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Abstract 
Many systems are designed to perform both planning and 
execution: they include a plan deliberation component to 
produce plans that are then dispatched to an execution com-
ponent, or executive, which is responsible for the perfor-
mance of the actions in the plan. When the plans have tem-
poral constraints, dispatch may be non-trivial, and the sys-
tem may include a distinct dispatcher, which is responsible 
for ensuring that all temporal constraints are satisfied by the 
executive. Prior work on dispatch has focused on plans that 
can be expressed as Simple Temporal Problems (STPs). In 
this paper, we sketch a dispatch algorithm that is applicable 
to a much broader set of plans, namely those that can be cast 
as Disjunctive Temporal Problems (DTPs), and we identify 
four key properties of the algorithm. 

 Introduction 
Many systems are designed to perform both planning and 
execution: they include a plan deliberation component to 
produce plans that are then dispatched to an execution 
component, or executive, which is responsible for the per-
formance of the actions in the plan. When the plans have 
temporal constraints, dispatch may be non-trivial, and the 
system may include a distinct dispatcher, which is respon-
sible for ensuring that all temporal constraints are satisfied 
by the executive. Prior work on plan dispatch [1-3] has fo-
cused on plans that can be represented as Simple Temporal 
Problems (STP) [4].  In this paper, we sketch a dispatch al-
gorithm that is applicable to a much broader set of plans, 
those that can be cast as Disjunctive Temporal Problems 
(DTPs), and identify four key properties of the algorithm. 

Disjunctive Temporal Problems  
Definition. A Disjunctive Temporal Problem (DTP) is a 
constraint satisfaction problem <V, C>, where V is a set of 
variables (or nodes) whose domains are the real numbers, 
and C is a set of disjunctive constraints of the form Ci: l1 ≤ 
x1 – y1 ≤ u1  ∨ …∨ ln ≤ xn – yn ≤ un, such that for 1≤ i ≤ n, xi 
and yi are both members of V, and li , ui are real numbers.  
An exact solution to a DTP is an assignment to each varia-

ble in V satisfying all the constraints in C. If a DTP has at 
least one exact solution, it is consistent. 

A DTP can be seen as encoding a collection of alternative 
Simple Temporal Problems (STPs). To see this, note that 
each constraint in a DTP is a disjunction of one or more 
STP-style inequalities. Let Cij be the j-th disjunct of the i-
the constraint of the DTP. If we select one disjunct Cij from 
each constraint Ci, then the set of selected disjuncts forms 
an STP, which we will call a component STP of a given 
DTP. It is easy to see that a DTP D is consistent if and only 
if it contains at least one consistent component STP. More-
over, any solution to a consistent component STP of D is 
also clearly an exact solution to D itself.   

Definition. A(n inexact) solution to a DTP is a consistent 
component STP of it. The solution set for a DTP is the set 
of all its solutions.  

When we speak of a solution to a DTP, we shall mean an 
inexact solution. Plans can be cast as DTPs by including 
variables for the start and end points of each action.  

A Dispatch Example  
Consider a very simple example of a plan with three ac-
tions, P, Q, and R. (For presentational simplicity, we as-
sume each action is instantaneous and thus represented by 
a single node).  P must occur in the interval [5,10] and Q in 
the interval [15,20]; P and Q must be separated by at least 
6 time units; and R must be performed either the interval 
[11,12] or [21,22].  The plan as described can be represent-
ed as the following DTP: {C1. 5 ≤ P – TR ≤ 10 ∨ 15 ≤ P – 
TR ≤ 20;  C2. 5 ≤ Q – TR ≤ 10 ∨ 15 ≤ Q – TR ≤ 20;  C3. 6 
≤ P – Q ≤ ∞ ∨ 6 ≤ Q – P ≤ ∞;  C4. 11 ≤ R – TR ≤ 12 ∨ 21 
≤ R – TR ≤ 22}.  (Note that TR, the time reference point, 
denotes an arbitrary starting point.) This DTP has four (in-
exact) solutions: { STP1: c11, c22, c32, c41;  STP2: c11, c22, 
c32, c42;  STP3: c12, c21, c31, c41;  STP4: c12, c21, c31, c42}.  

Definition: An STP variable x is enabled if and only if all 
the events that are constrained to occur before it have al-
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ready been executed. A DTP variable x is enabled if and 
only if it has a consistent component STP in which x is en-
abled.  

In STP1, both P and R are initially enabled, while in STP3 
and STP4, Q is initially enabled. Hence, all three actions 
are initially enabled for the DTP.  Enablement is a neces-
sary but not sufficient condition for execution: an action 
must also be live, in the sense that the temporal constraints 
pertaining to its clock time of execution are satisfied. In the 
current example, none of the actions are initially live. The 
first action to become live is P, at time 5. An action is live 
during its time window.  

Definition: The time window of an STP variable x is a 
pair [l,u] such that l ≤ x – TR ≤ u, and for all l’, u’ such that 
l’ ≤ x – TR ≤ u’, l’ ≤ l and u ≤ u’.  Given a set of consistent 
component STPs for a DTP, we will write TW (x,i) to de-
note the time window for variable x in the ith such STP.  
The upper bound of a time window [l,u] for x in STP i, 
written U(x,i), is u. The time window of a DTP variable x 
is TW (x)=∪i∈S TW (x,i), where S is the solution set of D.  

The dispatcher can provide information about when actions 
are enabled and live in an Execution Table (ET). This is a 
list of ordered pairs, one for each enabled action. The first 
element of the entry specifies the action, and the second is 
a list of the convex intervals in that element’s time win-
dow. For our example, then, the initial ET would be: {<P,  
{[5,10], [15,20]}>, <Q, {[5,10],[15,20]}}>, <R,  
{[11,12],[21,22]}>}. The ET summarizes the information 
in the solution STPs so that the executive does not have to 
handle them directly.   

The ET provides information about what actions may be 
performed, but it does not provide enough information for 
the executive to determine what actions must be per-
formed. To see this, note that the ET just given does not 
indicate that there is a problem with deferring both P and 
Q until after time 10. However, such a decision would lead 
to failure: if the clock time reaches 11 and neither P nor Q 
has been executed, then all four solutions to the DTP will 
have been eliminated. Thus, in addition to the information 
in the ET, the dispatcher must also provide a second type 
of information to the executive. The deadline formula 

(DF) provides the executive with information about the 
next deadline that must be met. 

In the next section, we explain how to calculate the DF, 
which is more complicated than computing the ET. Here 
we simply complete the example, by illustrating how the 
ET and the DF would be updated as time passes. The initial 
DF would indicate that either P or Q must be executed by 
time 10. Suppose that at time 8, action P is executed. At 
this point, STP3 and STP4 are no longer solutions.  The ET 
then becomes { <Q, {[15,20]}>, <R,  {[11,12], [21,22]}>} 
and the DF is trivially “Q by 20” . In this case, an update to 
ET and DF resulted because an activity occurred. Howev-
er, updates may also be required when an activity does not 
occur within an allowable time window. For example, if R 
has still not executed at time 13, then its entry in the ET 
should be updated to be just the singleton [21, 22], with no 
changes required to the DF. The example presented in this 
section contains variables with very little interaction. In 
general, there can be significantly more interaction 
amongst the temporal constraints, and the DF can be arbi-
trarily complex. 

The Dispatch Algorithm  
We now sketch our algorithm for the dispatch of plans en-
coded as DTPs. The input is a DTP and the output is an 
Execution Table (ET) and a Deadline Formula (DF). For 
each pair <x, TW(x)> in ET, x must be executed some time 
within TW(x). It is up to the executive to decide exactly 
when. The DF imposes the constraint that F has to hold by 
time t, where a variable that appears in the DF becomes 
true when its corresponding event is executed.   

The dispatch algorithm will be called in three circumstanc-
es: (1) when a new plan needs to have its dispatch infor-
mation initialized, at or before time TR; (2) when an event 
in the DTP is executed; (3) when an opportunity for execu-
tion passes because the clock time passes the upper bound 
of a convex interval in the time window for an action that 
has not yet been executed.  Pseudo-code is provided in 
Figure 1. Space constraints preclude detailed description of 
the algorithm (but see [5]). Here we simply illustrate the 
procedure for computing the DF, the most interesting part 
of the algorithm. 
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Recall the example above. Initially, at time TR, the DTP 
has four solutions.  To determine the initial DF, we consid-
er the next critical moment, NC, which is the next time at 
which any action must be performed. This time is equal to 
the minimal value of all the upper bounds on time windows 
for actions, i.e., it is min{U(x,i)| x is an action in the DTP, 
and i is a solution STP}.  For instance, in our example 
DTP, U(P, 1) = U(P, 2) = 10. The actions that may need to 
be executed by NC are those x such that U(x,i) = NC for 
some STP i. We create a list UMIN containing ordered 
pairs <x,i> such that U(x,i) = NC. In our current example, 
UMIN = {<P, 1>, <P, 2>, <Q, 3>, <Q, 4>}. Now we per-
form the interesting part of the computation. If <x,i> is in 
UMIN , it means that unless x is executed by time NC, 
STPi will cease to be a solution for the DTP. It is accepta-
ble for STPi to be eliminated from the solution set only if 
there is at least one alternative STP that is not simultane-
ously eliminated. This is exactly what the deadline formula 
ensures: that at the next critical moment, the entire set of 

solutions will not be simultaneously eliminated.  We thus 
use a minimal set cover algorithm to compute all sets of 
pairs <x,i> in UMIN such that the i values form a minimal 
cover of the set of solution STPs.  In our example, there is 
only one minimal cover, namely the entire set UMIN.  
Thus, the initial DF specifies that P or Q must be executed 
by time 10: <P ∨ Q, 10>.  In general, there may be multiple 
minimal covers of the solution STPs: in that case, each 
cover specifies a disjunction of actions that must be per-
formed by the next critical time. For instance, suppose that 
some DTP has four solution STPs, and that at time TR,     
U (L, 1) = U (L, 2) = U (M, 3) = U (M, 4) = U (N, 4) =     
U (S, 3) = 10. Then by time 10 either L or M must be exe-
cuted; additionally, at least one of L or N or S must be exe-
cuted. The corresponding DF is <(L∨ M)∧(L∨ N∨ S), 10>. 

Initial-Dispatch (DTP D) 
1.  Find all n solutions (consistent component STPs) to D, calculate their distance graphs, 

and store them in Solutions [i]. Associate each solution with its (integer-valued) in-
dex. 

2.  Set the variable TR to have the status Executed, and assign TR=0. 
3.  Compute-Dispatch-Info(Solutions). 
 
 Update-for-Executed-Event (STP [i] Solutions) 
1.  Let x be the event that was just executed, at time t. 
2.  Remove from Solutions all STPs i for which t ∉ TW (x,i). 
3.  Propagate the constraint t ≤ x – TR ≤ t in all remaining Solutions. 
4.  Mark x as Executed. 
5.  Compute-Dispatch-Info (Solutions). 
 
 Update-for-Violated-Bounds (STP[i] Solutions) 
1.  Let U = {U (x, k)| U (x, k) < Current-Time} 
2.  Remove from Solutions all STPs k that appear in U. 
3.  Compute-Dispatch-Info (Solutions). 
 
Compute-Dispatch-Info (STP[i] Solutions) 
1.  For each event x in Solutions 
2.      {If x is enabled 
3.       ET = ET ∪ <x, TW(x)>}. 
4.  Let U = the set of upper bounds on time windows, U(x,i) for each still unexecuted ac-

tion x and each STP i. 
5.  Let NC, the next critical time point, be the value of the minimum upper bound in U. 
6.  Let UMIN = {U(x, i)| U(x,i) = NC}. 
7.  For each x such that U(x,i) ∈ UMIN, let Sx = {i | U(x,i) ∈ UMIN} 
8.      {Initialize F = true; 
9.           For each minimal solution MinCover of the set-cover problem (Solutions, ∪Sx), 
10.             let F = F ∧ (∨ x | SxÎ MinCover x). 
11.       DF = <F, NC>.} 
 

Figure 1. The Dispatch Algorithm 
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Formal Properties of the Algorithm  
The role of a dispatcher is to notify the executive of when 
actions may be executed and when they must be executed.  
Informally, we will say that a dispatch algorithm is correct 
if, whenever the executive executes actions according to 
the dispatch notifications, the performance of those actions 
respects the temporal constraints of the underlying plan. 
Obviously, dispatch algorithms should be correct, but cor-
rectness is not enough. Dispatchers should also be dead-
lock-free: they should provide enough information so that 
the executive does not violate a constraint through inac-
tion. A third desirable property for dispatchers is maximal 
flexibility: they should not issue a notification that unnec-
essarily eliminates a possible execution, i.e., an execution 
that respects the constraints of the underlying plan.  Final-
ly, we will require dispatch algorithms to be useful, in the 
sense that they really do some work. Usefulness will be de-
fined as producing outputs that require only polynomial-
time reasoning on the part of the executive. Without a re-
quirement of usefulness, one could achieve the other three 
properties by designing a DTP dispatcher that simply 
passed the DTP representation of a plan on to the execu-
tive, letting it do all the reasoning about when to execute 
actions.  

Our dispatch algorithm has these four properties, as proved 
in [5]. The proofs depend on a more precise notion of how 
the dispatcher and the executive interact.  The dispatcher 
issues a notification sequence, a list of pairs <ET,DF>1 …, 
<ET,DF>n, with a new notification issued every time an 
event is executed or an upper bound is passed.  The execu-
tive performs an execution sequence, a list x1= t1, …, xn=tn 
indicating that event xi is executed at time ti, subject to the 
restriction that j>i ⇒ tj > ti.  An execution sequence is 
complete if it includes an assignment for each event in the 
original DTP; otherwise it is partial. The notification and 
execution sequences will be interleaved in an event se-
quence. We associate each execution event with the pre-
ceding notification, writing Notif(xi) to denote the notifica-
tion of event xi. 

Definition. An execution sequence E respects a notifica-
tion sequence N iff  

1. For each execution event xi=ti in E, <xi, TW (xi)> ap-
pears in ET of Notif (xi) and ti ∈ TW(xi), i.e., each 
event is performed in its allowable time window.  

2. For each DF=<F,t> in N, {xi |xi = ti ∈ E and ti ≤ t} sat-
isfies F. That is, the execution sequence satisfies all 
the deadline formulae. 

Theorem 1: The dispatch algorithm in Fig. 1 is correct, 
i.e., any complete execution sequence that respects its noti-
fications also satisfies the constraints of D. 

Theorem 2: The dispatch algorithm in Fig. 1 is deadlock-
free, i.e., any partial execution that respects its notifications 
can be extended to a complete execution that satisfies the 
constraints of D. 

Theorem 3: The dispatch algorithm in Fig. 1 is maximally 
flexible, i.e., every complete execution sequence that re-
spects the constraints in D will be part of some complete 
event sequence. 

Theorem 4: The dispatch algorithm in Fig. 1 is useful, i.e., 
generating an execution sequence is polynomial in the size 
of the notifications. 
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