
Randomization and Restarts in Proof Planning

Andreas Meier
Fachbereich Informatik

Universität des Saarlandes
66041 Saarbrücken, Germany

ameier@ags.uni-sb.de

Carla P. Gomes
Computer Science Department

Cornell University
Ithaca, NY 14853, USA
gomes@cs.cornell.edu

Erica Melis
Fachbereich Informatik

Universität des Saarlandes
66041 Saarbrücken, Germany

melis@ags.uni-sb.de

Introduction
Proof planning considers mathematical theorem proving as
a planning problem. It has enabled the derivation of math-
ematical theorems that lay outside the scope of traditional
logic-based theorem proving systems. One of its strengths
comes from heuristic mathematical knowledge that restricts
the search space and thereby facilitates the proving process
for problems whose proofs belong in the restricted search
space. But this may exclude solutions or restrict the kinds of
proofs that can be found for a given problem.

We take a different perspective and investigate problem
classes for which little or no heuristic control knowledge
is available and test the usage of randomization and restart
techniques. Our approach to control in those mathematical
domains is based on investigations on so-called heavy-tailed
distributions (Gomes et al. 2000; 1998; 1998). Because of
the non-standard nature of heavy-tailed cost distributions the
controlled introduction of randomization into the search pro-
cedure and quick restarts of the randomized procedure can
eliminate heavy-tailed behavior and can take advantage of
short runs. To apply these techniques to the complicated do-
mains of proof planning, the first task was to find problem
classes for which proof planning exhibits an unpredictable
run time behavior, i.e., with heavy-tailed cost distributions.
Secondly, the experiments provided the basis for determin-
ing suitable cutoff values, i.e., the time interval after which
a running proof attempt is interrupted and a new attempt is
started. Finally, we designed a new control strategy which
dramatically boosts the performance of our proof planner
for a class of problems for which proof planning exhibits
heavy-tailed cost behavior.

Proof Planning
A proof planning problem is defined by an initial state spec-
ified by the proof assumptions, the open goal given by the
theorem to be proved, and a set of operators (Bundy 1988).
A mathematical proof corresponds to a plan that leads from
the initial state to the goal state.

For a very basic example of an operator in proof planning
consider the =Subst operator. Its purpose is to replace oc-
currences of terms with respect to given equations. =Subst

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

is applicable during the planning process if a current goal is
a term t[a] that contains an occurrence of a term a and there
is an assumption that is an equation with a as one side and
another term b as the other side. The application of =Subst
reduces then goal t[a] to the new goal t[b] which is the same
term as t[a] but the occurrence of a is replaced by an occur-
rence of b.

The proof planning approach developed in this paper
is implemented in the ΩMEGA system (Melis & Meier
2000; Melis & Siekmann 1999). ΩMEGA employs backward
chaining as its main planning strategy. That is, the planner
continuously tries to reduce open goals by applying an oper-
ator that has an appropriate effect, which in turn might result
in one or more new open goals and so on. Initially, the only
open goal is the theorem. During this planning process there
are several choice points such as which goal should be tack-
led or which operator should be applied in the next step.

The Domain of Residue Classes
In this section, we describe the domain of residue classes
over the integers. A detailed description of the whole domain
can be found in (Meier et al. 2000).

The Residue Class Domain A residue class set RSn over
the integers is the set of all congruence classes modulo an
integer n, i.e., ZZn, or an arbitrary subset of ZZn. Concretely,
we can deal with sets of the form ZZ3,ZZ5,ZZ3\{1̄3}, . . .
where 1̄3 denotes the congruence class 1 modulo 3. Binary
operations ◦ on a residue class set are either +̄, −̄, ∗̄ which
are the addition, subtraction, and multiplication on residue
classes or functions composed from these connectives, e.g.
(x̄∗̄ȳ)+̄(ȳ+̄x̄). For given residue class set and binary op-
eration we can examine their basic algebraic properties (is
the set RSn closed with respect to the binary operation ◦, is
it associative, does it have a unit element etc.) and classify
them in terms of groups, monoids, etc. Moreover, we are in-
terested in classifying structures into equivalence classes of
isomorphic structures. During this classification process we
have to prove proof obligations stating that two structures
(RS1

n1
, ◦1) and (RS2

n2
, ◦2) are isomorphic or not. Thereby,

two structures (RS1
n1
, ◦1) and (RS2

n2
, ◦2) are isomorphic if

there exists a total function h : RSn1
→ RSn2

such that h is
injective, surjective, and is a homomorphism with respect to

Proceedings of the Sixth European Conference on Planning

259



◦1 and ◦2. A function h is a homomorphism, if h(x ◦1 y) =
h(x) ◦2 h(y) holds for all x, y ∈ RSn1 . A non-isomorphism
problem is formalized as ¬iso(RS1

n1
, ◦1, RS2

n2
, ◦2), where

iso abbreviates isomorphic.

Two Proof Strategies We developed several proof tech-
niques to tackle these non-isomorphism problems in
ΩMEGA. We will focus here on two of those techniques (1)
proof by case analysis and (2) proof by contradiction.

(1) The case analysis strategy is a basic but reliable ap-
proach to prove a property of a residue class structure. Its
essence is a proof by cases. It exhaustively checks all in-
stances of a conjecture. Since residue class sets are finite,
only finitely many instances have to be considered. For non-
isomorphism problems the top-most case split is to check for
each possible function from the one residue class set into the
other one that it is either not injective, not surjective, or not
a homomorphism.

(2) An alternative proof strategy creates a proof by con-
tradiction. It assumes that there exists a function h:RS1

n1
→

RS2
n2

which is an isomorphism and thus, in particular, an in-
jective homomorphism. It derives the contradiction by prov-
ing that there are two elements c1, c2 ∈ RS1

n1
with c1 6= c2

but h(c1) = h(c2). This contradicts the assumption of injec-
tivity of h. Note, that the proof is with respect to all possible
homomorphisms h and we do not have to give a particu-
lar mapping. In the remainder of the paper we call the de-
scribed proof technique to tackle non-isomorphism proofs
the NotInjNotIso technique.

We briefly explain the NotInjNotIso strategy for the
example that (ZZ5, x̄∗̄ȳ) is not isomorphic to (ZZ5, x̄+̄ȳ).
The strategy first constructs the situation for the indirect ar-
gument. From the hypothesis that the two structures are iso-
morphic follow the two assumptions that there exists a func-
tion h that is injective and a homomorphism. By the first
assumption a contradiction can be concluded when we are
able to show that h is not injective.

The planner continues by applying a method to the sec-
ond assumption, that intro- duces the homomorphism equa-
tion h(x∗̄y) = h(x)+̄h(y) instantiated for every element of
the domain as new assumptions. In the above example 25
equations like

h(0̄5) = h(0̄5)+̄h(1̄5) for x = 0̄5, y = 1̄5 (a)
h(0̄5) = h(0̄5)+̄h(0̄5) for x = 0̄5, y = 0̄5 (b)
are introduced. From this set of instantiated homomor-

phism equations the NotInjNotIso strategy tries to de-
rive that h is not injective. To prove this, it has to find two
witnesses c1 and c2 such that c1 6= c2 and h(c1) = h(c2). In
our example 0̄5 and 1̄5 are chosen for c1 and c2, respectively,
which leads to h(0̄5) = h(1̄5). This goal is transformed into
the equation h(0̄5)+̄h(0̄5)+̄h(0̄5)+̄h(0̄5)+̄h(0̄5)+̄h(1̄5) =
h(1̄5) by successively applying equations from the equa-
tion system with the operator =Subst. First, equation (a)
is applied to the left hand side of the equation which re-
sults in h(0̄5)+̄h(1̄5) = h(1̄5). Then equation (b) is applied
four times to occurrences of h(0̄5) on the left hand side.
The final goal is closed by an application of the operator
Solve-Equation which calls the Computer Algebra System

Figure 1: Run time distribution over testbed without ran-
domization.

MAPLE to evaluate the equation. The final equation holds
since 5∗̄h(0̄5) equals 0̄5 modulo 5. The choice of the next
instantiated homomorphism equation to be applied is guided
by a heuristic described in (Meier 2000).

Experimental Results
The experiments were conducted with 160 non-
isomorphism problems for the residue class set ZZ5.
We decided for the residue class set ZZ5 because its car-
dinality is small enough to obtain solution statistics in a
reasonable time. Problems from this class are:

1. ¬iso(ZZ5, x∗̄y,ZZ5, x+̄y)

2. ¬iso(ZZ5, x−̄y,ZZ5, (x−̄y)+̄(x−̄y))

The overall experimental effort was around one month of
cpu time on a 32 node compute cluster. A detailed descrip-
tion of all experiments can be found in (Meier 2000).

Randomization and Heavy-Tailed Behavior
First let us consider the NotInjNotIso strategy because
this strategy leads to the most interesting proof planning be-
havior in the residue class domain. The application of the
NotInjNotIso strategy to all problems of the testbed
solved 108 of the 160 instances (67.5%) (2 hour time limit
per proof attempt). The runs revealed a surprisingly high
variance in the performance of this strategy on the different
problems of the testbed. On some of the problems it suc-
ceeded very fast and produced short proof plans consisting
only of a few applications of =Subst, whereas on other prob-
lems the planning process took much longer and resulted in
proof plans with many applications of =Subst. Furthermore,
for over 30% of the instances no proof was found in 2 hours.

Table 1 displays the performance extrema for this deter-
ministic proof by contradiction strategy on the testbed as
well as the mean values over all successful runs. The val-
ues in brackets give the deviation from the mean. Figure 1
shows the underlying distribution of the run time for these
experiments. In fact, the distribution exhibits heavy-tailed
behavior (Gomes et al. 2000) which is manifested in the long
tail of the distribution stretching for several orders of magni-
tude. Gomes et al. have shown that one can take advantage

260



of the large variations in run time of such heavy-tailed dis-
tributions by introducing an element of randomness into the
search process, combined with a restart strategy.

Table 1: Statistics for successful runs (108 out of 160) on
testbed using deterministic strategy.

Costs Mean Min. Max.
Proof length 55 45 (18.2%) 83 (50.9%)
Run Time 483 8(98%) 7145(1380%)

A key criterion for the success of such a randomization
and restart approach is a large variance in different random-
ized runs with the same instance. To explore this issue, we
considered multiple runs on a single instance by introducing
a stochastic element into the planning process. Typically, the
heuristic for choosing the next instantiated homomorphism
equation to be applied ranks several equations equally good.
When faced with such equally ranked equations, the planner
applies them in a random order. This randomized version of
the NotInjNotIso technique was run 225 times for the
problem instance of the testbed:

¬iso(ZZ5, (x̄+̄ȳ)+̄2̄5,ZZ5, (2̄5∗̄(x̄+̄ȳ))+̄2̄5)

(in the remainder of this section we refer to this problem
as the standard problem). Interestingly, the run time distri-
bution of the randomized proof search by contradiction on
the single instance also exhibits heavy-tailed behavior sim-
ilar to Figure 1 (see (Meier 2000) for a detailed analysis).
This indicates an inherent variance in the search process of
the strategy.

Given this result, we can now use a restart strategy to im-
prove the proof search performance. Figure 1 shows that the
ascend of the cumulative cost distribution function is very
steep at the beginning but becomes very flat beyond approxi-
mately 300 seconds. This steep ascend at the beginning indi-
cates that there is a large fraction of short and successful runs
whereas the flat ascend after 300 seconds provides evidence
that the probability of finding a proof plan decreases consid-
erably. Hence, it is advantageous to perform a sequence of
restarts on a single instance (with a predefined cutoff) until
reaching a successful run or the total time limit, instead of
performing a single long run.

Based on an analysis of the underlying distributions of the
experiments for the full testbed and for the standard problem
we considered several cutoff values, using a binary search
strategy. The cutoff value of 100 provided the best results.
The planner found proof plans for 156 of the 160 problems
(97.5%) in an average time of 473.4 seconds. For the four
remaining unsolved problems MAPLE does not provide any
substitution hint and, thus, the proof by contradiction strat-
egy becomes quite ineffective.

Figure 2 plots the run time distribution of the resulting
restart strategy with cutoff 100 (log-log scale) on the prob-
lems of the testbed. The restart data is given by the curve
that drops rapidly. The figure also shows the run time dis-
tribution of the deterministic strategy. The sharp drop of the
run time distribution of the restart strategy clearly indicates
that this strategy does not exhibit heavy tailed behavior.

Figure 2: Log-Log plots of run time distribution over testbed
with and without randomization.

In previous applications of randomization and restarts
in combinatorial domains run time has been the key is-
sue (Gomes et al. 2000). In the case of proof planning, an
additional important issue is the length of the proof discov-
ered by the system: shorter proofs are generally more elegant
than long proofs. An interesting aspect of the application of
randomization and restart strategies that is novel in our con-
text is the fact that it leads to a variety of proof lengths for
the same problem instance. For instance, for our standard
problem instance, we found a range of proofs from proofs
consisting of 47 to 78 nodes. Such a degree of variance is
unusual for proofs generated by proof planning.

Having a set of proof planning operators and a flexible
control that includes randomization the planner can generate
a variety of proofs. This greatly enhances the ability of the
system to find proofs and increase the overall robustness of
the theorem proving system.

Case Analysis Strategy
This strategy explores all possible mappings between the
structures. Since the goal is to prove a non-isomorphism, the
prover needs to establish that no mapping is an isomorphism.
Obviously, this strategy is computationally very expensive
and, as our experiments show, it is practically infeasible for
structures of cardinality larger than four. There still is the
question as to whether randomization may be of use in this
context.

Table 2 shows that there is still some variation in run time
and proof length (100 randomized runs on a single prob-
lem instance from ZZ3) due to different search pruning ef-
fects, but the variations are small compared to those encoun-
tered for the proof by contradiction strategy. Further analysis
(see (Meier 2000)) shows that the underlying distribution is
not heavy-tailed and therefore a restart strategy would not
boost the performance significantly.

Conclusions
The analysis of the cost distributions of proof planning at-
tempts for a class of theorems and on the detection of heavy-
tailed behavior gave rise to an application of randomization

261



Costs Mean Min. Max.
Proof Length 598 540 (9.7%) 684 (14.4%)
Run Time 2456 1110 (54.8%) 4442 (80.9%)

Table 2: Randomized version of the case analysis strategy.

and restarts techniques. The experimental part of the investi-
gations includes a study of two different planning strategies
and the determination of cut-off values for the restart. As a
conclusion, we have introduced new kind of control knowl-
edge into the proof planning process, a much larger frac-
tion of problem instances became solvable (from 67.5% to
97.5%), and a variety of proofs can be generated for a prob-
lem. The application of randomization and restart techniques
makes the search process more robust even when the size of
the search spaces involved grows super-exponentially. We
described in this paper experiments with non-isomorphism
problems of the residue class set ZZ5. We obtained analo-
gous results on non-isomorphism problems of the residue
class sets ZZ2, ZZ3, ZZ4 and ZZ6 (see (Meier 2000)).

Proof planning can benefit from these investigations in
general because they provide a stochastic approach to semi-
automatically designing control knowledge and because this
kind of control knowledge can augment the mathematically
motivated control knowledge previously used in proof plan-
ning.

References
A. Bundy. 1988. The Use of Explicit Plans to Guide Induc-
tive Proofs. In E. Lusk and R. Overbeek, editors, Proceed-
ings of CADE–9, volume 310 of LNCS. Springer, Germany.
C. Gomes, B. Selman, N. Crato, and H. Kautz. 2000. Heavy-
tailed phenomena in satisfiability and constraint satisfaction
problems. Journal of Automated Reasoning, 24:67–100.
C. Gomes, B. Selman, and H. Kautz. 1998. Boosting combi-
natorial search through randomization. In Proceedings of the
15th National Conference on Artificial Intelligence (AAAI-
98), pp. 431–437.
C. Gomes, B. Selman, K. McAloon, and C. Tretkoff. 1998.
Randomization in backtrack search: Exploiting heavy-tailed
profiles for solving hard scheduling problems. In Proceed-
ings of the Fourth International Conference on AI Planning
Systems (AIPS’98), pp. 208–213.
A. Meier. 2000. Randomization and heavy-tailed behavior
in proof planning. SEKI-Report SR-00-03 (SFB), Univer-
sität des Saarlandes, Saarbrücken, Germany.
A. Meier, M. Pollet, and V. Sorge. 2000. Exploring the
domain of residue classes. SEKI-Report SR-00-04 (SFB),
Universität des Saarlandes, Saarbrücken, Germany.
E. Melis and A. Meier. 2000. Proof planning with multiple
strategies. In Proc. of the First International Conference on
Computational Logic. Springer, Germany.
E. Melis and J. Siekmann. 1999. Knowledge-based proof
planning. Artificial Intelligence, 115(1):65–105.

262




