

Flexible Dispatch of Disjunctive Plans

Ioannis Tsamardinos1, Martha E. Pollack2, and Philip Ganchev1
1Intelligent Systems Program, University of Pittsburgh, Pittsburgh, PA 15260 USA

2 Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48103 USA tsa-
mard@eecs.umich.edu, ganchev@cs.pitt.edu pollackm@eecs.umich.edu

Abstract
Many systems are designed to perform both planning and
execution: they include a plan deliberation component to
produce plans that are then dispatched to an execution com-
ponent, or executive, which is responsible for the perfor-
mance of the actions in the plan. When the plans have tem-
poral constraints, dispatch may be non-trivial, and the sys-
tem may include a distinct dispatcher, which is responsible
for ensuring that all temporal constraints are satisfied by the
executive. Prior work on dispatch has focused on plans that
can be expressed as Simple Temporal Problems (STPs). In
this paper, we sketch a dispatch algorithm that is applicable
to a much broader set of plans, namely those that can be cast
as Disjunctive Temporal Problems (DTPs), and we identify
four key properties of the algorithm.

 Introduction
Many systems are designed to perform both planning and
execution: they include a plan deliberation component to
produce plans that are then dispatched to an execution
component, or executive, which is responsible for the per-
formance of the actions in the plan. When the plans have
temporal constraints, dispatch may be non-trivial, and the
system may include a distinct dispatcher, which is respon-
sible for ensuring that all temporal constraints are satisfied
by the executive. Prior work on plan dispatch [1-3] has fo-
cused on plans that can be represented as Simple Temporal
Problems (STP) [4]. In this paper, we sketch a dispatch al-
gorithm that is applicable to a much broader set of plans,
those that can be cast as Disjunctive Temporal Problems
(DTPs), and identify four key properties of the algorithm.

Disjunctive Temporal Problems
Definition. A Disjunctive Temporal Problem (DTP) is a
constraint satisfaction problem <V, C>, where V is a set of
variables (or nodes) whose domains are the real numbers,
and C is a set of disjunctive constraints of the form Ci: l1 ≤
x1 – y1 ≤ u1 ∨ …∨ ln ≤ xn – yn ≤ un, such that for 1≤ i ≤ n, xi
and yi are both members of V, and li , ui are real numbers.
An exact solution to a DTP is an assignment to each varia-

ble in V satisfying all the constraints in C. If a DTP has at
least one exact solution, it is consistent.

A DTP can be seen as encoding a collection of alternative
Simple Temporal Problems (STPs). To see this, note that
each constraint in a DTP is a disjunction of one or more
STP-style inequalities. Let Cij be the j-th disjunct of the i-
the constraint of the DTP. If we select one disjunct Cij from
each constraint Ci, then the set of selected disjuncts forms
an STP, which we will call a component STP of a given
DTP. It is easy to see that a DTP D is consistent if and only
if it contains at least one consistent component STP. More-
over, any solution to a consistent component STP of D is
also clearly an exact solution to D itself.

Definition. A(n inexact) solution to a DTP is a consistent
component STP of it. The solution set for a DTP is the set
of all its solutions.

When we speak of a solution to a DTP, we shall mean an
inexact solution. Plans can be cast as DTPs by including
variables for the start and end points of each action.

A Dispatch Example
Consider a very simple example of a plan with three ac-
tions, P, Q, and R. (For presentational simplicity, we as-
sume each action is instantaneous and thus represented by
a single node). P must occur in the interval [5,10] and Q in
the interval [15,20]; P and Q must be separated by at least
6 time units; and R must be performed either the interval
[11,12] or [21,22]. The plan as described can be represent-
ed as the following DTP: {C1. 5 ≤ P – TR ≤ 10 ∨ 15 ≤ P –
TR ≤ 20; C2. 5 ≤ Q – TR ≤ 10 ∨ 15 ≤ Q – TR ≤ 20; C3. 6
≤ P – Q ≤ ∞ ∨ 6 ≤ Q – P ≤ ∞; C4. 11 ≤ R – TR ≤ 12 ∨ 21
≤ R – TR ≤ 22}. (Note that TR, the time reference point,
denotes an arbitrary starting point.) This DTP has four (in-
exact) solutions: { STP1: c11, c22, c32, c41; STP2: c11, c22,
c32, c42; STP3: c12, c21, c31, c41; STP4: c12, c21, c31, c42}.

Definition: An STP variable x is enabled if and only if all
the events that are constrained to occur before it have al-

Proceedings of the Sixth European Conference on Planning

268

ready been executed. A DTP variable x is enabled if and
only if it has a consistent component STP in which x is en-
abled.

In STP1, both P and R are initially enabled, while in STP3
and STP4, Q is initially enabled. Hence, all three actions
are initially enabled for the DTP. Enablement is a neces-
sary but not sufficient condition for execution: an action
must also be live, in the sense that the temporal constraints
pertaining to its clock time of execution are satisfied. In the
current example, none of the actions are initially live. The
first action to become live is P, at time 5. An action is live
during its time window.

Definition: The time window of an STP variable x is a
pair [l,u] such that l ≤ x – TR ≤ u, and for all l’, u’ such that
l’ ≤ x – TR ≤ u’, l’ ≤ l and u ≤ u’. Given a set of consistent
component STPs for a DTP, we will write TW (x,i) to de-
note the time window for variable x in the ith such STP.
The upper bound of a time window [l,u] for x in STP i,
written U(x,i), is u. The time window of a DTP variable x
is TW (x)=∪i∈S TW (x,i), where S is the solution set of D.

The dispatcher can provide information about when actions
are enabled and live in an Execution Table (ET). This is a
list of ordered pairs, one for each enabled action. The first
element of the entry specifies the action, and the second is
a list of the convex intervals in that element’s time win-
dow. For our example, then, the initial ET would be: {<P,
{[5,10], [15,20]}>, <Q, {[5,10],[15,20]}}>, <R,
{[11,12],[21,22]}>}. The ET summarizes the information
in the solution STPs so that the executive does not have to
handle them directly.

The ET provides information about what actions may be
performed, but it does not provide enough information for
the executive to determine what actions must be per-
formed. To see this, note that the ET just given does not
indicate that there is a problem with deferring both P and
Q until after time 10. However, such a decision would lead
to failure: if the clock time reaches 11 and neither P nor Q
has been executed, then all four solutions to the DTP will
have been eliminated. Thus, in addition to the information
in the ET, the dispatcher must also provide a second type
of information to the executive. The deadline formula

(DF) provides the executive with information about the
next deadline that must be met.

In the next section, we explain how to calculate the DF,
which is more complicated than computing the ET. Here
we simply complete the example, by illustrating how the
ET and the DF would be updated as time passes. The initial
DF would indicate that either P or Q must be executed by
time 10. Suppose that at time 8, action P is executed. At
this point, STP3 and STP4 are no longer solutions. The ET
then becomes { <Q, {[15,20]}>, <R, {[11,12], [21,22]}>}
and the DF is trivially “Q by 20” . In this case, an update to
ET and DF resulted because an activity occurred. Howev-
er, updates may also be required when an activity does not
occur within an allowable time window. For example, if R
has still not executed at time 13, then its entry in the ET
should be updated to be just the singleton [21, 22], with no
changes required to the DF. The example presented in this
section contains variables with very little interaction. In
general, there can be significantly more interaction
amongst the temporal constraints, and the DF can be arbi-
trarily complex.

The Dispatch Algorithm
We now sketch our algorithm for the dispatch of plans en-
coded as DTPs. The input is a DTP and the output is an
Execution Table (ET) and a Deadline Formula (DF). For
each pair <x, TW(x)> in ET, x must be executed some time
within TW(x). It is up to the executive to decide exactly
when. The DF imposes the constraint that F has to hold by
time t, where a variable that appears in the DF becomes
true when its corresponding event is executed.

The dispatch algorithm will be called in three circumstanc-
es: (1) when a new plan needs to have its dispatch infor-
mation initialized, at or before time TR; (2) when an event
in the DTP is executed; (3) when an opportunity for execu-
tion passes because the clock time passes the upper bound
of a convex interval in the time window for an action that
has not yet been executed. Pseudo-code is provided in
Figure 1. Space constraints preclude detailed description of
the algorithm (but see [5]). Here we simply illustrate the
procedure for computing the DF, the most interesting part
of the algorithm.

269

Recall the example above. Initially, at time TR, the DTP
has four solutions. To determine the initial DF, we consid-
er the next critical moment, NC, which is the next time at
which any action must be performed. This time is equal to
the minimal value of all the upper bounds on time windows
for actions, i.e., it is min{U(x,i)| x is an action in the DTP,
and i is a solution STP}. For instance, in our example
DTP, U(P, 1) = U(P, 2) = 10. The actions that may need to
be executed by NC are those x such that U(x,i) = NC for
some STP i. We create a list UMIN containing ordered
pairs <x,i> such that U(x,i) = NC. In our current example,
UMIN = {<P, 1>, <P, 2>, <Q, 3>, <Q, 4>}. Now we per-
form the interesting part of the computation. If <x,i> is in
UMIN , it means that unless x is executed by time NC,
STPi will cease to be a solution for the DTP. It is accepta-
ble for STPi to be eliminated from the solution set only if
there is at least one alternative STP that is not simultane-
ously eliminated. This is exactly what the deadline formula
ensures: that at the next critical moment, the entire set of

solutions will not be simultaneously eliminated. We thus
use a minimal set cover algorithm to compute all sets of
pairs <x,i> in UMIN such that the i values form a minimal
cover of the set of solution STPs. In our example, there is
only one minimal cover, namely the entire set UMIN.
Thus, the initial DF specifies that P or Q must be executed
by time 10: <P ∨ Q, 10>. In general, there may be multiple
minimal covers of the solution STPs: in that case, each
cover specifies a disjunction of actions that must be per-
formed by the next critical time. For instance, suppose that
some DTP has four solution STPs, and that at time TR,
U (L, 1) = U (L, 2) = U (M, 3) = U (M, 4) = U (N, 4) =
U (S, 3) = 10. Then by time 10 either L or M must be exe-
cuted; additionally, at least one of L or N or S must be exe-
cuted. The corresponding DF is <(L∨ M)∧(L∨ N∨ S), 10>.

Initial-Dispatch (DTP D)
1. Find all n solutions (consistent component STPs) to D, calculate their distance graphs,

and store them in Solutions [i]. Associate each solution with its (integer-valued) in-
dex.

2. Set the variable TR to have the status Executed, and assign TR=0.
3. Compute-Dispatch-Info(Solutions).

 Update-for-Executed-Event (STP [i] Solutions)
1. Let x be the event that was just executed, at time t.
2. Remove from Solutions all STPs i for which t ∉ TW (x,i).
3. Propagate the constraint t ≤ x – TR ≤ t in all remaining Solutions.
4. Mark x as Executed.
5. Compute-Dispatch-Info (Solutions).

 Update-for-Violated-Bounds (STP[i] Solutions)
1. Let U = {U (x, k)| U (x, k) < Current-Time}
2. Remove from Solutions all STPs k that appear in U.
3. Compute-Dispatch-Info (Solutions).

Compute-Dispatch-Info (STP[i] Solutions)
1. For each event x in Solutions
2. {If x is enabled
3. ET = ET ∪ <x, TW(x)>}.
4. Let U = the set of upper bounds on time windows, U(x,i) for each still unexecuted ac-

tion x and each STP i.
5. Let NC, the next critical time point, be the value of the minimum upper bound in U.
6. Let UMIN = {U(x, i)| U(x,i) = NC}.
7. For each x such that U(x,i) ∈ UMIN, let Sx = {i | U(x,i) ∈ UMIN}
8. {Initialize F = true;
9. For each minimal solution MinCover of the set-cover problem (Solutions, ∪Sx),
10. let F = F ∧ (∨ x | SxÎ MinCover x).
11. DF = <F, NC>.}

Figure 1. The Dispatch Algorithm

270

Formal Properties of the Algorithm
The role of a dispatcher is to notify the executive of when
actions may be executed and when they must be executed.
Informally, we will say that a dispatch algorithm is correct
if, whenever the executive executes actions according to
the dispatch notifications, the performance of those actions
respects the temporal constraints of the underlying plan.
Obviously, dispatch algorithms should be correct, but cor-
rectness is not enough. Dispatchers should also be dead-
lock-free: they should provide enough information so that
the executive does not violate a constraint through inac-
tion. A third desirable property for dispatchers is maximal
flexibility: they should not issue a notification that unnec-
essarily eliminates a possible execution, i.e., an execution
that respects the constraints of the underlying plan. Final-
ly, we will require dispatch algorithms to be useful, in the
sense that they really do some work. Usefulness will be de-
fined as producing outputs that require only polynomial-
time reasoning on the part of the executive. Without a re-
quirement of usefulness, one could achieve the other three
properties by designing a DTP dispatcher that simply
passed the DTP representation of a plan on to the execu-
tive, letting it do all the reasoning about when to execute
actions.

Our dispatch algorithm has these four properties, as proved
in [5]. The proofs depend on a more precise notion of how
the dispatcher and the executive interact. The dispatcher
issues a notification sequence, a list of pairs <ET,DF>1 …,
<ET,DF>n, with a new notification issued every time an
event is executed or an upper bound is passed. The execu-
tive performs an execution sequence, a list x1= t1, …, xn=tn
indicating that event xi is executed at time ti, subject to the
restriction that j>i ⇒ tj > ti. An execution sequence is
complete if it includes an assignment for each event in the
original DTP; otherwise it is partial. The notification and
execution sequences will be interleaved in an event se-
quence. We associate each execution event with the pre-
ceding notification, writing Notif(xi) to denote the notifica-
tion of event xi.

Definition. An execution sequence E respects a notifica-
tion sequence N iff

1. For each execution event xi=ti in E, <xi, TW (xi)> ap-
pears in ET of Notif (xi) and ti ∈ TW(xi), i.e., each
event is performed in its allowable time window.

2. For each DF=<F,t> in N, {xi |xi = ti ∈ E and ti ≤ t} sat-
isfies F. That is, the execution sequence satisfies all
the deadline formulae.

Theorem 1: The dispatch algorithm in Fig. 1 is correct,
i.e., any complete execution sequence that respects its noti-
fications also satisfies the constraints of D.

Theorem 2: The dispatch algorithm in Fig. 1 is deadlock-
free, i.e., any partial execution that respects its notifications
can be extended to a complete execution that satisfies the
constraints of D.

Theorem 3: The dispatch algorithm in Fig. 1 is maximally
flexible, i.e., every complete execution sequence that re-
spects the constraints in D will be part of some complete
event sequence.

Theorem 4: The dispatch algorithm in Fig. 1 is useful, i.e.,
generating an execution sequence is polynomial in the size
of the notifications.

References
1. Muscettola, N., P. Morris, and I. Tsamardinos. Reformulating
Temporal Plans for Efficient Execution. in Proceedings of the 6th
Conference on Principles of Knowledge Representation and Rea-
soning. 1998.

2. Tsamardinos, I., P. Morris, and N. Muscettola, Fast Transfor-
mation of Temporal Plans for Efficient Execution, in Proceedings
of the 15th National Conference on Artificial Intelligence. 1988,
AAAI Press/MIT Press: Menlo Park, CA. p. 254-261.

3. Wallace, R.J. and E.C. Freuder, Dispatchable Execution of
Schedules Involving Consumable Resources, in Proceedings of
the 5th International Conference on Artificial Intelligence Plan-
ning and Scheduling. 2000.

4. Dechter, R., I. Meiri, and J. Pearl, Temporal Constraint Net-
works. Artificial Intelligence, 1991. 49: p. 61-95.

5. Tsamardinos, I., Constraint-Based Temporal Reasoning Algo-
rithms, with Applications to Planning. 2001.

271

