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Abstract

Optimal scheduling of Earth-observing satellites is cru-
cial to satisfying Skybox Imaging’s customers with
timely high-resolution imagery and HD video. The
company has implemented software that automatically
plans which ground targets are imaged by its satellites,
maximizing overall utility while not exceeding physical
limitations. The software is responsive to user interac-
tions, e.g., additions of new targets or explicit forcing
of an existing target (into or out of the schedule). The
result is a real-time collaboration between autonomous
scheduler and human collection manager, with the for-
mer aware of how to optimize each satellite’s image col-
lection and the latter aware of late-breaking changes af-
fecting target desirability. The scheduler encodes the
problem as directed acyclic graphs (DAGs): nodes rep-
resent imaging opportunities and edges (or lack thereof)
encode agility performance of the satellite. The optimal
schedule of targets is the highest weighted path through
a DAG. Human actions map to addition/subtraction of
edges in the DAG. This paper discusses the graph-
based optimization around these human interactions,
and some properties of the problem that allow for com-
putational savings.

Introduction
Skybox Imaging (Skybox) provides easy access to reliable,
frequent high-resolution imagery and HD video of the Earth
by combining the power of web technologies and the world’s
first coordinated satellite constellation. Each satellite com-
plete a revolution of the Earth once every 98 minutes, col-
lecting imagery over desired targets and downlinking the
data during ground station passes. With a constellation of
such satellites, Skybox can provide customers with an im-
age of anywhere on the Earth at least once a day, enabling
a new frontier of big data applications built around timely
geo-spatial information.

As the company’s business model is heavily leveraged
on efficient utilization of its satellites, a sound approach
to schedule optimization is critical to satisfying customers’
demands for high volumes of Earth imagery. A solution
needed to be capable of rapid adaption and recalculation, al-
lowing for ”forcing in” of top priority targets (e.g., breaking
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news events), and ”forcing out” of temporarily undesirable
targets (e.g., targets obscured by clouds).

Figure 1: Two “SkySats” Awaiting Launch

This paper describes the optimization algorithm devel-
oped at Skybox over the last 3 years. The algorithm en-
ables human-computer interaction, and is inspired by a clas-
sic problem of computer science, that of finding the shortest
path through a graph (Dijkstra 1959) (Bellman 1956) (Ford
and Fulkerson 1962). As opposed to shortest path, Skybox’s
algorithm calculates highest weighted path, to select a max-
imal feasible set of events to schedule.

The specifics of the Skybox problem (a mixed dis-
crete/continuous optimization problem) are described, and a
short background on previous research in satellite schedul-
ing and path problems is given. This is followed by the solu-
tion developed at Skybox for performing this optimization,
namely, fully discretizing the problem and constructing di-
rected acyclic graphs (DAGs) with edges encoding the satel-
lite’s agility constraints. DAGs are desirable as they allow
for quick schedule recalculation after human collaboration
induces incremental changes to the edges of the DAG. The
specifics of forcing out, forcing in, and determining feasi-
bility of future force ins are explained. Some computational
savings due to the transitive properties of the graph are also
discussed.
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The Problem
Let a set of pointing windows exist, where each pointing
window i has an importance weight wi, a desired event du-
ration τi, an earliest possible start time sti, and a latest pos-
sible end time eti. The windows are known, as they are
determined from orbital dynamics and the geographic loca-
tions of places on the Earth where the satellite should collect
an image.

max
c̄

N∑
i=0

ciwi

s.t. (∀ i) :

ci ∈ 0, 1

ti > sti
ti + τi < eti

tj − (ti + τi) ≥ cj × ci × fagility (θi(ti + τi), θj(tj))

The objective of the satellite schedule optimization prob-
lem is to select a set of pointing events (where each event
falls within a corresponding pointing window) to achieve
maximum sum over their importance weights. A pointing
event represents the act of pointing at a ground target over
an exact time range. The variable ci indicates whether a
pointing event from pointing window i has been selected or
not (c̄ is the overall selection vector, the output of the opti-
mization).

Each pointing event starts at a time ti so that ti and ti +τi
are within the continuous range [sti, eti] of the correspond-
ing pointing window, and such that the satellite can feasibly
change its orientation θ(t) from one pointing event i to the
next (in chronological order) pointing event i+ 1.

An agility function fagility() takes two orientations and
returns the time necessary to change the satellite’s point-
ing from one orientation to the other. The agility function
fagility() is known; it is a model of the slewing capability of
the satellite.

Note that this problem is not a Travelling Salesman Prob-
lem (TSP). The goal of TSP would be to do every window
in the minimum amount of time. This goal of this opti-
mization problem is to do the maximum weighted subset of
events/windows in a finite duration of time (namely, the start
time of the earliest pointing window to the end time of the
latest pointing window).

The Discretized Problem
Instead of considering the continuous range [sti, eti] for
scheduling an event associated with a particular window,
each window is replaced by a discrete set of potential point-
ing events. A potential pointing event represents the act of
pointing at a ground target at an exact time. The times of
each event in the discrete set are distributed over [sti, eti].

Let xi,j be an indicator variable for the feasibility of
changing the satellite’s orientation between event i and event
j (1 if feasible, 0 if infeasible). Specifically, it is determined
by using the agility model to compare whether the required

time to reorient, fagility(θi, θj), is less than the available
time to reorient, tj − (ti + τi).

The discrete optimization problem that yields this highest
weighted path can now be written as follows:

max
c̄

N∑
i=0

ciwi

s.t. (∀ i) :

ci ∈ 0, 1

ci + cj ≤ 1 ∀ xi,j = 0

A solution to the discrete problem is in general suboptimal
to a solution to the continuous time problem (except in the
limit where the number of potential pointing events per win-
dow goes to infinity). However, for reasonable numbers of
potential pointing events per window the scheduling perfor-
mance loss is negligable, as the physical agility limitations
on the satellite ‘saturate’ its performance and put a limit on
the number of pointing events possible per unit of time.

A benefit of switching to the discrete problem is the abil-
ity to solve for the optimal schedule via an exact polynomial
time algorithm. The problem can be solved either via dy-
namic programming or linear programming. The scheduler
implemented at Skybox utilizes the former, and a later sec-
tion describes how the problem is encoded as a graph for
solution of the longest path via dynamic programming.

An additional benefit, and a crucial factor for Skybox, is
the ability to quickly map the desires of a human user into
actions on the edges of the graphs. This allows for a collab-
orative process utilizing the relative strengths of both auto-
mated scheduler and human collection manager.

Background
The graph-based approach taken at Skybox follows on
previous research on modelling spacecraft utilization via
graphs(Gabrel and Vanderpooten 2002) (Gabrel 2006) (Bo-
gosian 2008).

An enormous amount of research has taken place in the
space of path problems and graph traversal problems. Clas-
sic computer science algorithms such as Dijsktra’s algorithm
(Dijkstra 1959) and the Bellman-Ford algorithm (Bellman
1956) (Ford and Fulkerson 1962) established approaches for
calculating the shortest or minimum cost paths through a
graph. Research into determining the shortest or minimum
cost path under constraints (an NP-hard problem (Garey and
Johnson 1979)) followed, and has continued to the present
day (Joksch 1966) (Witzgall and Goldman 1965) (Handler
and Zang 1980) (Aneja, Aggarwal, and Nair 1983) (Beasley
and Christofides 1989) (Hassin 1992) (Mehlhorn and Ziegel-
mann 2000) (Muhandiramge and Boland 2009) (Storandt
2012).

In contrast to the shortest path problem, the spacecraft
scheduling problem described in this paper is a longest path
problem. The next section describes how the optimization
problem is encoded into a graph.
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Directed Acyclic Graphs
As described above, instead of considering each imaging
pointing event as occuring somewhere in a continuous range
of time [sti, eti], each pointing event is replaced by a dis-
crete set of possible pointing events. The times of each pos-
sible event in the discrete set are distributed over the range
[sti, eti].

Now that the total set of potential events is finite, the op-
timization problem can be modelled as a graph. Each of
the graph’s nodes represent one of these pointing events for
imaging or downlinking data (modelled by a triple, ti, θi, τi).
The graph’s directed edges encode the ability of the satel-
lite to slew from one event to another, given the amount of
time between them, i.e., the presence/absence of an edge be-
tween nodes i and j is based on the indicator variable xi,j
introduced above. Note that this is a directed acyclic graph
(DAG) with a natural topological ordering (the chronologi-
cal order of the nodes based on their values of ti).
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Figure 2: Pointing Opportunities Over Sea of Japan

Figure 2 gives an example of a portion of an orbit for one
of Skybox’s satellites, showing various ground targets visi-
ble over the Sea of Japan. Figure 3 shows the corresponding
DAG constructed for this part of the orbit. The nodes are
organized in chronological order, with time advancing left
to right. In addition to the nodes for the six ground targets,
there is also a start node and an end node, which are con-
nected by edges to all of the target nodes in the graph.

For simplicitity, and w.o.l.o.g., only one potential event
per window is shown in Figure 3 (i.e., only one node ex-
ists per target window). In reality, several potential point-
ing events/nodes are considered for each window at various
event times t in [st, et]. This way, the temporal range is
still ‘explored’ and the scheduler is free to consider several
actual times during the flyover at which a given ground tar-
get could be pointed at for imaging. The amount of point-
ing events/nodes per target window is a tunable parameter;
in the limit as this discretization factor goes to infinity, the
optimal solution of the original continuous time problem is
recovered.
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Figure 3: Directed Acyclic Graph For Sea of Japan

Highest Weighted Path
Importance weights represent the relative priority with
which Skybox desires to complete each event. Considering
a high priority imaging target i and another, lower priority
imaging target j, the values of the importance weights will
be such that wi > wj . Importance weights are how busi-
ness value is quantified and embedded in the optimization
problem.

A highest weighted path from the start node to the end
node through the graph of Figure 3 represents the optimal
set of pointing events the satellite can undertake while flying
over the region shown in Figure 2, and is the solution to the
discrete optimization problem posed above.

How to calculate lowest/highest weighted path through
a DAG has been reviewed exhaustively in the literature
(Lawler 1976) (Leiserson et al. 2001); a brief review is given
here. Let Wj be the value of the highest weighted path be-
tween the start node and node j. Let pj be a pointer to the
node that preceeds node j along this highest weighted path.
From a node-centric perspective, the optimization at each
node j (to choose Wj) is:

Wj ← 0
for all {i | xi,j = 1 ∀ j} do

if Wi + wj > Wj then
Wj ←Wi + wj

pj ← i
end if

end for

This optimization is performed for each node in chrono-
logical order, from start node to end node. After completing
at the end node, backtracking from the end node to the start
node via the values of pj yields the events in the optimal
satellite schedule.

In Figure 5, importance weights wj have been assigned to
each event node, and the highest weighted path determined
(the edges in bold). Note that the optimal schedule is one
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that uses high-value events (one of importance weight 5, an-
other of importance weight 3, as compared to the rest of the
nodes with importance weight of 1), and not one that hits the
most events.

3
1
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1

1

1

Figure 4: Example of Highest Weighted Path

Edge Actions
The scheduling system has been designed so that it is possi-
ble for a human to interact with this highest weighted path
solution and adapt it. The following sections describe how
human actions map into changes in the graph and its highest
weighted path.

3
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5

1

1

1

Figure 5: Highest Weighted Path

Forcing Out The autonomous scheduler has knowledge of
the capabilities of the satellite (via constraint models/edge
encodings) as well as relative priority of opportunities with
respect to each other (via importance weights). However,
when it comes to assessing the presence/absence of certain
temporal constraints on imaging, such as cloud cover ob-

scuring a target, the autonomous system may be either un-
aware or cognitively inferior to a human collection manager.
For this reason, the collection manager is given the ability
to explicity force a target or targets out of a schedule, so
that under no circumstances are any imaging opportunities
of that target used at the specified time. This way the satel-
lite does not waste effort taking an image that is going to be
cloudy and worthless, and instead replaces that opportunity
with other opportunities where the expection of successful
imaging is higher.

When a node j is forced out, the action taken is that all
edges terminating at node j are disabled (all edges xi,j are
set to 0). Figure 6 shows the result of forcing out the node
with importance weight 3. Note the removal of all incoming
edges, and the new highest weighted path which does not
pass through this node.
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Figure 6: Highest Weighted Path After Node Is Forced Out

Forcing In While importance weights wi are assigned to
each target to represent their relative importance, their may
be cases where a specific target is of the absolute highest
importance and must be included in the schedule of oppor-
tunities. An example would be a breaking news event for
which HD video from space is desired. Alternatively, an ex-
isting low-importance target may temporarily be desired for
immediate fulfillment for some reason. As in the force out
scenario, a human collection manager is best capable of de-
ciding when a target should be forced in, so that the imaging
opportunity is guaranteed to be in the schedule.

When node j is forced in, the action taken is that all edges
xi,k ”crossing” node j are disabled (all edges xi,k are set to
0, where node i is chronologically earlier than and node k is
chronologically later than node j). Continuing on from the
state of the graph in Figure 6, Figure 7 shows the result of
forcing in a node (at the top of the graph) with importance
weight 1. Note that all edges running from nodes earlier
than (left of) the forced in node to nodes later than (right of)
the forced in node have been removed.

Because of this force in, the highest weighted path no
longer passes thru the highest priority target (with impor-
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tance weight 5). A human forcing in an opportunity is guar-
anteed to have that opportunity in the resulting schedule, and
this trumps importance weight.
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Figure 7: Highest Weighted Path After Node Is Forced In

Ability Of A Node To Be Forced There are nodes that
will be impossible to force in when other nodes have previ-
ously been forced in. This condition is referred to as ‘pre-
cluded’. It is possible to evaluate a node and determine
whether it is precluded, given the current state of the graph.
This insight is made visible to the human collection man-
ager, as an aid to collaboration.

Let precli be an indicator variable for if node i is pre-
cluded or not. Let N be the total number of nodes, and let
ix be the xth node in chronological order. The end node is
never precluded (precliN−1

is always 1).
The precluded nodes are calculated by doing two passes

through the nodes, first in reverse chronological and then
in forward chronological order. During the reverse chrono-
logical pass, a node is marked as not precluded in any of
its successor nodes are not precluded. During the forward
chronological pass, a node is marked as precluded if it has
no predecessor nodes, or if its all of its predecessor nodes
have just been marked as precluded earlier in the forward
chronological pass.

precliN−1
← 1

for {i = iN−2 to i0} do
precli ← 0
for all {i | xi,j = 1 ∀ j} do

if preclj = 1 then
precli ← 1

end if
end for

end for

MNewPrecl ← {}
for {i = i1 to iN−2} do

if precli = 1 then

IPred ← {i | xj,i = 1 ∀ j}
if IPred = {} or IPred ⊆MNewPrecl then
precli ← 0
MNewPrecl ←MNewPrecl ∪ i

end if
end if

end for

For a node to be not precluded, there must be at least
one viable predecessor node and one successor node; the
above algorithm determines the nodes that meet these con-
ditions, and those that don’t (i.e., the ones that are precluded,
precli = 1).

Transitive Properties and Space/Time Savings
A property of the DAGs in the satellite scheduling problem
is the transitive nature of the edges. As Figure 3 shows,
if there is an edge from node B to node C (representing a
feasible slew), and there is an edge from node C to node
E (representing a feasible slew), then there will be an edge
from node B to node E, since that slew must also be feasi-
ble. That is, the DAG of feasible slews is also the transitive
closure of the DAG.

Given a few properties of the satellite scheduling problem,
it is observed that such edges (those connecting two nodes
for which there is also a connecting path stopping at one or
more intermediate nodes) are always dominated and never a
part of the longest path through the DAG.

First, the weightswi are assessed at the nodes, so all edges
that terminate at the same node will add the same weight to
the overall cumulative weight. In the above example, the act
of traversing from nodeC to nodeE and the act of traversing
from nodeB to nodeE provided the same added weightwE .

Second, the weights are non-negative, so the the addition
of a preceding edge before node C to node E (e.g., an edge
from nodeB to nodeC) will add weightwC ≥ 0. Therefore,
the path from node B to node E that stops at intermediate
node C will never have less cumulative weight than the di-
rect edge from node B to node E because wC +wE ≥ wE .

Therefore, as the objective is the highest weighted path
through the graph, the skipping or removal of such edges
will not affect the optimal result, and doing so saves compu-
tational time and storage space. The graph with such domi-
nated edges removed is the transitive reduction of the DAG
and can be computed in polynomial time(Aho, Garey, and
Ullman 1972).

An even easier time and space reduction is possible using
the topology of the nodes. The satellite can physically slew
from any orientation to any other orientation in finite time.
That is, the agility model fagility() has an upper bound;
there is some duration of time tmax−slew above which the
satellite is guaranteed to be able to slew between two point-
ing events, no matter the orientation required. Therefore
a space reduction is possible by not explicitly enumerating
an edge in the graph between two nodes that are separated
(chronologically) by more than tmax−slew. Rather, when
optimizing for the highest weighted incoming path to node j,
the ‘for’ loop over all incoming edges will consider both ex-
plicitly enumerated edges as well as temporarily generated
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edges from previous nodes that are more than tmax−slew

in the past. Because of the transitive properties discussed
above, a time reduction is possible by not even considering
any edges to nodes more than 2tmax−slew in the past; there
will always be a higher weighted, more desirable path into
node j than an incoming edge from one of these nodes in the
‘far past’.

Conclusion
An algorithm for scheduling that runs in exact polynomial
time is highly desired, because of its speed and bound on
generating a deterministic output. Using a graph-based
scheduling algorithm like the one described in this paper
provides these benefits, as well as allows for human in-
teraction via a set of well-defined actions on edges of the
graph. Through these actions, a human operator can force
out imaging events that are not desired (e.g., due to cloud
cover), force in imaging events that are definitely desired
(e.g. breaking news), and be kept aware via a precluded
flag on the nodes as to what events are possible or not pos-
sible based on other forcing actions the human has taken.
Finally, the chronological topology of the directed acyclic
graphs used in this algorithm allow for space/time savings
in computation.

As Skybox transitions to commercial operations with its
imaging satellites, these algorithms are crucial to maximiz-
ing the revenue generated from the company’s constellation
of satellites, and avoiding wasted imaging time.
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