution Model (EM). This al-
lows us to explicitly cast the execution monitoring problem
as assessing consistency of execution traces with respect to
this model — what we call Consistency Based Execution
Monitoring (CBEM). In so doing, we encapsulate platform
specific, execution-related knowledge into a separate mod-
ule that can be changed when the platform or other lower-
level properties of the domain change. EMs express the con-
ditions under which execution is successful with respect to
one or more formal semantics, e.g., temporal, categorical,
causal. In this paper, we show how EMs can be used for
dispatching, fault identification, and possibly fault repair.

Consistency Based Execution Monitoring
For the purposes of this paper, we assume that plans
are composed of ground actions, i.e., instantiated opera-
tors. One of the elements of an Execution Model is a
set of causal relations, which relate the ground predicates
that constitute the preconditions and effects of a given
ground action. For instance, the causal domain knowl-
edge in the planner’s model may state that the operator
drive(?from, ?to) has precondition robotAt(?from)
and effect robotAt(?to). This allows us to infer
the causal relation that states that the ground action
drive(entrance, counter) depends on the ground
predicate robotAt(entrance) and that its expected result
is robotAt(counter). We shall refer to all preconditions
and effects of a given ground action a jointly as the predi-
cates of a.

In addition to causal semantics of the execution, an EM
may also be enriched with temporal semantics. Thes al-
low us to explicitly model the temporal relations that hold
between specific actions, preconditions and effects. For in-
stance, the robot may still be at the entrance for some time
after the action has started, and is expected to be at the
counter at the latest just before the action terminates.

To model the temporal semantics of the execution, we em-
ploy the notion of fluents:

Definition 1 A fluent is a pair ψ = (p, [st, ft]), where

• p = P (t1, . . . , tn) is a ground atom with terms
{t1, . . . , tn}, where P is either a predicate symbol or an
action symbol;

• [st, ft] is an interval where st, ft ∈ N represent the start
time and finish time of the fluent, respectively.

Fluents allow us to represent the temporal extent of facts and
actions. If no information is available about the start (finish)
time, it takes the value undefined (⊥). We say that a fluent
ψ is open if its start time is specified and its finish time is
⊥. For instance, the fluent (robotAt(entrance), [10,⊥])
represents the fact that the robot is at the entrance since time
10, and we do not know until when. This can be the result

of observations, or a predicted state of the robot’s location
decided by the planner. A fluent whose start and end times
are defined is said to be closed.

We model temporal relations between fluents as con-
straints in Allen’s Interval Algebra (IA) (Allen 1984). These
are the thirteen possible atomic temporal relations between
intervals, namely “before” (b), “meets” (m), “overlaps” (o),
“during” (d),“starts” (s), “finishes” (f), their inverses (e.g.,
b−1), and “equals” (≡). We denote the set of atomic rela-
tions BIA. For example, the constraint

(robotAt(entrance), [10,⊥]) (1)
{b}

(robotAt(counter), [35,⊥])

models that the robot will leave the entrance before it
reaches the counter. Note also that as a result of this con-
straint, we can infer the latest end time of the entrance flu-
ent, which is 34. We can maintain an upper and lower bound
for finish and start time of every fluent. These bounds are
updated as a result of temporal constraint reasoning, an op-
eration which can be performed in low-order polynomial
time (Dechter, Meiri, and Pearl 1991; Floyd 1962).

In general, a temporal constraint C can be a disjunction
of atomic relations, denoted by C = {c1, . . . , cn} with
ci ∈ BIA for i = 1 . . . , n. In order to have tractable rea-
soning upon temporal constraints, we use convex IA rela-
tions (Vilain and Kautz 1986; Krokhin, Jeavons, and Jons-
son 2003). Thus, we can determine whether a set of con-
straints is consistent in polynomial time. As we shall see,
this facilitates the process of assessing whether an execu-
tion trace is consistent with respect to the temporal seman-
tics given in the EM. Note that, while the adopted formal-
ism allows us to impose relations between any two fluents,
in this work we focus on constraints between an action and
its predicates.

An execution model with temporal semantics can be used
in conjunction with the causal semantics to detect failures
that would be difficult to detect with either part of the model
alone. For example, consider the action to pick up mug1.
For a given robotic platform, it may be difficult to reliably
detect by visual means that the mug is held, but it may be
easy to detect that something is in the gripper — i.e., the
gripper cannot close completely. This sensor information
will typically become available during the execution of the
pickUp action and before its completion; correspondingly,
the effect holding(mug1) will be observed during the ex-
ecution of the action as well. We can model this temporal
relation between the action and its effect with the constraint

pickUp(mug1, counter) (2)
{o}

holding(mug1).

In general, we say that an execution model EM is a pre-
scription of expected behavior in terms of one or more se-
mantics (in the examples above, temporal semantics). Con-
sistency Based Execution Monitoring can then be seen as the
process of assessing the consistency of an execution trace
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with respect to an EM. The feasibility of this process de-
pends entirely on the formalisms employed to represent the
different types of knowledge in the model. In this paper, we
focus on CaTeGo (CAusal, TEmporal, cateGOrical) execu-
tion models:

Definition 2 A CaTeGo execution model is a tuple
(F,Rte, Rca, Rgo) , where

• F is a set of fluents;
• Rte is a set of convex disjunctive temporal constraints be-

tween pairs of fluents in F ;
• Rca is a set of cause-effect relations between fluents in F ;
• Rgo is a mapping from a set of objects O to a set of cate-

gories C.

Cause-effect constraints have the form (ψpPψa), meaning
that predicate fluent ψp is a precondition for action fluent
ψa; or the form (ψaEψp), meaning that ψp is an effect of
ψa.

The following example illustrates the concept of CaTeGo.

The Robot is standing at the counter, it has already ob-
served the counter and identified mug1. Now it should
grasp mug1.

The plan consists of the single action pickUp(mug1).
The only precondition of this action is robotAt(counter)
and it has the single effect holding(mug1).

Rte = {(robotAt(counter) {m,o,f−1,d−1} pickUp(mug1)),
(pickUp(mug1) {o} holding(mug1))}.

Rca = {(robotAt(counter) P pickUp(mug1)),
(pickUp(mug1) E holding(mug1))}.

Rgo : O → C where O = {mug1, mug2, vase1} and C =
{Mug, Vase}, such that Rgo(mug1) = Mug, Rgo(mug2) =
Mug, and Rgo(vase1) = Vase.

The similarity between Rca and Rte suggests that we can
attach temporal semantics to causal relations, which we do
in this work. In the next section we discuss which temporal
relations could be used to model causal dependencies. This
choice depends on the type of action, and it influences which
faults can be detected by the temporal semantics of the EM.

Temporal Semantics for Execution Monitoring
Let us discuss how we use temporal semantics attached to
causal relations to detect failures. For the sake of simplicity
we start with atomic IA relations. Below, we use a to denote
a generic action fluent, and use p (e) to denote a precondition
(effect) fluent of a. We denote the start and finish time of a
(resp: p, e) by as, af (resp: ps, pf ; es, ef ).

The relation (p {m} a) can be used to model an action
a whose occurrence will disturb the state modelled by the
precondition p. For example the robot cannot perform some
actions while driving. We could model this with the predi-
cate robotStandingStill() which could be a precondi-
tion of a driving action. The precondition fluent p should be
closed immediately as a driving action starts (pf = as). If
the robot remains standing after the action has started, this
may indicate that the actuator is delayed, malfunctioning or

that the move is not possible in the environment (it is physi-
cally blocked). Alternatively it may be the perception which
is failing, by not closing the robotStandingStill() flu-
ent on time. In practice it may be unrealistic to expect
no delay (pf = as) and this situation can be modeled by
a delay threshold t as ((as − pf ) < t). The same rea-
soning applies to modeling for effects with (a {m} e).
Immediately after the driving action has finished, the ef-
fect robotStandingStill() should be produced. Note
that metric bounds can be added without loosing tractabil-
ity (Kautz and Ladkin 1991).

(p {o} a) can be used to capture a precondition
which will cease to be true during the execution of an
action (ps < as < pf < af ). An example would
be drive(table, counter), which has a precondition
robotAt(table). The robot is expected to leave the vicin-
ity of the table (robotAt(table)) before it reaches the
counter (robotAt(counter)). The failure to register the
closing of the precondition before the action itself is closed
indicates similar failures to those discussed above.

As already discussed, the usage of the relation
(pickUp(mug1) {o} holding(mug1)) allows us to detect
whether pickUp has failed. The relation is violated if ei-
ther holding(mug1) was not opened or it was opened and
closed before the action has finished. As we shall discuss in
the evaluation Section, the temporal semantics allows us to
detect and distinguish two separate failures.

Some actions require a durative precondition
in order to be executable. Execution is not sup-
posed to alter this precondition. An example of
this is pickUp(mug1, counter). The robot
must be close to counter, which is modeled
by the precondition robotAt(counter). Since
pickUp does not modify the position of the robot
(ps < as < af < pf ), this causal relation can be modeled
by (robotAt(counter) {d} pickUp(mug1)). A similar
case would be when the precondition is closed at the
same moment as the action (pf = af ) corresponds to
(robotAt(counter) {f} pickUp(mug1)). The violation
of either relation may indicate sensory error in detecting
the closing of either the action or the precondition, or the
presence of unknown environment altering activities.

Effects can be represented through (a {b} e) which al-
lows an arbitrarily long time to pass between finishing the
action and observing the effect (af < es). On one hand this
gives us an execution that is robust against delays, on the
other it makes it difficult for the EM to decide whether the
action has succeeded or not.

If no atomic IA relation can adequately express the
causality between an action and its predicate, we may opt
for a (convex) disjunction of relations (without an increase
of computational complexity). Thus, Execution Monitoring
will be more tolerant, as it describes multiple possible exe-
cution traces, but as a result it will detect fewer failures. A
dedicated EM allows us to balance this trade off. Interest-
ingly, the decision whether to employ a more general/spe-
cific model can be made for each action individually.
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(a) Fluent before opening (b) Fluent opened (c) Fluent after closing

Figure 1: Updating the precondition fluent entrance. The predicates in the figure are simplified for clarity. ct,st,ft in the figures
correspond to tc,ts,tf in the text. The lower bound on ts (green) and tf (red) are displayed only for entrance. The circular
arrows indicate the time of observation

Using Execution Models During Execution
In this work, we assume that grounded preconditions and
effects of ground actions in the plan are available (they can
be easily obtained from a planner and the planning domain).

Next, we construct an Execution Network (EN), which in-
tegrates: expectations encoded in the plan, i.e., the sequence
of actions and their predicates; and semantics of the EM, i.e.,
temporal relations expressing causality between each action
and its predicates. If this EN is consistent with the informa-
tion observed during execution, we consider the execution
successful, otherwise we detect a failure.

The nodes in the EN correspond to fluents representing
actions and their monitored predicates. The temporal rela-
tions specified in the EM are reflected in the EN as edges
between the nodes. Additional temporal relations express-
ing expectations about future events are also part of the EN
and we shall discuss them shortly.

An example of EN is shown is shown in Figure 1. The
concepts of Past and Future are modelled as fluents to main-
tain an internal representation of the execution time. The
start time of Past is the start time of the execution, whereas
the finish time of Past represents the current time tc. The
two fluents are connected through (Past {m} Future), which
assures that both the finish time of Past and the start time of
Future equals to the current time.

As we express causality through temporal relations, the
resulting network consists of fluents interconnected with
temporal relations. Such a network can be transformed into
a Simple Temporal Problem — STP (Dechter, Meiri, and
Pearl 1991). A STP maintains a lower and an upper bound
for each time point (start or finish time of a fluent). The tem-
poral relations specify constraints on these time points. Each
time new temporal information is obtained from the execu-
tion, i.e., when a fluent is opened or closed, this information
is updated through temporal reasoning. Next, we show how
information from execution is integrated into the EN.

The Execution and Monitoring Process
The Execution Monitor is notified each time a fluent rele-
vant to execution is produced (e.g., by the sensors). Each
relevant fluent ψ which has not been observed yet, e.g., an
expected future action or predicate, is connected to the Fu-
ture by (ψ {d} Future). As a result the earliest start time of

such fluents is tc + 1 (see Figure 1a).
Let’s imagine a relevant fluent ψ is opened with a speci-

fied start time ψs and unspecified finish time ψf . First the
modeled current time tc is updated to ψs.

The STP maintains a time bound [se, sl] for the start of ψ
consisting of earliest possible start time se and latest possi-
ble start time sl. These bounds encode the temporal knowl-
edge in the EM, and therefore express the earliest and latest
possible start and end times of a planned fluent according
to the EM. If ψs < se then ψ was observed too early; if
sl < ψs, it is observed too late. In either case the observation
of ψ at time point ψs is inconsistent with our expectations
about execution, and a failure is detected through constraint
reasoning.

If se ≤ ψs ≤ sl, the observed fluent ψ is consistent with
our expectation. The bounds for the start time of ψ are up-
dated to [ψs, ψs]. If the start time is restricted through some
temporal relations, this information is propagated through
these relations.

After a fluent ψ is opened the connection to Future is
also changed from (ψ {d} Future) to (ψ {o} Future) (Fig-
ure 1b). If ψ is the last precondition of an action which was
not open yet, the Execution Monitor dispatches this action
(in time ψs + 1), as all its preconditions are fulfilled now.

An analogous process is applied when a fluent ψ is closed.
This process is concerned with the finish time ψf of the flu-
ent and it removes the relation (ψ {o} Future) from the EN
(Figure 1c).

When an inconsistency is detected in the EN, it is a re-
sult of a discrepancy between the plan, the EM (the expecta-
tion about the execution of the given plan) and the execution
trace (observation from the real execution). This signals a
failure in the execution. Interestingly, departures from ex-
pectations which do not impact the execution of the current
plan will not result in an inconsistency.

Planning and CBEM
Classical planners take an initial and a goal state as input and
find a sequence of actions leading from the initial to the goal
state. These states can be represented as sets of ground pred-
icates and actions are defined as operators. HTN-planners
(Erol, Hendler, and Nau 1994) use a different approach.
They are given tasks that have to be fulfilled and the plan-
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ner decomposes complex tasks into subtasks using methods
modeled inside the planner’s domain description. Methods
are applied until only primitive (directly executable) tasks
are left. A method consist of a task name, a set of precondi-
tions and a set of partially ordered subtasks.

In both classical planning and HTN-planning, the plan-
ner maintains an internal state of the world and reasons with
the ground predicates about how operators take effect on the
world and whether they can be applied. To update the in-
ternal state, the operators have to be fully instantiated and
therefore they are also fully instantiated in the resulting plan.

In our scenario the robot starts far from the counter and
cannot see what is on it. Therefore, the planner has to rely
on its initial world state or a memory concerning the objects
on the counter. If either contains information about multiple
mugs to choose from, a typical off-the-shelf planner would
generate a plan to move to the counter and grasp a specific
mug, e.g., mug1. In our scenario this plan is over-specified,
since any mug from the counter would be sufficient.

In a dynamic environment this may lead to an unnecessary
plan failure. If the robot arrives to the counter and mug1 is
not there (anymore), the plan will fail. This would be the
case even if there were another mug2 on the counter.

To overcome this limitation, we lift parts of the plan. With
lifting, we abstract from the specific instantiations of objects
used by the planner back to more abstract dummy instances.
The Execution Monitor will decide which specific objects
should be used in place of the dummy one based on infor-
mation obtained during execution.

To support lifting, the planning domain must be mod-
ified to allow the planner to instantiate parameters with
these dummy objects instead of specific instances. These
changes can be done completely inside the domain de-
scription without changing the planner itself. For exam-
ple, the operator createLiftedMug(?liftedmug) adds
a new dummy instance to the planner’s internal state and
annotates it using the predicate lifted. The operator
liftMug(?mug, ?liftedmug) deletes the instance of a
mug. We can also include a method that lifts all the mugs
which are placed on a specific area as a single lifted instance.
In its decomposition it uses the two operators above to cre-
ate a new instance liftedmug1 and goes through all mugs
that are on the given area and applies the liftMug operator.

One might argue that the planning domain could be mod-
eled in a different way, so that the operator for grasping does
not need an instance as a parameter but just a type of an ob-
ject. This would have some drawbacks. First, a complex
plan could involve the manipulation of several mugs, e.g.,
the robot could be asked to get a clean mug from the counter
and put it on a tray, drive to a first table to put a dirty mug
on its tray and finally drive to a second table to place the
first mug onto it. With the lifted instances, the assertion of
mugs to instances in the plan will be maintained, whereas
this would not be possible in the alternative solution. Sec-
ond, there can be other tasks where the robot has to bring
one specific mug. In our approach this can be modeled in the
same domain with the same kind of representations, whereas
otherwise a completely different representation and there-
fore different domains for different tasks would be needed.

To verify at execution time which mugs are on the ta-
ble and can be grasped, perception actions are planned and
executed directly before the grasp action. They are impor-
tant for the consistency based execution monitoring to check
whether the preconditions of the pickUp action are fulfilled,
e.g., that the chosen mug is on the table, or to re-instantiate
a dummy mug to a real instance.

Evaluation
In this section we will demonstrate that an Executive Mon-
itor equipped with our Execution Model can execute our
scenario in a simulated environment (shown in Figure 2).
Our setup is a one-to-one model of the physical laboratory
setup used in the RACE project.1 Although the case study
reported below has been run in simulation, plans similar to
the ones reported here are routinely executed in the phys-
ical setup within the project. The simulation supports our
claims that: categorical knowledge enables us to overcome
the early commitment problem, causal/temporal knowledge
enables us to deduce the outcome of the action pickUp
from indirect observation. Using an EM can therefore in-
crease the robustness of plan execution under realistic (albeit
simulated) conditions.

Implementation details
Our approach has been integrated into the architecture
(Rockel et al. 2013) of the project RACE, in which a black-
board is linked to an OWL-ontology and keeps track of the
internal state of the robot. This state is posted by specialized
modules for proprioception, perception, and initial knowl-
edge (e.g., poses of tables and objects). All the information
in the blackboard is expressed in form of fluents. All mod-
ules communicate through the ROS (Quigley et al. 2009)
middleware. As a planner we use the well known HTN-
planner SHOP2 (Nau et al. 2003). The EN is implemented
in the MetaCSP-framework (Pecora 2013).

Setup
All experiments have been run in the GAZEBO simulator
with the standard PR2 platform. Perception actions obtain
information about objects from GAZEBO. This means that
we get perfect object recognition and identification.

The simulated environment consists of a counter and two
tables. Three graspable objects are placed on the counter:
two mugs, named mug1 and mug2, and a vase vase1. The
robot starts at the opposite side of the room, from where it
cannot detect the objects on the counter. The poses of the
counter, tables and three objects are provided in the robot’s
initial knowledge, simulating that the robot has seen the ob-
jects the last time it has been at the counter.

The PR2 has an omnidirectional base, a torso with ad-
justable height, a head equipped with a stereo camera and
a Kinect sensor, and two arms, each equipped with a grip-
per. The choice of this specific platform provides some (soft)
constraints on the execution: the torso should be up to pro-
vide a better view of graspable objects and to facilitate ma-
nipulation, while it should be down when the robot drives

1RACE is a EU FP7 project (www.project-race.eu).
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Figure 2: The simulated environment in Gazebo (left), and the corresponding physical laboratory setup (right).

in order to increase its stability. The arms should be in a
specific position during driving (arms tucked) to avoid oc-
clusion of sensors and collisions.

The modeled planning domain captures these dependen-
cies and the generated plan consists of actions that can be
executed directly on a PR2 robot. These include tuck-
ing the arms, moving the torso, driving to an area, driv-
ing close to the counter, observing the counter and grasp-
ing an object. The domain also includes a driveBlind ac-
tion for approaching furniture without obstacle avoidance.
The drive and driveBlind actions are related to their re-
spective preconditions and effects through a {o} relation;
the same is true for the effects of pickUp. For all other
actions a we have chosen a very relaxed model: their pre-
conditions p and effects e are related through constraints
(p {m,o,f−1,d−1} a) and (a {b,m,o} e), respectively.

Case Study
In our experiments the action pickUp(mug) failed most of-
ten. Typically, either a feasible grasp for the mug could not
be found or it could not be executed. The executed low level
action would report a failure. To detect a successful grasp
is more difficult and we rely on the additional knowledge in
the EM for this. The same is true for detecting that the mug
has slipped out of the grasp. We will discuss both cases in
more detail shortly. In addition, we will describe how infor-
mation in EM enables us to execute lifted plans. But first of
all let us consider the base case: a ground plan.

Baseline – The ground plan At planning time, the plan-
ner chooses one of the previously known mugs on the
counter, mug1, and commits to grasp it. The produced
ground plan, shown in Listing 1, consists of tucking the
arms, driving to the counter, lifting the torso, bringing the
arms to appropriate position for grasping, observing the ta-
ble and performing the grasp itself.
tuckArms(tuckedposture, tuckedposture)
drive(entrance,counter)
moveTorso(torsoupposture)
tuckArms(tuckedposture, untuckedposture)
moveArmToSide(rightarm)
driveBlind(counter)
updateObjectsOnArea(counter)
pickUp(mug1)
driveBlind(counter)

Listing 1: Ground plan for grasping mug1.

In the basic scenario, the ground plan is executed un-
til the action updateObjectsOnArea(counter). At this
stage there are two possibilities. If mug1 is detected, the
observation action does not modify the EN and the exe-
cution continues with pickUp(mug1). Note that the in-
formation acquired (real position of all objects, their gras-
pability) increases the likelihood of a successful execu-
tion. If mug1 is not among the objects detected on the
counter (e.g., it was removed during execution), the flu-
ent onCounter(mug1) representing that mug1 is on the
counter is committed to the past by adding to the EN the con-
straint (onCounter(mug1) {d} Past). Since this fluent is a
precondition of pickUp(mug1), its temporal extent is sup-
posed to overlap with the one of pickUp(mug1), but the lat-
ter cannot be started since its preconditions do not hold. This
situation results in a temporal inconsistency, which shows
that the plan has failed and should be aborted.

Using Categorical Knowledge for Lifted Planning The
lifted plan in Listing 2 differs in adding three initial lifting
operators and

In the second case, the robot generates the lifted plan
given in Listing 2. Compared to the previous, this adds three
initial lifting operators, createLiftedMug and liftMug,
and replaces mug1 in pickUp with the dummy object
liftedMug1. Notice that the planner specifically lifts only
the mugs on the counter, since only those are relevant for
our task. The lifting operators are evaluated only internally
in the planner and the executor.
createLiftedMug(liftedmug1, counter)
liftMug(mug1, liftedMug1)
liftMug(mug2, liftedMug1)
tuckArms(tuckedposture, tuckedposture)
drive(entrance,counter)
moveTorso(torsoupposture)
tuckArms(tuckedposture, untuckedposture)
moveArmToSide(rightarm)
driveBlind(counter)
updateObjectsOnArea(counter)
pickUp(liftedMug1)
driveBlind(counter)

Listing 2: Plan for grasping a mug with lifted mugs.

The Lifted plan is executed until the observation action,
which produces a list of the objects detected on the counter.
The categorical knowledgeRca from the EM is used to iden-
tify which objects are eligible for grasping. Next, the pick
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up action planned in the EN is modified to grasp a concrete
object chosen in the previous step.

To decide which information should be lifted, and left for
instantiation in execution, is not trivial. This is part of the
broader issue of which knowledge should be available to the
planner, which to the Execution Model, and which to both.

Temporal Knowledge for Failure detection After iden-
tifying which object to grasp we should verify the outcome
of the action pickUp(mug1). We do this by checking the
effect relation (mug1 {o} holding(mug1)). If the fluent
holding(mug1) is not opened before the action finishes,
we detect a failure. This is the case when mug1 directly
slipped away from the gripper and remained on the counter.

We also detect a failure if the fluent holding(mug1) is
closed before the action finishes. This corresponds to the
case when mug1 slipped away from the grasp (as a result
gripper has closed, and so has the effect holding(mug1)
after it has successfully been lifted from the counter.

Related Work
The first attempt to explicitly represent knowledge used
for Execution Monitoring was PLANEX (Fikes 1971).
PLANEX converts a STRIPS plan into a tabular struc-
ture (triangle table) which captures the causal dependencies
(preconditions-action-effects). When an action is executed,
the outcome is compared to the expectations. Therefore,
PLANEX requires direct observability of effects. In addi-
tion to causal knowledge our Execution Model includes also
temporal and categorical knowledge, allowing us to take into
account action effects which are not directly observable.

In temporal planning and scheduling (Gallien, Ingrand,
and Lemai 2004; Fratini, Pecora, and Cesta 2008; Barreiro
et al. 2012; Di Rocco, Pecora, and Saffiotti 2013) temporal
and resource knowledge about execution is used to detect
failure. The planner reasons about typical durations and de-
lays between actions in addition to their dependencies. Fail-
ure to adhere to these temporal expectations made in plan-
ning time results in replanning. This cycle of planning (in-
cluding scheduling), execution monitoring and replanning
(and rescheduling) is referred to as continuous planning.
One well known architecture for continuous planning is T-
Rex (McGann et al. 2008), which is based on a hierarchical
network of so-called reactors, each of which monitors a task
at a different level of abstraction. Reactors communicate
with each other by posting goals and sharing information.
The reactor which detects a problem in task execution will
inform the reactor which posted the task. The task posting
reactor has to deliberate how to proceed and post a new task.

Our work departs from the ones above in that in our ap-
proach we decouple the execution model from the planning
domain. Our execution model can be richer, e.g., by in-
corporating also categorical knowledge. We speculate that
other types of knowledge can be included in the future. Fi-
nally, we represent explicitly all the information relevant to
execution into the EN prior to the execution. By contrast,
in T-Rex this information emerges from the interaction be-
tween the reactors during the execution.

The integration of perception actions into plan generation,
to overcome the closed world assumption presumed by most
HTN planners, is presented in (Weser, Off, and Zhang 2010).
If some relevant property of the environment is not known at
planning time, a perception action is included into the plan
to observe it directly. Predicted results of this action are used
in the planning process. If the results are not observed, re-
planning is invoked. We also use perception actions in our
scenario, to verify information obtained in the planning do-
main. Note that we can use categorical knowledge to avoid
replanning, as long as there is a mug on the counter.

(Awaad, Kraetzschmar, and Hertzberg 2013) propose to
use functional affordances and conceptual similarity to find
appropriate object categories as replacements for missing
objects. For example, for the task of watering plants, the
task would normally fail if there is no watering can avail-
able. Functional affordances and conceptual similarities re-
veal that a watering can could be replaced by a tea pot. This
replacement can occur at planning time or during execution.
This is analogous to our use of categorical knowledge to
avoid the early commitment problem.

(Bouguerra, Karlsson, and Saffiotti 2008; Galindo and
Saffiotti 2013) also propose elaborate usage of categorical
knowledge for Execution Monitoring. In (Bouguerra, Karls-
son, and Saffiotti 2008) the category of the room in an apart-
ment is identified based on the equipment therein. The rea-
soning behind is that a living room will typically contain a
TV set but not a washing machine. This knowledge can be
used for indirect verification of the effects of an action, e.g.,
drive to the living room. Thus, fault detection can be based
on categorical knowledge, in addition to causal and temporal
knowledge as considered here.

(Galindo and Saffiotti 2013) propose to use categorical
knowledge to achieve goal autonomy. Consider the categor-
ical knowledge that milk is a perishable good, and perishable
goods should be stored in the fridge. If the robot finds a box
of milk on the table, it could use this knowledge to generate a
task to bring the milk to the fridge. This work demonstrates
the usefulness of categorical (in its many forms) and tempo-
ral knowledge for execution monitoring. Our EM allowed
us to combine causal, temporal, and categorical knowledge
and we believe that future research in this direction has great
potential.

A common way to execute and monitor a plan in ROS
is by using a Finate State Machine architecture (Bohren et
al. 2011). Each state can correspond to a simple action
or a composition of simple states. The user has to define
the states, the transitions and information flow between the
states. The execution information is implicit in states and
transitions. By contrast, our EN represents the causal/tem-
poral relations explicitly. It also takes care of propagating
(temporal) information between fluents and maintains the
internal representation of time.

Conclusions
In this work we proposed the use of rich semantic knowledge
for plan execution monitoring. To this end we have proposed
a dedicated Execution Model containing the causal knowl-
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edge from the planning domain, as well as two additional
forms of knowledge: temporal and categorical.

The causal knowledge is used to represent dependencies
between preconditions, actions and their effects. We have
also shown how to use the interplay of causal and tempo-
ral knowledge to detect effects which are difficult to observe
directly, like a mug slipping away from grasp. In general,
fine-grained execution monitoring can be achieved by main-
taining both expectations from the execution model and flu-
ents deriving from sensors in a common execution network,
which can be tuned to match the execution semantics of the
specific robotic platform. In addition, categorical knowledge
allows to execute lifted plans, to avoid problems resulting
from early commitment at planning time. In these plans the
objects to grasp are abstracted away and replaced by a place-
holder for their category. The Execution Model allows to
instantiate this placeholder to a concrete physical objects at
execution time.

The use of Execution Models opens the issue of which
knowledge to consider in planning, which in execution, and
which in both. Designing the interaction between Planner
and Execution Model remains open. Also, the information
in the Execution Network could be used to guide sensing,
or to improve it by informing the perceptual processes. We
will address these issues in future research.
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