
Hybrid Reasoning for Teams of Heterogeneous Robots:
Finding an Optimal Feasible Global Plan ∗

Zeynep G. Saribatur, Esra Erdem, Volkan Patoglu
Faculty of Engineering and Natural Sciences

Sabancı University, İstanbul, Turkey

Abstract

We address two key challenges of domains including teams
of heterogeneous robots, hybrid reasoning for each team and
finding an optimal global plan for multiple teams, by uti-
lizing state-of-the-art automated reasoners. For hybrid rea-
soning, we propose (i) representing each team’s workspace
taking into account capabilities of heterogeneous robots, (ii)
combining different methods of integration to embed exter-
nal computations (e.g., collision checks) into high-level rep-
resentation and reasoning, (iii) further optimizing local feasi-
ble shortest plans by minimizing the total cost of robotic ac-
tions, where costs of actions can be defined in various ways.
To find a shortest global plan, we propose a semi-distributed
approach based on our earlier studies: we formulate the prob-
lem of finding an optimal coordination of teams that can help
each other, prove its intractability, and describe how to solve
this problem using automated reasoners. As a case study, we
have formally represented a cognitive toy factory and showed
an application of our hybrid reasoning and coordination ap-
proach on this domain. We have performed dynamic simula-
tions and physical implementation of the cognitive toy factory
utilizing KuKa youBots and Lego NXT robots.

1 Introduction
Multiple teams of robots with heterogeneous capabilities are
commonly employed to complete a task in a collaborative
fashion in many application domains, ranging from search
and rescue operations to exploration/surveillance missions,
service robotics (Aker et al. 2011; Aker, Patoglu, and Erdem
2012; Erdem, Aker, and Patoglu 2012) to cognitive facto-
ries (Erdem et al. 2012; 2013b). In these domains, the goal
is for all teams to complete their tasks as soon as possible,
and should the need arise, teams help each other by lending
robots.

In this paper, we address two key challenges of such do-
mains including teams of heterogeneous robots: hybrid rea-
soning (combining discrete task planning with continuous
feasibility checks and perception) for each team and finding
an optimal global plan for multiple teams. In particular, we
propose to use state-of-the-art automated reasoners (i) to en-
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dow each heterogeneous robot team with high-level reason-
ing capabilities in the style of cognitive robotics, such that
each team becomes capable of planning their own actions;
and (ii) to coordinate robot exchanges among the teams to
ensure an optimal global plan. Both problems, planning for a
team of robots and finding a coordination for multiple teams
of robots, are shown to be NP-hard (Erol, Nau, and Subrah-
manian 1995; Erdem et al. 2013b).

For hybrid reasoning, we emphasize several core char-
acteristics of these domains, such as existence of het-
erogeneous robot with varying capabilities, ability of
robots to execute concurrent actions, existence of com-
plex (state/temporal) constraints/goal conditions, and pro-
vide a computational framework to find feasible and opti-
mal plans for each team. The proposed method is based on
our earlier works on hybrid planning (Caldiran et al. 2009;
Erdem et al. 2011; Havur et al. 2013; Schueller, Patoglu,
and Erdem 2013b) utilizing expressive nonmonotonic logic-
based formalisms that allows us to embed external compu-
tations in continuous spaces, and the use of automated rea-
soners.

This paper extends our earlier studies in hybrid plan-
ning by focusing on heterogeneity of robots, considering
existence of static/dynamic obstacles in the domain, uti-
lizing a combination of integration methods for perform-
ing feasibility checks, and conducting various optimizations
on plans. In particular, for performing feasibility checks,
we utilize pre-computation approach to embed information
about static obstacles perceived by a Kinect RGBD camera
into the domain description, while we rely on guided replan-
ning to account for possible robot-robot collisions (Haspala-
mutgil et al. 2010; Schueller, Patoglu, and Erdem 2013b;
2013a). In addition to finding a shortest plan, we further
optimize the total cost of this plan by considering several
objectives: to minimize the number of robotic actions or to
ensure that actions in a team are executed as early as possi-
ble or to minimize fuel consumption.

For finding an optimal global plan for multiple teams,
we advocate the use of a semi-distributed approach to pro-
tect privacy of workspaces and to reduce message-passing
and computational effort. Privacy is a major concern in mi-
cro manufacturing plants that specialize on prototyping pre-
release products, while reduction of communication among
teams may be preferable when the means of communication
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is lossy or costly. Furthermore, a semi-distributed approach
is advantageous in that it reduces the size of the global do-
main into manageable pieces; hence, provides a solution
methodology that can be parallelized to include a large num-
ber of robot teams.

To find an optimal global plan, we capitalize on the fact
that each team is capable of hybrid reasoning and use au-
tomated reasoners to find an optimal coordination as in our
earlier work on optimal decoupled planning (Erdem et al.
2013b). This paper extends our earlier study on coordina-
tion between teams of robots, by considering heterogeneous
capabilities of robots and generalizing the formal framework
(including definitions, mathematical modeling and formal-
izations) accordingly. We also prove that with the addition
of heterogeneity in teams and robot exchanges, the complex-
ity of the coordination problem does not get harder than the
case with homogeneous teams; that is, we show that the co-
ordination problem is still NP-hard.

We use state-of-the-art automated reasoners to solve both
the hybrid planning and coordination problems. In particu-
lar, we propose to utilize Answer Set Programming (ASP)
for reasoning, as its underlying non-monotonic semantics
is general enough to represent the computational problems
of interest and it provides very efficient solvers, such as
CLASP (Gebser et al. 2007). ASP can handle many chal-
lenges: concurrency, the frame problem (McCarthy and
Hayes 1969), the qualification problem (McCarthy 1980),
ramifications (Finger 1986), numeric-valued fluents (Lee
and Lifschitz 2003; Erdem and Gabaldon 2005), nonde-
terminism, etc., while its efficient solvers can solve plan-
ning problems, which may involve complex goals and con-
straints, and perform optimizations. Furthermore, while
computing a (discrete) plan, some feasibility checks (such as
geometric/kinematic constraints on continuous trajectories)
can be embedded in domain description, to ensure feasible
(collision-free) plans.

Using ASP, we show applicability of our hybrid reasoning
and coordination approach through a case study of a cogni-
tive toy factory. Cognitive factory concept (Beetz, Buss, and
Wollherr 2007; Zaeh et al. 2009; 2012; Erdem et al. 2012;
2013b) is a novel paradigm proposed to enhance produc-
tivity and ensure economic sustainability and growth in the
manufacturing sector. Aimed towards highly flexible and
typically small to medium size manufacturing plants, these
factories are equipped with multiple teams of heterogeneous
manufacturing tools, such as dexterous mobile manipula-
tors. Since these factories are endowed with high-level rea-
soning capabilities, they can rapidly respond to changing
customer needs and customization requests, and produce a
large variety of customized products even in low quantities.
Consequently, cognitive factories provide an ideal compro-
mise between the flexibility of human workshops with cost-
effectiveness of mass production systems.

Contributions of the paper can be summarized as follows:
We have extended our earlier studied formal frameworks, as
described in detail above. As a case study for these exten-
sions, we have formally represented a cognitive toy factory
and showed the applicability and effectiveness of our hy-
brid reasoning and coordination approach on this domain.

We have performed dynamic simulations and physical im-
plementation of the cognitive toy factory utilizing KuKa
youBots and Lego NXT robots.

2 Answer Set Programming
Answer Set Programming (ASP) (Marek and Truszczyński
1999; Niemelä 1999; Lifschitz 2002; 2008; Brewka, Eiter,
and Truszczynski 2011) is a form of knowledge representa-
tion and reasoning paradigm oriented towards solving com-
binatorial search problems as well as knowledge-intensive
problems. The idea is to represent a problem as a “program”
whose models (called “answer sets” (Gelfond and Lifschitz
1991; 1988)) correspond to the solutions. The answer sets
for the given program can then be computed by special im-
plemented systems called answer set solvers. ASP has a
high-level representation language that allows recursive def-
initions, aggregates, weight constraints, optimization state-
ments, and default negation. ASP also provides efficient
solvers, such as CLASP (Gebser et al. 2007), which has re-
cently won first places at various automated reasoning com-
petitions, such as SAT competitions and ASP competitions.

Due to the continuous improvement of the ASP solvers
and highly expressive representation language of ASP which
is supported by a strong theoretical background that re-
sults from a years of intensive research, ASP has been ap-
plied fruitfully to a wide range of areas, including indus-
trial applications (Nogueira et al. 2001; Tiihonen, Soini-
nen, and Sulonen 2003; Ricca et al. 2012). ASP has
also been used for various robotic applications, such as
housekeeping robotics (Aker, Patoglu, and Erdem 2012;
Erdem, Aker, and Patoglu 2012), cognitive factories (Erdem
et al. 2013b), and multi-path finding (Erdem et al. 2013a).

In this study, we use ASP for high-level representation of
action domains and combinatorial search problems, and an
ASP solver as an automated reasoner. We consider ASP pro-
grams (i.e., nondisjunctive HEX programs (Eiter et al. 2005))
that consists of rules of the form:

Head ← A1, . . . , Am, not Am+1, . . . , not An

where m,n ≥ 0, Head is an atom or ⊥, and each Ai is an
atom or an external atom. A rule is called a fact if m = n =
0 and a constraint if Head is ⊥.

An external atom is an expression of the form
&g [y1, . . . , yk](x1, . . . , yl) where y1, . . . , yk and x1, . . . , xl

are two lists of terms (called input and output lists, respec-
tively), and &g is an external predicate name. Intuitively, an
external atom provides a way for deciding the truth value of
an output tuple depending on the extension of a set of in-
put predicates. External atoms allow us to embed results of
external computations into ASP programs. Therefore, ex-
ternal predicates are usually implemented in a programming
language of the user’s choice, like C++. For instance, the
following rule

⊥ ← at(r, x1, y1, t), goto(r, x2, y2, t),
not &path exists[x1, y1, x2, y2]()

(1)

is used to express that a robot r cannot move from (x1, y1)
to (x2, y2) if there is no collision-free trajectory between
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them. Here collision check is done by the external predicate
&path exists implemented in C++, utilizing the bidirectional
RRT (Rapidly Exploring Random Trees) (Kuffner Jr and
LaValle 2000) as in the OMPL (Sucan, Moll, and Kavraki
2012) library.

In ASP, we use special constructs to express cardinality
constraints (e.g., a team needs at least two robots at time
step t) or optimization statements (e.g., a plan is optimized
by minimizing the total cost of actions). For instance, the
following expression

#minimize [ cost(r, c, t) : robot(r) = c ] (2)

is used to minimize the sum of all costs c of robotic ac-
tions performed in a plan, where costs of actions performed
by robot r at time step t are defined by atoms of the form
cost(r, c, t).

3 Hybrid Reasoning for a Team of
Heterogeneous Robots

To find optimal feasible plans for a team of heteroge-
neous robots, we consider the expressive representation for-
malisms and state-of-the-art efficient solvers of ASP as fol-
lows.

3.1 Heterogeneous Robots
Suppose that in a cognitive factory there are two types of
worker robots: wet robots (that are liquid resistant), and dry
robots. Wet robots can do all the actions, such as painting
and stamping, whereas dry robots can only do stamping. In
the presence of such heterogeneous robots with different ca-
pabilities, preconditions of actions should be specified ac-
cordingly. For instance, consider the action of a robot r
painting a product b at time step t. We can describe the ef-
fects of this action by the following rules in ASP:

painted(b, t+ 1)← paint(r, b, t)

and its precondition that dry robots cannot paint, by the fol-
lowing rules:

← paint(r, b, t), dry(r).

In this way, we can specify which actions cannot be executed
by which sort of robots.

3.2 Hybrid Reasoning
There are four different methods of integrating an external
computation (e.g., feasibility checks or object detection) in
an action domain description for hybrid reasoning, as de-
scribed in (Schueller, Patoglu, and Erdem 2013b; 2013a): (i)
Pre-computation (PRE): external computations are done for
all possible cases in advance and then this information (e.g.,
maintained as a set of facts) is embedded in an action domain
description via external predicates, (ii) Interleaved compu-
tation (INT): external computations are directly embedded
in an action domain description via external predicates so
that external computations are done when they are needed
during the search for a plan, (iii) Replanning (REPL): exter-
nal computations for feasibility checks are done after a plan

is computed and if the plan is found infeasible then a new
plan is computed, (iv) Guided replanning (GREPL): simi-
lar to the previous strategy of replanning but a new plan is
computed subject to the constraints obtained from previous
feasibility checks. If the robotic application involves vari-
ous external computations, then we can construct different
levels of integration by deciding for an appropriate combi-
nation of methods for them, e.g., as in (Erdem et al. 2011;
Aker, Patoglu, and Erdem 2012).

Consider, for instance, a workspace in a cognitive factory,
with some obstacles. With the method PRE for integration:
An object detection algorithm can be used to identify all lo-
cations l occupied by these obstacles, and the results of this
external computation can be embedded into the formulation
of a state constraint expressing that a robot r cannot be at a
location l occupied by an obstacle at any time step t:

← at(r, l, t),&obstacleAt[l]()

where &obstacleAt is an external predicate whose value is
determined by an object detection algorithm (Duff, Erdem,
and Patoglu 2013) using Point Cloud Library over data ob-
tained by a Kinect RGBD camera. We can also express a
transition constraint to avoid collisions of robots with obsta-
cles while the robots move from one location l1 to another
l2:

← at(r, l1, t), goto(r, l2, t),&collision[r, l1, l2]()

where the external predicate collision checks for such colli-
sions using Open Dynamics Engine (ODE).

With the method INT: We can interleave collision checks
of robots with static obstacles, into automated reasoning so
that checks are done as needed, as described in the previous
section (see constraint (1)). We can also interleave collision
checks of robots with movable obstacles:

← not &path exists dynamic[goto, at]().

The external predicate path exists dynamic gets as input the
set of atoms of the form goto(r, l, t) (describing which robot
is moving where at time step t) and of the form at(r, l, t)
(describing the locations of all robots at time step t). It re-
turns true if and only if, for each time step and each robot,
there is a collision-free motion plan from the location given
by at at step t to the location given by goto at step t.

With the method GREPL: After computing a plan, we can
check for collisions of robots, using the external computa-
tions provided by ODE. If the plan is found infeasible, then
we can identify which actions c are being executed at which
state s when a collision occurs. Based on this information,
we can ask for a new plan which does not involve execution
of c at s, by adding a constraint to the planning problem de-
scription. For instance, if it is found by collision checks that
two robots R1 and R2 cannot cross each other diagonally
between locations A and B, then we can add the following
constraint to the planning problem description

← at(R1, A, t), at(R2, B, t),
at(R1, B, t+ 1), at(R2, A, t+ 1)

to guide the ASP solver to find a new plan where the robots
R1 and R2 do not exchange their locations A to B, respec-
tively, at any time t.
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3.3 Optimal Planning
As explained in the two previous subsections, once the capa-
bilities of heterogeneous robots are described, with the hy-
brid reasoning methods, we can find feasible plans for a team
of heterogeneous robots. To find optimal feasible plans, we
utilize optimization statements of ASP (as described in Sec-
tion 2) with respect to different optimization functions.

To find a shortest plan (i.e., with minimum makespan), we
can perform a linear search between a lower bound and an
upper bound, as suggested in (Trejo et al. 2001). Alterna-
tively, we can minimize the time step to reach a goal:

#minimize [ goal(t) = t ].

Once we find the length of a shortest plan, we can further
optimize the plan, e.g., by trying to minimize the total cost
of actions in a shortest plan. For instance, if the cost of
every robotic action is defined as 1, then we can minimize
the number of actions by the constraint (2). This may be
useful for eliminating redundant actions executed in parallel
with necessary actions.

Action costs can be defined as functions that depend on
time. For instance, by defining the cost of all actions ex-
ecuted at time step t as t + 1, we can ensure execution of
actions as early as possible.

We can also define the cost of an action by estimating its
duration or by the distance traveled. For instance, the fol-
lowing rule estimates the duration of the action of a robot r
moving from location l1 to another location l2 by an external
function time estimate:

cost(r, c, t)← at(r, l1, t), goto(r, l2, t),
& time estimate[r, l1, l2](c).

The external function time estimate estimates the duration in
terms of a continuous trajectory for r between l1 and l2 com-
puted by a motion planner, as in (Erdem, Aker, and Patoglu
2012).

4 Coordination of Multiple Teams for an
Optimal Global Plan

We consider multiple teams of n types of robots, where each
team is given a feasible task to complete in its workspace
on its own using hybrid reasoning as described above, and
where teams are allowed to transfer robots between each
other. The goal is to find an optimal feasible global plan for
all teams so that all tasks can be completed as soon as possi-
ble within at most k steps, where at most mx robots of type
x can be transferred between any two teams, and subject to
the following constraints as in (Erdem et al. 2013b):

C1 Teams do not know about each other’s workspace or tasks
(e.g., for the purpose of privacy in micro manufactur-
ing plants that specialize on prototyping pre-release prod-
ucts).

C2 Lending/borrowing robots between workspaces back and
forth is not desired (e.g., transportation of robots is
usually costly, also, since tasks may be different in
workspaces, robots need some tuning). Also, for simi-
lar reasons, robots can be transferred between two teams
in a single batch.

To find a coordination of teams for such an optimal fea-
sible global plan, we consider a semi-distributed approach
as in (Erdem et al. 2013b): a mediator gathers information
from the teams to find a coordination for an optimal global
plan (with minimum makespan); and then necessary infor-
mation about this coordination is passed to each team so that
they can utilize this information as part of their hybrid rea-
soning to find optimal feasible local plans. The mediator
does not know anything about the workspaces of teams. To
extend this approach to heterogeneous robots, we generalize
the formal framework as follows.

The mediator asks yes/no questions of the following three
forms to every team (in any order), for every l≤ k, l≤ l and
m≤mx, x≤n:

Q1 Can you complete your task in l steps?

Q2 Can you complete your task in l steps, if you lend m
robots of type x before step l?

Q3 Can you complete your task in l steps, if you borrow m
robots of type x after step l?

These questions are more general than the ones in (Erdem
et al. 2013b) due to consideration of heterogeneous robots;
computing an answer for each question is still NP-hard.
These questions can be further generalized, considering dif-
ferent combinations of types of robots that are lent or bor-
rowed. We do not consider such generalizations, for compu-
tational efficiency purposes. Therefore,

C3 Teams can borrow/lend robots of the same sort.

From teams’ answers to these yes/no questions posed by
the mediator, the following can be inferred:

• If there is a team that answers “no” to every question, then
there is no overall plan of length l where every team com-
pletes its own tasks.

• Otherwise, we can identify sets Lendersx ⊂ Lenders
of lender teams that can lend robots of type x and
sets Borrowersx ⊂ Borrowers of borrower teams
that needs to borrow robots of type x, where x≤n
(Lenders,Borrowers ⊂ Teams): If a team answers no to
question Q1 and “yes” to question Q3 for some l,m and
x, then it is a borrower for robot type x. If a team answers
“yes” to question Q1 and “yes” to question Q2 for some
l,m and x, then it is a lender for robot type x.

• For every lender (resp., borrower) team, from its answers
to queries Q2 (resp., Q3), we can identify the earliest
(resp., latest) time it can lend (resp., borrow) m robots
of type x, x≤n, in order to complete its tasks in l steps.

For every l≤ k, these inferences can be used to decide
whether lenders and borrowers can collaborate with each
other, so that every team completes its task in l steps as fol-
lows.

First, let us identify the earliest lend times and latest bor-
row times by a collection of partial functions:

Lend earliestm,x : Lendersx 7→ {0, . . . , l}
Borrow latestm,x : Borrowersx 7→ {0, . . . , l}
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Usually transferring robots from one team to another team
takes some time, not only due to transportation but also due
to calibration of the robots for a different workspace. Let us
define such a delay time by a function:

Delay : Lenders× Borrowers× {1, . . . , n} 7→ {0, . . . , l}.

Next, let us define when a set of lender teams can collab-
orate with a set of borrower teams.

Definition 1. An nml-collaboration between Lenders and
Borrowers with at most m=max{mx} robot transfers, with
n types of robots, and within at most l steps, relative to
Delay, is a partial function

f : Lenders× Borrowers× {1, . . . , n} 7→
{0, . . . , l} × {0, . . . ,m}

(where f(i, j, x)= (l, u) denotes that team i lends u robots
of type x to team j at time step l) such that the following
hold:

(a) For every borrower team j ∈Borrowersx, there are
some lender teams i1, . . . , is ∈Lendersx, x≤n, where
the following two conditions hold:
• f(i1, j, x)= (l1, u1), . . . , f(is, j, x)= (ls, us) for

some time steps l1, . . . , ls≤ l, some positive integers
u1, . . . , us≤mx, and some type x,
• Delay(i1, j, x)= t1, . . . ,Delay(is, j, x)= ts for

some time steps t1, . . . , ts≤ l;
and there is a positive integer m≤mx such that

max{l1+t1, . . . , ls+ts}≤Borrow latestm,x(j)
m≤

∑s
k=1 uk.

(b) For every lender team i∈Lendersx, for all bor-
rower teams j1, . . . , js ∈Borrowersx, x≤n, such
that f(i, j1, x)= (l1, u1), . . . , f(i, js, x)= (ls, us) for
some time steps l1, . . . , ls≤ l, some positive integers
u1, . . . , us≤mx, and some type x, and there is a posi-
tive integer m≤mx such that

Lend earliestm,x(i)≤ min{l1, . . . , ls}
m≥

∑s
k=1 uk.

Condition (a), which ensures that a borrower team does
not borrow fewer robots than it needs, and Condition (b),
which ensures that a lender team does not lend more robots
than it can, together entail the existence of a lender team that
can lend robots when a borrower team needs them.

Now we are ready to precisely describe the computational
problem of finding a coordination of multiple teams of het-
erogeneous robots, to complete all the tasks as soon as pos-
sible in at most l steps where at most m robots can be relo-
cated:

FINDCOLLABORATION n
INPUT: For a set Lenders of lender teams, a set Borrowers
of borrower teams, positive integers n, l and mx, x≤n:
a delay function Delay and a collection of functions
Lend earliestm,x and Borrow latestm,x for every positive
integer m≤mx, x≤n.

OUTPUT: A nml-collaboration between Lenders and
Borrowers with at most m=max{mx} robot transfers,
with at most n types of robots, and within at most l steps,
relative to Delay.

As expected, this problem is also intractable but not
harder than the one studied in (Erdem et al. 2013b):
Proposition 1. The decision version of
FINDCOLLABORATION n (i.e., existence of a nml-
collaboration) is NP-complete.

Proof. We prove the membership as in the proof of Propo-
sition 1 of (Erdem et al. 2013b). We prove the hard-
ness by a polynomial-time reduction from FINDCOL-
LABORATION, which is an NP-complete problem (Er-
dem et al. 2013b): consider one type of robots in
FINDCOLLABORATION n.

Since the computational problem is intractable, Answer
Set Programming (ASP) is suitable for solving it: Decid-
ing whether a program in ASP has an answer set is NP-
complete (Dantsin et al. 2001).

We formalize FINDCOLLABORATION n in ASP as fol-
lows. The input is represented by a set of facts, using atoms
of the forms delay(i, j, l), lend earliest(i,m, l, x), and
borrow latest(j,m, l, x) where 1 ≤ x ≤ n, i∈Lendersx,
j ∈Borrowersx, m≤m, l≤ l.

Condition (a) is defined for each borrower j as follows:

condition borrower(j, x)←
borrow latest(j,m, l, x),
sum〈{u : f(i, j, l1, u, x),

i∈Lendersx, l1≤ l, u≤m}〉≥m,
max〈{l1+t : f(i, j, l1, u, x), delay(i, j, t),

i∈Lendersx, l1≤ l, u≤m}〉≤ l

where 1 ≤ x ≤ n, j ∈Borrowersx, l≤ l, m≤m. The sec-
ond line of the rule above describes that team j needs m
robots of type x by step l. The third and fourth lines ex-
press that the number of robots lent to the borrower team j
is at least m; the last two lines express the latest time step l
that team j borrows a robot of type x. Similarly, we define
condition (b) as follows:

condition lender(i, x)←
lend earliest(i,m, l, x),
sum〈{u : f(i, j, l1, u, x),

j ∈Borrowersx, l1≤ l, u≤m}〉≤m
min〈{l1 : f(i, j, l1, u, x),

j ∈Borrowersx, l1≤ l, u≤m}〉≥ l

where 1 ≤ x ≤ n, i∈Lendersx, l≤ l, m≤m.
We define an nml-collaboration f , by atoms of the form

f(i, j, l, u, x) (describing f(i, j, x) = (l, u)), by first “gen-
erating” partial functions f :

{f(i, j, l, u, x) : l≤ l, u≤m}1←
(1 ≤ x ≤ n, i∈Lendersx, j ∈Borrowersx)

and then ensuring that the borrowers can borrow exactly one
type of robot and that the lenders can lend at most one type
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of robots:

← not 1{fB(j, x) : 1 ≤ x ≤ n}1 (j ∈Borrowers)
← 2{fL(i, x) : 1 ≤ x ≤ n} (i∈Lenders)

where fB(j, x) and fL(i, x) are projections of f onto j, x
and i, x. Finally, we “eliminate” the partial functions that do
not satisfy conditions (a) and (b) of Def. 1:

← not condition borrower(j, x), fB(j, x)
(j ∈Borrowersx, 1 ≤ x ≤ n)

← not condition lender(i, x) (i∈Lendersx, 1 ≤ x ≤ n).

With the ASP formulation above, an ASP solver can find
an nml-collaboration.

5 Case Study: A Cognitive Toy Factory
We consider a toy factory with two teams of robots, where
each team is located in a separate workspace collectively
working toward completion of an assigned task. In particu-
lar, Team 1 manufactures nutcracker toy soldiers through the
sequential stages of cutting, carving and assembling, while
Team 2 processes them by going through stages of painting
in black, painting in color, and stamping. Each workspace is
depicted as a grid, as shown in Figure 1, contains an assem-
bly line along the north wall to move the toys and a pit stop
area where the worker robots can change their end-effectors.
Each workspace also includes some static obstacles.

The teams are heterogeneous, as each team is composed
of three types robots with different capabilities. Worker
robots operate on toys, they can configure themselves for
different stages of processes, and they can be exchanged be-
tween teams; charger robots maintain the batteries of work-
ers and monitor team’s plan, and cannot be exchanged be-
tween teams. Worker robots are further categorized into two
based on their liquid resistance. In particular, wet (liquid re-
sistant) robots can perform every stage of the processes in-
volved in manufacturing and painting of the toys, while dry
(non-liquid resistant) robots cannot be employed in painting
and cutting stages, since there processes involve liquids. All
robots are holonomic and can move from any grid to another
following straight paths.

The teams act as autonomous cognitive agents; therefore,
each team finds its own hybrid plan to complete its own des-
ignated task. For that, we have formalized each workspace
in ASP and used the ASP solver CLASP to compute hybrid
plans, as discussed Section 3. We have utilized hybrid rea-
soning, by combining two integration methods: PRE method
to integrate perception into planning in order to detect the
static obstacles, and GREPL method to integrate robot-robot
collision checks into planning. In particular, the external
predicate used by the PRE method is determined by an ob-
ject detection algorithm (Duff, Erdem, and Patoglu 2013)
using Point Cloud Library over data obtained by a Kinect
RGBD camera, while robot-robot collisions are checked via
simulations in ODE. We have implemented three forms of
optimization to further improve local feasible shortest plans
as described in Section 3: (i) To minimize the total number
of robotic actions, we define cost of each action as 1; (ii) To

ensure that actions in a team are executed as early as possi-
ble, postponing idle time of robots to the end of plan exe-
cution, we define cost of each action as the step size t; (iii)
To minimize fuel consumption for robots, we define costs of
move actions as the distance traversed, while we keep the
cost of all other actions as 1.

In this cognitive toy factory, teams can help each other: at
any step, a team can lend several of its worker robots through
their pit stop such that after a transportation delay the worker
robots show up in the pit stop of a borrowing team. Follow-
ing the methodology detailed in Section 4, given the initial
state of each workspace and the designated tasks for each
team (e.g., how many toys to process), an optimal global
plan is computed for all teams to complete their tasks in a
minimum number of steps, while simultaneously minimiz-
ing several other cost functions as discussed in Section 3.

We have tested this cognitive toy factory scenario with
both dynamic simulations (with all three different optimiza-
tions of local feasible plans) using OPENRAVE (Diankov
2010), and with a physical implementation utilizing KuKa
youBots and Lego NXT robots controlled over Robot Oper-
ating System (ROS). A snapshot of the physical simulation
is shown in Figure 1, while a snapshot of the dynamic simu-
lation is shown in Figure 2. Videos of these implementations
are available at http://cogrobo.sabanciuniv.edu/?p=748.

6 Discussion
We have proposed the use of state-of-the-art automated rea-
soners for hybrid reasoning to find an optimal local feasible
plan for a team of heterogeneous robots, and for finding an
optimal global plan for multiple such teams. For that, we
have shown how to take advantage of the expressive rep-
resentation languages of these reasoners, for describing ca-
pabilities of heterogeneous robots, for formalizing different
sorts of optimizations, and for embedding results of external
computations (e.g., for perception or geometric reasoning)
in action domain descriptions. Extending our earlier stud-
ies, we have also introduced a formal framework to com-
pute optimal global plans taking into account transfer of het-
erogeneous robots between teams. We have applied these
approaches to a cognitive toy factory using computational
methods of answer set programming, and illustrated these
applications by dynamic simulations and a physical imple-
mentation.

During these studies, we have found the flexibility of
(i) performing different forms of optimizations to improve
plans, and (ii) combining different methods of integration of
high-level reasoning with low-level feasibility checks, bene-
ficial in the dynamic environment of a cognitive factory. We
have also observed the computational benefits of our semi-
distributed approach to find an optimal global plan: the com-
putational effort is divided among the teams, and thus can be
parallelized.
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