
Formal Specification and Synthesis of Mission Plans for Unmanned Aerial Vehicles

Laura R. Humphrey
Air Force Research Laboratory

Control Science Center of Excellence
WPAFB, OH 45433

Eric M. Wolff
Control and Dynamical Systems

California Institute of Technology
Pasadena, CA 91125

Ufuk Topcu
Electrical and Systems Engineering

University of Pennsylvania
Philadelphia, PA 19104

Abstract
As unmanned aerial vehicle (UAV) missions become in-
creasingly complex, automated tools are needed to as-
sist UAV operators in mission planning and execution.
Formal methods such as model checking have recently
been used for similar purposes, e.g. motion planning for
ground robots. Here, we review applications of formal
methods to problems in robot control and multi-agent
planning and discuss how related techniques can be ex-
panded to serve as the foundation for improved human-
automation UAV intelligence, surveillance, and recon-
naissance (ISR) mission planning systems.

Introduction
Unmanned aerial vehicle (UAV) intelligence, surveillance,
and reconnaissance (ISR) missions are becoming increas-
ingly complex. Whereas in the past, several operators
worked together to plan missions for a single UAV, a sin-
gle operator is now expected to plan missions for multiple
UAVs. This paradigm shift has been enabled by the in-
creased use of autonomy, e.g. autopilots that can execute
low-level tasks such as flying between waypoints, loitering
over targets, surveilling roads, and monitoring patrol routes.
On one hand, this increased use of autonomy allows the op-
erator to more easily manage multiple UAVs at a higher level
of abstraction. On the other, interactions and timings be-
tween high-level tasks – especially across multiple UAVs –
can be difficult for the operator to anticipate and track.

In many ways, these issues are similar to those experi-
enced by system designers. Interactions between various
software and hardware components can be difficult to rea-
son about, leading to design errors that are hard to under-
stand and fix. Formal methods – mathematically based lan-
guages, techniques, and tools for specifying and verifying
hardware and software systems – have been developed to
assist designers in analyzing such errors. One such method
is model checking. Model checking requires two inputs: 1)
a set of system requirements that are formalized into mathe-
matically based specifications and 2) a high-level system de-
sign that can be represented as a finite-state system model.
The model is then checked or verified against the specifica-
tions using an automated tool called a model checker, and

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

for each violated specification, the model checker outputs a
counterexample that demonstrates how the violation occurs.

Given these similarities, it seems likely that formal meth-
ods such as model checking could also have useful applica-
tions in the UAV mission planning domain. For instance, if
mission goals and constraints – e.g. tasks that must be co-
ordinated, areas that must be surveilled in a particular order,
regions that must be avoided – can be formalized into speci-
fications, and if UAV behaviors can be represented as finite-
state models, then model checking could be used as a tool to
help operators verify mission plans and reason about errors
using counterexamples, as depicted in Figure 1. Alterna-
tively, operators could develop specifications that automated
routines would then use to synthesize feasible or optimal
mission plans. Both paradigms would provide useful mech-
anisms for improved human-automation interaction, though
here we focus on automated synthesis of mission plans.

In what follows, we first review the use of model checking
techniques in robot control and multi-agent planning. Then,
we describe how similar techniques can be used to provide
an improved framework for human-automation UAV mis-
sion planning. Finally, we conclude with a discussion of
areas of interest for future work.

Mission
requirements

Formalizing

Mission
specification

UAV tasks

Modeling

Mission model

Model Checking

Satisfied
Violated +

counterexample

Figure 1: The model checking approach as applied to UAV
mission planning. Modified from (Baier and Katoen 2008).

Formal Verification and Modeling in Human-Machine Systems: Papers from the AAAI Spring Symposium

116

Review
Several areas of research have focused on the application
of model checking techniques to robot control and multi-
agent planning. For instance, linear temporal logic (LTL)
– a propositional temporal logic often used to formally ex-
press specifications in model checking – has been used as
a task specification language for ground robots and UAVs
(Finucane, Jing, and Kress-Gazit 2010; Tabuada and Pappas
2006). Given specifications in LTL, one can either use these
techniques to verify and provide feedback to an operator that
an existing plan satisfies the specifications (Humphrey 2012)
or to automatically synthesize a plan that satsifies the spec-
ifications. Since tasks in these domains often involve the
physical movement of agents, plan synthesis also usually
entails path planning. In path planning, it is often desirable
to optimize the routes taken by the agents, and one might
also consider the avoidance of obstacles or inhospitable ar-
eas. The former can be addressed by posing the problem
as a mixed integer linear program (MILP) (Karaman and
Frazzoli 2008; Wolff and Murray 2013), or if uncertainties
in the system or environment exist, as a Markov Decision
Process (MDP) (Lahijanian, Andersson, and Belta 2012;
Wolff, Topcu, and Murray 2012). For the latter, if cer-
tain areas are blocked or inhospitable, one can synthesize
plans that minimize the number of violated specifications
(Fainekos 2011; Tumova et al. 2013). If continous dynam-
ics of the agents must be considered, then hybrid systems
approaches are needed (Wongpiromsarn, Topcu, and Murray
2010; Fainekos, Kress-Gazit, and Pappas 2005). In addition,
other lines of research have focused on the synthesis of con-
trol protocols that can react to environmental and adversar-
ial disturbances (Liu et al. 2011) and account for unmodeled
behaviors in the agents (Topcu et al. 2012).

UAV Mission Planning
We motivate use of these types of model checking tech-
niques for UAV ISR mission planning through discussion of
a simple mission scenario. In this scenario, we assume the
primary goal is for an operator to use multiple UAVs to mon-
itor a road network, with the constraint that certain areas of
the map, i.e. “restricted operating zones” or ROZs, should
be avoided. Figure 2 shows a sample map, where waypoints
are labelled with numbers, roads connecting waypoints are
drawn in black, and ROZs are represented by red polygons.

Since standard model checking techniques work on finite
state systems, we must discretize movements of the UAVs.
Here, we discretize roads based on the maximum speed
achieveable by all UAVs (road points). For many applica-
tions, it is also desirable to specify the angle of approach to
a waypoint, e.g. for surveilling targets using different look
angles. Thus, we also discretize areas around waypoints at
45◦ angles based on the minimum speed of all UAVs (angle
points). For this scenario, UAVs are assumed to move only
between waypoints and associated angle points, angle points
closest to road points at the beginning and end of a road,
and neighboring road points. In some cases, angle points
for different waypoints are close enough that no connecting
road points are necessary, and in other cases, angle points are

close enough that they are aliased to a single point. Here, a
maximum speed of 90 km/h, a minimum speed of 30 km/h,
and a discrete time step of 60 s are assumed, resulting in
1.5 km between road points and .5 km between angle points
and waypoints. Vehicle accelerations are neglected. For de-
tails on methods to handle vehicle dynamics in a more realis-
tic manner, see (Wongpiromsarn, Topcu, and Murray 2010;
Fainekos, Kress-Gazit, and Pappas 2005).

w1

w2

w3

w4w5

w6

roz1

roz2

roz3

Figure 2: A portion of an example road network.

Given this scenario, we assume a human operator would
like to synthesize paths for the UAVs based on a set of mis-
sion specifications, preferrably in real-time. In such a sit-
uation, there are at least two important aspects that should
be considered, including but not limited to: expressing the
mission specifications and synthesizing a solution.

Mission Specifications
We use finite transition systems to model the behavior of the
UAVs, which we have found to be a useful level of abstrac-
tion for high-level mission planning. Given UAV behaviors
modeled as transition systems, we can use LTL to specify a
wide range of properties relevant to UAV missions.

Definition 1 (Transition System) A finite transition system
is a tuple TS = (S,R, s0, AP, L) consisting of (i) a finite
set of states S, (ii) a transition relation R ⊆ S × S, (iii) an
initial state s0 ∈ S, (iv) a set of atomic propositions AP ,
(v) and a labeling function L : S → 2AP .

We assume the transition system is non-blocking, so for each
state s ∈ S, there exists a state s′ ∈ S such that (s, s′) ∈ R.
Then, a path or run of the transition system is an infinite
sequence of its states, σ = s0s1s2 . . . where si ∈ S is the
state of the system at index i, and (si, si+1) ∈ R for i =
0, 1, A trace is an infinite sequence of labels L(σ) =
L(s0)L(s1)L(s2) . . . where σ = s0s1s2 . . . is a path of the
transition system.

Definition 2 (The Grammar of LTL) LTL formulae over
a set AP of atomic propositions are formed according to

117

the grammar:

ϕ ::= true | a | ϕ1 ∧ ϕ2 | ¬ϕ |,ϕ | ϕ1 U ϕ2

where a ∈ AP .

LTL formulae include the standard and derived propositional
logic operators – e.g. ∧ “and,” ¬ “not,” ∨ “or,” and ”→ “im-
plies,” – as well as the temporal operators , “next,” and U
“until.” In addition, two common derived temporal operators
are ♦ “eventually” and � “always,” where ♦a ≡ trueUa and
�a ≡ ¬♦¬a. Some model checkers support past time op-
erators like ,−1 “previously.” Past research has identified
a number of useful LTL specification patterns for agent task
planning (Kress-Gazit, Fainekos, and Pappas 2009). These
and some additional patterns relevant in the UAV domain are
given in Table 1.

Table 1: LTL specification patterns for UAV missions, where
p, q, and r are atomic propositions.

Property Name Formula
Safety �¬p
Reachability ♦p
Coverage ♦p ∧ ♦q ∧ ♦r
Recurrent Coverage �♦p ∧�♦q ∧�♦r
Sequencing ♦(p ∧ ♦(q ∧ ♦r))
Avoidance ¬q U p
Avoidance with

(¬q U p) ∧ ♦q
Reachability
Sequencing with ¬q U p ∧ ¬r U q ∧ ♦r
Avoidance
Previously ,−1p
Never After �(p→,�¬q)

For this scenario, let us label waypoints as wi, where i
is the waypoint number; angle points as ai,j , where i is the
waypoint number and j = {1, . . . , 8} indicates the angle of
approach, with 1 at 0◦ from the horizontal, 2 at 45◦, etc;
and road points as ri,j,k, where i and j with i < j indi-
cate the waypoints at the ends of the road, and k ≥ 1 num-
bers the road points starting from waypoint i. Denote the
current UAV positions by uavi for i = {1, . . . ,m}, where
typically m ≈ 4 for UAV missions. We form atomic propo-
sitions about a UAV’s location with expressions of the form
uavi = pj , where pj is a valid waypoint, angle point, or
road point. For simplicity in referencing multiple UAVs, we
define (uav = pj) ≡ (uav1 = pj ∨ . . . ∨ uavm = pj).
And for simplicity in referencing ROZs, we define rozi ≡
(uavi = z1 ∨ . . . ∨ uavi = zn), where {z1, . . . , zn} is the
set of all points that fall inside a ROZ.

Given these definitions, there are a number of specifica-
tions that might interest an operator. For instance, the op-
erator might want to establish a repeating patrol route for
one UAV (uav1) using a “recurrent sequencing” specifica-
tion while using another UAV (uav2) to surveil a particular

set of points using a “coverage” specification, e.g.

�♦uav1 = w3 ∧�♦uav1 = w4 ∧�♦uav1 = w5 ∧
♦uav2 = w1 ∧ ♦uav2 = w2 ∧ ♦uav2 = w6

Or, the operator might want to see a given set of points ac-
cording to a “sequencing” specification using any UAV, e.g.

♦ (uav = w1 ∧ ♦ (uav = w2 ∧ ♦uav = w3)) (1)

Note (1) does not prohibit any waypoints from being visited
before other waypoints; it only requires that certain way-
points be visited after other waypoints. If a UAV were to
visit w2, w1, w2 again, then w3, this would satisfy (1). If
the operator wanted a stricter ordering, he could use a “se-
quencing with avoidance” specification, e.g.

♦uav = w1 ∧ ♦uav = w2 ∧ ♦uav = w3 ∧
¬w2 U w1 ∧ ¬w3 U w2 (2)

Note (2) does not prohibit waypoints from being visited
more than once. To prevent a waypoint from being repeated,
the operator could add a “never after” specification, e.g.

�(uav = w1 →,�¬uav = w1)

The operator can also control the angle of approach to a
waypoint in any of these specification patterns using “pre-
viously” specifications, e.g.

♦(uav = w1 ∧,−1a1,1)

In many scenarios, it is useful to have two or more UAVs ap-
proach the same point at the same time from different look
angles. If the UAVs are flying at the same altitude, it may
also be necessary to ensure they maintain spatial separa-
tion. A corresponding “coordination with mutual exclusion”
specification would take the form

¬(uav1 = uav2 ∨ uav1 = uav3 ∨ uav1 = uav4 ∨
uav2 = uav3 ∨ uav2 = uav4 ∨ uav3 = uav4) U

(uav1 = w1 ∧ uav2 = w1 ∧ uav3 = w1 ∧ uav4 = w1 ∧
,−1 uav1 = a1,1 ∧,−1uav2 = a1,3 ∧
,−1 uav3 = a1,5 ∧,−1uav4 = a1,7) (3)

For any of the aforementioned specifications, the opera-
tor may also want to add a “safety” specification so that all
UAVs avoid all ROZs, e.g.

�¬(roz1 ∨ . . . ∨ roz4)

Synthesis of Feasible Mission Plans
Once the operator develops a set of mission specifications,
model checking techniques can be used to synthesize a fea-
sible solution. Normally, model checkers are used to ensure
a system TS satisfies a set of specifications ϕ, written

TS |= ϕ

If not, the model checker returns a traceL(σ) ∈ traces(TS)
that does not satisfy the specifications, i.e. L(σ) 2 ϕ. If
we negate the original specifications, the model checker will
return a counterexample such that

L(σ) 2 ¬ϕ→ L(σ) |= ϕ

118

w1 a1,1

a1,2a1,3a1,4

a1,5

a1,6 a1,7 a1,8

12

3

4

Figure 3: An example 5x5 grid problem, where pentagons
represent UAVs and dashed lines represent allowed transi-
tions at each time step.

Table 2: Time in seconds to compute feasible solutions with
4 UAVs on a 4x4 grid and a 5x5 grid.

Mut-ex BDD 4x4 SAT 4x4 BDD 5x5 SAT 5x5
2 0.102 s 0.144 s 0.554 s 0.209 s
3 4.32 s 0.087 s 51.1 s 0.244 s
4 10.5 s 0.076 s 492 s 0.277 s

This provides a feasible solution for the specifications.
Here, will explore this synthesis procedure using the

model checker NuSMV (Cimatti et al. 2002). NuSMV im-
plements two classes of algorithms for model checking of
LTL specifications: one that uses satisfiability solvers to
search for counterexamples (SAT-based), and one that uses
binary decision diagrams (BDD-based). Consider a “coor-
dination with mutual exclusion” specification similar to the
one given in (3), but with a varying number of mutual ex-
clusion terms of the form �¬(uavi = uavj) and over a grid
of the type shown in Figure 3. Table 2 shows the amount of
time needed to synthesize a feasible solution with 4 UAVs
over a 4-by-4 grid and a 5-by-5 grid using the BDD-based
algorithm and the SAT-based algorithm. These results show
that for this type of specification, the SAT-based algorithm
is faster and less sensitive to the number of UAVs. It also
performs better with more mutual exclusion constraints in
the specification.

In contrast, consider a simpler “coordination” specifica-
tion without the “mutual exclusion” constraints, e.g. be-
cause the UAVs are altitude deconflicted. This has the form

♦(uav1 = w1 ∧ uav2 = w1 ∧ uav3 = w1 ∧ uav4 = w1 ∧
,−1 uav1 = a1,1 ∧,−1uav2 = a1,3 ∧
,−1 uav3 = a1,5 ∧,−1uav4 = a1,7)

Figure 4 shows the amount of time needed to compute so-
lutions for this simpler specification for a varying number of
UAVs and varying grid size using the BDD-based algorithm,
and Figure 5 shows the amount of time needed by the SAT-
based algorithm. Interestingly, the SAT-based algorithm is
now much more sensitive to the number of UAVs and is also
slower than the BDD-based algorithm. This demonstrates

the importance of the algorithm used to synthesize the mis-
sion plans, with performance potentially varying depending
on the types of specifications being synthesized.

0 2 4 6 8 10 12 14 16UAVs 2
4
6
8
10
12
14
16

Gr
id
siz
e

−0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

T
im

e
(s
)

Figure 4: Timing results for the “coordination” specification
using a BDD-based algorithm.

0 2 4 6 8 10 12 14 16UAVs 3
4
5
6
7
8
9
10
11

Gr
id
siz
e

0

20

40

60

80

T
im

e
(s
)

Figure 5: Timing results for the “coordination with mutual
exclusion” specification a SAT-based algorithm.

Synthesis of Optimal Mission Plans
Standard model checking techniques only synthesize feasi-
ble solutions. Techniques to generate mission plans that are
optimal with respect to various cost functions have recently
been developed. These techniques are based on dynamic
programming (Smith et al. 2011; Wolff, Topcu, and Murray
2012) and mixed-integer linear programming (Karaman and
Frazzoli 2008; Wolff and Murray 2013). Such methods are
highly relevant for UAV mission planning, which often re-
quires fast execution or minimization of resources like fuel.
An important question for synthesis of human-automation
mission plans is the cost versus quality tradeoff between fea-
sible and optimal solutions. In our experience, operators will

119

not tolerate automated routines that are too slow, and they
will reject solutions that are poor. Thus, we use the map in
Figure 2 to run a small number of benchmarks to begin to
gauge these tradeoffs.

For these benchmarks, we assume four UAVs with start-
ing positions uav1 = a1,1, uav2 = a4,2, uav3 = a5,7,
and uav4 = a6,7. We then generate formulas of varying
length based on conjunctions of a random mix of “cover-
age” and “recurrent coverage” terms of the form ♦w and
�♦w, where “formula length” refers to the total number of
coverage and recurrent coverage terms in the formula. For
each formula length, we examine three cases: a “vehicle ag-
nostic” case, a “vehicle specific” case, and a “mutual ex-
clusion” case. For the vehicle agnostic cases, terms take
the form ♦

∨4
i=1(uavi = wj) or �♦

∨4
i=1(uavi = wj),

where each point wj is chosen randomly without replace-
ment from the set of all map points, excluding UAV starting
positions. For the vehicle specific cases, we take the same
formulas but randomly choose a specific UAV to associate
with each term, i.e. terms take the form ♦(uavi = wj) or
�♦(uavi = wj). The mutual exclusion cases add three ran-
dom but unique constraints of the form �¬(uavi = uavj)
with i 6= j to the vehicle agnostic cases. Mission cost is
measured according to the longest path taken by any UAV,
where the length of a UAV’s path is the number of transitions
it takes through the road network, neglecting “loiters” or
self-transitions. Paths that satisfy recurrent coverage terms
end with a series of transitions that must be infinitely re-
peated. We can thus think of a path as a concatenation of a
prefix path and an infinitely-repeated suffix path. Total path
length is the length of the prefix plus the length of the suffix,
which is only counted once.

For synthesizing feasible results, we use NuSMV’s BDD-
and SAT-based algorithms, and for optimal results, we
solve an equivalent integer programming (IP) problem us-
ing CPLEX (Wolff and Murray 2013). The SAT and optimal
solvers both require a bound on total solution lengths, which
was set to 40. The optimal solver also requires a maximum
prefix length, which was set to 13. These values were suf-
ficient for most trials. Figure 6 shows benchmark solution
costs and computation times, based on a median of 10 tri-
als run on a standard desktop. For BDD- and SAT-based
synthesis, trials exceeding 600 s were terminated, and for
optimal synthesis, trials exceeding 60 s were termined. Tri-
als over these limits were rarely observed to return a result.
Results are reported for formula lengths in which at least
5 solutions were returned within the time limit. For longer
formula lengths, timing results are set to 600 s to provide a
visualization of the drastic increase in computation time.

As these results show, the SAT solver tends to be the fas-
est, and it provides solutions with costs substantially lower
than the BDD solver. An exception is the vehicle specific
case, in which the BDD solver is substantially faster than the
SAT solver, though solution costs are still much higher. The
SAT solver also often provides solutions with slightly lower
cost than the optimal solver, most likely because the prefix
length of the optimal solver is set to a suboptimal value. The
optimal solver returns solutions with low cost but can only
generate solutions for relatively short formulas in a reason-

able amount of time. Note that feasible rather than optimal
results can also be synthesized using an IP formulation, and
cost and computation times were found to be comparable to
those of the SAT solver (results not shown). Thus, though
more thorough testing and analysis is required, it appears
a SAT-based solver or possibly a feasible IP-based solver
could provide a good tradeoff between computation time and
solution quality.

2 4 6 8 10 12 14
0

20

40

60

80

100

120

C
os

t (
tra

ns
iti

on
s)

2 4 6 8 10 12 14
0

20

40

60

80

100

Ti
m

e
(s

)

Formula Size

BDD Agnostic
BDD Specific
BDD Mutex
SAT Agnostic
SAT Specific
SAT Mutex
Optimal Agnostic
Optimal Specific
Optimal Mutex

Figure 6: Median costs and computation times for the BDD,
SAT, and optimal solvers.

Conclusions and Future Work
Use of formal specifications, synthesis, and verification for
UAV missing planning – especially as a basis for human-
automation interaction – is in its infancy, leading to a wide
range of opportunities for potential research advances. We
now discuss some of these as they relate to the background
and results described in this paper.

Here, LTL was used as the sole specification language.
However, LTL is only one of the dialects in the broader fam-
ily of temporal logics, some of which may be more suitable
for human-automation UAV mission planning. We antici-
pate the need, for example, to incorporate languages that
capture hard timing constraints and probabilistic specifica-
tions. Similarly, the models we used to represent UAV
behaviors are relatively high-level finite transition systems
that abstract away most of the underlying vehicle dynamics,
leaving the need to more faithfully capture these dynamics
in future work. Another important aspect of UAV mission
planning is uncertainty. Algorithmically, problems involv-
ing UAVs acting in a priori unknown and dynamic environ-

120

ments can be addressed with reactive synthesis. A related
problem is distinguishing between adversarial, environen-
tal, and cooperative uncertainties, which is in line with the
scenarios discussed in the previous sections. So is composi-
tional synthesis of distributed control protocols, which could
address issues related to computational complexity and im-
plementation.

Note since UAV operators will not be familiar with LTL,
another open question is how to best allow operators to write
mission specifications. Past research has focused on identi-
fying common specification patterns, which can be param-
eterized and given intuitive explanations (Dwyer, Avrunin,
and Corbett 1999). More current research has focused on
providing more intuitive “natural language” interfaces, e.g.
for instantiating these types of patterns (Konrad and Cheng
2005; Finucane, Jing, and Kress-Gazit 2010) or using En-
glish words in place of mathematical operators and increas-
ing flexiblity in the specification grammar (Rothwell et al.
2013). To our knowledge, no comprehensive human stud-
ies have been done on the usability of temporal logics for
mission planning; however, we plan to perform preliminary
studies in the UAV mission planning domain soon.

Last but not least, interesting problems arise in the inte-
gration of these capabilities in such a way to facilitate inter-
action between human operators and automation algorithms.
Toward this end, examples of improvements to our current
work would include the following: (i) creating a diverse set
of feasible solutions – rather than a single solution – to the
operator, (ii) formalizing a notion of feedback from the op-
erator and using it to revise the mission specifications or
the underlying cost function used for optimal synthesis, and
(iii) displaying solutions to the operator in a form that is
human-interpretable and human-actionable. Also, when op-
timal synthesis is too time consuming, synthesis of feasible
solutions, e.g. using SAT solvers as in the previous section,
may be an appropriate substitute.

Acknowledgments
Portions of this work were funded by AFOSR lab task
#13RQ03COR and the AFRL SFFP program. Cleared for
public release on 9 January 2014, case #88ABW-2014-0042.

References
Baier, C., and Katoen, J. 2008. Principles of Model Check-
ing. The MIT Press.
Cimatti, A.; Clarke, E.; Giunchiglia, E.; Giunchiglia, F.; Pis-
tore, M.; Roveri, M.; Sebastiani, R.; and Tacchella, A. 2002.
NuSMV 2: An opensource tool for symbolic model check-
ing. In Computer Aided Vision, 241–268.
Dwyer, M.; Avrunin, G.; and Corbett, J. 1999. Patterns in
property specifications for finite-state verification. In Proc.
21st Int. Conf. on Software Eng. (ICSE’99), 411–420.
Fainekos, G. E.; Kress-Gazit, H.; and Pappas, G. J. 2005.
Hybrid controllers for path planning: A temporal logic ap-
proach. In Proc. 4th IEEE Conf. on Decision and Control,
4885–4890.

Fainekos, G. E. 2011. Revising temporal logic specifica-
tions for motion planning. In Proc. 2011 IEEE Int. Conf. on
Robotics and Automation (ICRA’11).
Finucane, C.; Jing, G.; and Kress-Gazit, H. 2010. LTLMoP:
Experimenting with language, temporal logic and robot con-
trol. In IEEE/RSJ Int. Conf. on Intelligent Robots and Sys-
tems (IROS’10), 1988–1993.
Humphrey, L. 2012. Model checking UAV mission plans.
In Proc. AIAA Modeling and Simulation Technologies Conf.
Karaman, S., and Frazzoli, E. 2008. Vehicle routing with
linear temporal logic specifications: Applications to multi-
UAV mission planning. In Proc. AIAA Conf. on Guidance,
Navigation, and Control.
Konrad, S., and Cheng, B. 2005. Facilitating the construc-
tion of specification pattern-based properties. In Proc. IEEE
Int. Requirements Eng. Conf. (RE’05).
Kress-Gazit, H.; Fainekos, G. E.; and Pappas, G. 2009.
Temporal-logic-based reactive mission and motion plan-
ning. IEEE Trans. on Robotics 25(6):1370–1381.
Lahijanian, M.; Andersson, S. B.; and Belta, C. 2012. Tem-
poral logic motion planning and control with probabilistic
satisfaction guarantees. IEEE Trans. on Robotics 28(2):396–
409.
Liu, J.; Ozay, N.; Topcu, U.; and Murray, R. 2011. Synthesis
of switching protocols from temporal logic specifications.
Technical report, California Institute of Technology.
Rothwell, C.; Eggert, A.; Patzek, M.; Bearden, G.; Calhoun,
G.; and Humphrey, L. 2013. Human-computer interface
concepts for verifiable mission specification, planning, and
management. In Proc. AIAA Infotech@Aerospace Conf.
Smith, S. L.; Tumova, J.; Belta, C.; and Rus, D. 2011. Opti-
mal path planning for surveillance with temporal-logic con-
straints. The Int. J. of Robotics Research 30(14):1695–1708.
Tabuada, P., and Pappas, G. J. 2006. Linear time logic con-
trol of discrete-time linear systems. IEEE Trans. on Auto-
matic Control 51(12):1862–1877.
Topcu, U.; Ozay, N.; Liu, J.; and Murray, R. 2012. On
synthesizing robust discrete controllers under modeling un-
certainty. In Proc. 15th Int. Conf. on Hybrid Systems: Com-
putation and Control (HSCC’12).
Tumova, J.; Hall, G.; Karaman, S.; Frazzoli, E.; and Rus,
D. 2013. Least-violating control strategy synthesis with
safety rules. In Proc. 16th Int. Conf. on Hybrid Systems:
Computation and Control. ACM.
Wolff, E., and Murray, R. 2013. Optimal control of nonlin-
ear systems with temporal logic specifications. In Proc. of
the 16th Int. Symp. on Robotics Research (ISRR’13).
Wolff, E.; Topcu, U.; and Murray, R. 2012. Robust control
of uncertain Markov decision processes with temporal logic
specifications. In Proc. 51st IEEE Annu. Conf. on Decision
and Control, 3372–3379.
Wongpiromsarn, T.; Topcu, U.; and Murray, R. 2010. Re-
ceding horizon temporal logic planning. IEEE Trans. on
Automatic Control 57(11):2817–2830.

121

