
GIPO: An Integrated Graphical Tool to Support
Knowledge Engineering in AI Planning

Ron M. Simpson and T. Lee McCluskey and Weihong Zhao
Department of Computing Science, University of Huddersfield,

Queens Gate, Huddersfield, HD1 3DH, UK
r.m.simpson, t.l.mccluskey, w.zhao @hud.ac.uk

Ruth S. Aylett and Christophe Doniat
Centre for Virtual Environments, University of Salford

Salford, M5 4WT, UK
email: R.S.Aylett, c.doniat @salford.ac.uk

Abstract

We describe a Graphical Interface for Planning with Objects
called GIPO that has been built to investigate and support
the knowledge engineering process in the building of applied
AI planning systems. GIPO embodies an object centred ap-
proach to planning domain modelling. There are two reasons
for providing knowledge engineering support for AI plan-
ning: (i) to apply a planning system to a new domain to test
the planning system itself (ii) to tackle the end-user problem
for the engineer who might be a domain expert but need not
necessarily have a specialist knowledge of AI planning. Our
research is primarily aimed at developing a method and tools
to meet the requirements of the latter case (ii), although the
benefits can also be enjoyed by planning experts.

Introduction
Planform1 is a UK EPSRC grant funded research project in
which we are developing an open platform for the systematic
acquisition of planning domain models, and tools to com-
bine these models with planners to create efficient planning
applications. Part of the work involves the development of an
knowledge acquisition method where knowledge is captured
by describing changes that the objects in the domain undergo
as the result of the application of operators. The method re-
quires that we structure the domain definition around types
of objects, the states that these objects may inhabit, and the
possible transitions from state to state that the objects may
undergo as a result of the application of planning operators.
The content of this definition provides the basis for much of
the validation and cross-checking that the tool is capable of
performing and allows the domain developer to approach the
task of defining operators in a structured and well-supported
manner. The additional support provides the possibility of
opening up domain definition to modellers who do not need
to be as skilled in AI planning technology as has tradition-
ally been the case.

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1http://scom.hud.ac.uk/planform

In brief, GIPO provides (a) a graphical means of defining
a planning domain model (b) a range of validation tools to
perform syntactic and semantic checks of emerging domain
models (c) dynamic tools to allow the modeller to verify that
the domain specification can support known plans within the
domain (d) tools to import and export domain definitions to
the literal-based PDDL format for typed strips domains, with
or without conditional effects (e) an interface that allows for
the integration of third party planning algorithms to be run
and animated from within the tools environment.

GIPO is designed on the assumption that the knowledge
engineer will be trying to build descriptions of new domains
using a method which imposes a loose sequence on the sub-
tasks to be undertaken to develop an initial model. Once an
initial rough model has been constructed, development may
proceed in a more iterative and experimental manner. A key
design goal in building the supporting GUI tool has been to
allow the creation of a specification with the tool taking care
of the detail of the syntax of the underlying specification.
Use of the tool will never result in a syntactically ill-formed
specification.

Domain Acquisition
The process of domain model development and the model’s
ontology on which this is based is detailed in the literature
(see GIPO home page2, which also contains a more detailed
version of this paper). Here we sketch the main steps of the
knowledge acquisition process, describing how the tool sup-
ports this process. We outline two important steps of the
knowledge acquisition process - acquiring domain structure
and acquiring domain actions.

The process starts with the identification of the kinds of
objects that characterise the domain. The method requires
that distinct collections of objects, which we call sorts, can
be organised into a hierarchy. A visual tree editor is used to
construct a sort tree and the relations and attributes that char-
acterise the objects of each sort. The key step in the object

2http://scom.hud.ac.uk/planform/gipo

Proceedings of the Sixth European Conference on Planning

303



centred modelling process is to characterise each valid state
of objects of the sorts that are subject to change during the
planning process by defining their relations and attributes.
We refer to sorts subject to such change as dynamic where
as the sorts where the objects remain unchanged are static.
A description of a state of an object we call a substate def-
inition. Under classical assumptions each member object of
a sort may be in only one such substate at any time, and
that during plan execution the object goes through transi-
tions which change its state from one such substate to an-
other.

In parallel with the specification of substates the mod-
eller can now assemble planning operators. The operator ed-
itor forms the heart of GIPO. This editor relies on the no-
tion that operators and methods generally cause objects to
change from one substate to another (called object transi-
tions). Whereas substate definition captures domain struc-
ture, operator definition captures domain behaviour.

Figure 1: The Operator Definition Editor.

For each object changed by the application of an operator
there will be a transition defining the set of substates the ob-
ject may be in prior to the application of the operator and the
definition of the precise substate the object will be in as a re-
sult of applying the operator. We enable the composition of
operators by the domain modeller building a simple graph of
the operator by selecting the elements of the transitions from
an available list of the predefined substates the object/sort
is capable of being in. Consider the remove wheel operator
taken from a tyre change domain illustrated in Figure 1. The
rectangles describe states or generalisations on states of ob-
jects of identified sorts where the pair of rectangles in the
same row represent the transition that the referenced object
will make as a result of applying the operator, named in the
oval box. Here there are two objects changed by the opera-
tion, the wheel itself and the hub that the wheel was attached
to. The hub in the example moves from the state where it is
jacked up and free to being jacked up and bare as a result of
removing the wheel.

Domain Analysis
During domain model acquisition numerous local verifica-
tion checks are applied to ensure consistency. Once an initial

domain model has been defined as described above, the do-
main modeller can run global verification tools to further
check the validity of the specification. Tools which we have
developed include goal ordering generators, a random tasks
generator, and a “reachability” analysis tool. The latter tool
examines substates that are defined for a sort and indexes
them against the operators that use them either as consumers
or producers. This may reveal to the domain modeller that
contrary to expectation some substates cannot be produced
and hence could only ever be used in the initial state of an
object, or that some cannot be consumed and hence either
are only useful in the development of objects of other sorts,
or are of the kind of specified only in a goal condition.

In addition to static analysis of the specification the do-
main modeller can dynamically check a domain against a
set of problems either by using the manual stepper (shown
in Figure 2) or by running a selected planning algorithm
against defined test problem cases. With the stepper, the
engineer chooses actions to apply in the current state to
generate the consequent state and proceeds in this manner
to verify that the domain and operator definitions do sup-
port known plans for given problems within the domain. In
the example shown in Figure 2, again drawn from the tyre
change domain, each column of circles represents the state
of objects at one time instance. The linked oval is the op-
erator applied to the states with the links tracing the objects
changing and participating in the application of the operator.
The inset dialog box shows an operator fetch tool in the pro-
cess of the user choosing instantiations for the parameters.
The panes at the sides show the task being attempted and a
list of available operators in the domain.

Figure 2: The Plan Stepper.

The animator allows integrated planners to run against de-
fined problems and graphically displays the transitions made
to objects as the plan unfolds. The animator is structurally
very similar to the stepper except that the operator choice is
determined by the results output by the planner.

304



Future Work
Although the object centred method lifts domain acquisi-
tion to a conceptual level, the details of specifying substate
definitions and transitions are still too theoretical for an un-
skilled user. We aim in the future to incorporate more infer-
encing mechanisms to aid the unskilled user in this task. We
are also developing methods to assist the domain modeller to
extract structured knowledge from informal textual descrip-
tions of the domain and to assist the modeller to create new
models by providing a library of previous domain models.

References
Planform. An open environment for building planners.
http://helios.hud.ac.uk/planform, 1999.
A. Tate, B. Drabble, and J. Dalton. O-Plan: a Knowledged-
Based Planner and its Application to Logistics. AIAI, Uni-
versity of Edinburgh, 1996.
A. Tate, S. T. Polyak, and P. Jarvis. TF Method: An Ini-
tial Framework for Modelling and Analysing Planning Do-
mains. Technical report, University of Edinburgh, 1998.

305




