
Strategy Mining

Xiaoxi Xu, David Jensen and Edwina L Rissland
University of Massachusetts

Amherst, MA

Abstract

Strategy mining is a new area of research about discovering
strategies for decision-making. It is motivated by how sim-
ilarity is assessed in retrospect in law. In the legal domain,
when both case facts and court decisions are present, it is
often useful to assess similarity by accounting for both case
facts and case outcomes. In this paper, we formulate the strat-
egy mining problem as a clustering problem with the goal
of finding clusters that represent disparate conditional depen-
dency of decision labels on other features. Existing clustering
algorithms are inappropriate to cluster dependency because
they either assume feature independence, such as K-means,
or only consider the co-occurrence of features without ex-
plicitly modeling the special dependency of the decision label
on other features, such as Latent Dirichlet Allocation (LDA).
We propose an Expectation Maximization (EM) style unsu-
pervised learning algorithm for dependency clustering. Like
EM, our algorithm is grounded in statistical learning theory.
It minimizes the empirical risk of decision tree learning. Un-
like other clustering algorithms, our algorithm is irrelevant-
feature resistant, and its learned clusters modeled by decision
trees are strongly interpretable and predictive. We systemat-
ically evaluate both the convergence property and solution
quality of our algorithm using a common law dataset com-
prised of actual cases. Experimental results show that our al-
gorithm significantly outperforms K-means and LDA on clus-
tering dependency.

Introduction
Strategies play a key role in decision-making. In the con-
text of decision-making, strategies involve how to evaluate
decision-influential features and which decisions to make.
Different people might use disparate strategies to make de-
cisions. For example, physicians with different ‘schools of
medical thought’ may prescribe different treatments for pa-
tients based on evaluating their previous medical compli-
cations, reported symptoms, and results of various tests, as
shown in Figure 1. Courts may follow different doctrines in
making their rulings, for instance, in our example, the rela-
tionship between buyer and seller of a product, or the harm
caused by a defective product. Decision-making is also at the
crux of political activity. In politics, different presidential
administrations use different strategies to make decisions

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

about war and peace, about budgetary funding priorities,
and about which political candidate to support along with
innumerable other choices. Organizations make far reach-
ing strategic decisions about investment and direction of fu-
ture growth; individual persons make decisions about how
to live a life. When the outcome of a decision is observable
(e.g., radical mastectomy leads to shorter or longer recovery
time from breast cancer than lumpectomy does), uncovering
the decision-making process is highly desirable. This is be-
cause strategies, once discovered, they can shed light on how
to achieve a desired outcome and avoid an unwanted one,
and can also enable strategy comparisons. This new area of
research about discovering strategies in decision-making is
what we call strategy mining.

In this paper, we formulate the strategy mining problem
as a clustering problem, called the latent-strategy problem.
In a latent-strategy problem, a corpus of data instances is
given, each of which is represented by a set of features and
a decision label. The inherent dependency of the decision
label on the features, as shown in the above examples, is
governed by a latent strategy. The goal is to discover the
conditional dependency in order to reveal the strategy.

The difference between dependency-based clustering and
conventional object-based clustering (Bishop 2006) is note-
worthy. Object-based clustering deals with the joint distribu-
tion of all features in the feature space, whereas dependency-
based clustering deals with the conditional distribution of
the decision label on the other features. Existing clustering
algorithms are inappropriate to cluster dependency because
they either assume feature independence, such as K-means
(MacQueen 1967) and mixture models, or only consider the
co-occurrence of features without explicitly modeling the
special dependency of the class label (i.e., decision label) on
other features, such as LDA (Steyvers and Griffiths 2007)).
In this paper, we propose a baseline algorithm for depen-
dency clustering on the basis of the following assumption.

• Data instances with similar features but different out-
comes come from different conditional distributions.
Our algorithm models conditional dependency with deci-

sion trees (Quinlan 1993) and iterates between an assign-
ment step and a minimization step to learn a mixture of de-
cision tree models that represent latent strategies. We call
this algorithm Assignment Minimization for Decision Tree

Proceedings of the Twenty-Seventh International Florida Artificial Intelligence Research Society Conference

107



Figure 1: The relationship among strategy, decision labels,
and features & examples in various domains

Mixtures (AM-DTM). Like the Expectation Maximization
(EM) algorithm (Little and Rubin 2002) (Dempster, Laird,
and Rubin 1977), AM-DTM is grounded in the PAC learn-
ing theory (Vapnik 2000). The difference, however, is that
AM-DTM uses a non-parametric model, whereas EM-like
algorithms often use parametric models.

AM-DTM is irrelevant-feature resistant, and its learned
clusters (modeled by decision trees) are strongly inter-
pretable and predictive.

1. Irrelevant-feature resistant.
Unlike most clustering algorithms, AM-DTM is not sen-
sitive to irrelevant features. This is because its contained
decision tree models can intelligently select key features
and identify how their interactions influence a decision.

2. Strongly interpretable.
AM-DTM is a glass-box learning algorithm. The learned
clusters are represented by decision trees, and therefore
it would be easy to evaluate and explain the clustering
results by examining the “look” of the trees.

3. Predictive.
The learned clusters can be used as similarity measures to
directly predict future data instances.

In this exploratory study, we evaluated the performance of
AM-DTM using a real-world common law dataset. In this
domain, there are 151 actual cases taken from a variety of
jurisdictions in the United States and the United Kingdom.
Our task is to learn the legal doctrines ruling the cases.
The experimental results show that (1) AM-DTM converges
quickly, (2) the learned decision tree models resemble dis-
parate legal doctrines well, and (3) AM-DTM outperforms
K-means and LDA on the task of clustering dependency.

The rest of the paper is organized as follows. In Section 2,
we first show an example that motivates this paper and then
define the latent-strategy problem. In Section 3, we present
our baseline algorithm with a proof of convergence. Section
4 is devoted to the systematic evaluations of our algorithm.
Related work is detailed in Section 5 and we conclude in
Section 6.

The Latent-strategy Problem
A Motivating Example
Starting in 1852 and continuing for the next 60-80 years, a
great change occurred in the doctrine governing the recovery
by a remote buyer of a product that caused injury. Until the
changes only a buyer who dealt directly with the manufac-
turer of the product – that is, who was said to be in ‘privity
of contract’ – could recover for injury caused by the prod-
uct. The old privity rule stated that if the buyer and maker
of the product were not in a direct (privity) relation, there
could be no recovery. The change in the doctrine was set
into motion in 1852 by the landmark case of Thomas and
Wife v. Winchester, (6 N.Y. 397 (1852)). In this case, under
the existing privity doctrine, Mr. and Mrs. Thomas would
not have been able to recover from Winchester because they
did not buy the product directly from him (Levi 1949). How-
ever, the court decided to make an exception to the privity
requirements in this case because the substance (bottle of
poison (belladonna) mislabeled as ‘dandelion extract’) was
so dangerous and the harm so severe. The court thus created
an exception for things “imminently dangerous”. This case
set in motion the creation of a new doctrine that allowed for
recovery from injuries caused by so-called “imminently dan-
gerous” things even if the injured party and the maker of the
goods were not in a direct contractual (privity) relationship.
In 1916 another landmark case MacPherson v. Buick Mo-
tor Co., (217 N.Y. 382, 111 N.E.1050 (1916)) was decided
that completed the common law evolution of the doctrine.
In this case, the wheel of an automobile fell off and injured
the owner of the car (MacPherson). Since MacPherson had
bought the car from a dealer, and not Buick directly, there
was no privity. Also, a “car” is not in itself an ‘imminently
dangerous’ article so it did not fit under the Thomas excep-
tion. At this point, The highest court in New York changed
the law and rejected the requirement for ‘privity’ and the
need to characterize a product “imminently dangerous” alto-
gether, allowing for an injured party to recover for damage
done by a defective product.

In the example above, there are three doctrines: (1) priv-
ity for recovery; (2) imminently dangerous exception to the
privity rule; and (3) recovery by remote buyers for defective
products. In Anglo-American law, it is often the case that the
fading of an old doctrine requires the passage of time. The
older doctrine of privity was not unfollowed by later cases
immediately after the occurrence of the landmark case estab-
lishing the new doctrine. Rather, the privity doctrine faded as
more cases were decided under the new doctrine. A similar
situation occurred to the second and the third doctrine. We
have also examined this domain for the role of exceptional
cases in triggering doctrinal change (Rissland and Xu 2011).
In this study, our goal is to uncover the different doctrines.

Problem Definition
Uncovering doctrines in the example above can be viewed as
a clustering problem with the goal of finding clusters, each
containing cases decided by the same doctrine. As a result,
“similarity” in this domain should be interpreted as “similar
strategies” that courts used to decide cases based on case

108



facts, or “similar conditional dependence” of court decisions
on case facts.

This way of interpreting similarity is different from the
conventional interpretation of similarity. Traditionally, sim-
ilarity is often assessed by examining the joint distribution
of all features in a nondiscriminating feature space. In this
paper, we try to solve a clustering problem whose similar-
ity is judged based on the class-conditional distribution in
a discriminating feature space. We believe that some unob-
served latent variables are responsible for how the mappings
from features (e.g., case facts) to class labels (e.g., court de-
cisions) are generated and, therefore, suggest that an EM-
style process should be used to learn a generative model that
specifies a joint probability distribution over the observed
mappings and those latent labels.

After introducing the problem characteristics, we now de-
fine the latent-strategy problem. Examples are shown in Fig-
ure 1.
Definition 1. In a latent-strategy problem, a corpus of data
instances I is given, each of which is represented by a set of
features F and a decision label D. The inherent dependency
of the decision label on the features is governed by a latent
strategy S. The objective is to find clusters, each containing
data instances governed by the same strategy.

A Baseline Algorithm on Clustering
Conditional Dependency

• Data instances with similar features but different out-
comes come from different conditional distributions.

As shown in Algorithm 1, AM-DTM, models conditional
dependency with decision trees and iterates between an as-
signment step and a minimization step to learn a mixture of
decision tree models that represent latent strategies.

Consider a dataset containing a set of data instances D.
Each case has a set of features, among which there is a spe-
cial class label feature. AM-DTM starts from partitioning D
into K disjoint datasets D1 . . . Dk, or K clusters. The parti-
tion can be done either with the guidance of domain knowl-
edge or at random. Those K datasets are used to build K
initial decision trees. Techniques should be used to avoid
overfitting.

The main body of AM-DTM consists of two iterative
steps: an assignment step (A-step) and a minimization step
(M-step). In the A-step, instances are assigned to clusters
based on decision tree classification results. The assignment
strategy is as follows: if an instance in a cluster is correctly
classified by the decision tree built from that cluster, it will
stay in the original cluster; otherwise, it will move to a clus-
ter whose decision tree correctly classifies it. When there is
more than one decision tree that correctly classifies a mis-
classified instance, that instance will move to the cluster
whose decision tree yields the highest classification proba-
bility for it. Further ties are broken by preferring the decision
tree whose leaf node has a greater number of instances. If
there is no decision tree that correctly classifies an instance,
that instance stays in its original cluster.

In the M-step, decision tree learning is performed and the
total training error of all decision trees is minimized under

Algorithm 1: AM-DTM
Input: D – Data instances; K – the number of clusters
Output: Learned decision trees DTs loaded with cases
Initialization: Randomly reshuffle cases in D; Partition
D into K disjoint datasets D1 . . . DK

foreach Di do
Build a decision tree DTi using proper strategies to
avoid over-fitting

end
repeat

A-step:
foreach DT do

M ← find data instances that are misclassified
foreach X in M do

DTree← find the decision tree, over
which X is correctly classified with the
highest classification probability ;
if DTree 6= NULL then

Dj ← find dataset used to train DTree
Move X to Dj

end
end

end
M-step:
foreach Di do

Rebuild a decision tree NewDTi with proper
strategies to avoid over-fitting
TrainError(NewDT )← find the training
error of the NewDTi

MisclassificationRate(DT )← find the
misclassification error by evaluating DTi on Di

if TrainError(New DTi) <
MisclassificationRate(DTi) then

Replace DTi with NewDTi

end
end

until convergence;
return DTs

the assumption that the assignment from the A step is cor-
rect. To ensure and speed up convergence, we replace an
older decision tree with a new one for a cluster only when
the new tree has a lower training error. This process is re-
peated until no instance is moved. The goal of the iteration
is to minimize the overall training error so that the learned
decision trees representing coherent concepts can be found
accurately.

Theorem 1. Using AM-DTM, the total training error
strictly monotonically decreases until the algorithm con-
verges.

Proof. In each iteration of the AM-DTM algorithm, the mis-
classified data instances in one cluster are moved to another
cluster only when they are correctly classified by the deci-
sion tree trained using that cluster. When the dataset of a
cluster changes, a new tentative decision tree is created from
the changed dataset. The decision tree for each cluster, how-

109



Table 1: Features and domain values in the common law
dataset

Variables Domain values
Outcome P-win, D-win
Privity Yes, No
Age Infant/Youth, Adult
Plaintiff ID Injured party, Representing

injured party
Injury Severe, Mild/ No injure
Injured-party role Experienced user, Other
Defendant role Manufacture, Vendor, Man-

ufacture & Vendor, Other
Type Food/drink, Drug/medicine,

Chemicals, Personal care,
Car, Machine, Other

IP role Mere middleman or not
Existence of IP Yes, No
Defect Yes, No
Non-obvious defect Yes, No
Inherently dangerous Yes, No
Professional duty Yes, No

ever, will be replaced by the new decision tree only when
the new tree has a lower training error. Therefore, the total
training error strictly monotonically decreases until the error
reaches zero or no case are moved between clusters.

Experiments and Results
Our evaluation dataset, as shown in the motivating example,
consists of 151 actual cases taken from a variety of jurisdic-
tions in the United States and the United Kingdom. Cases
are represented by 14 features, which are somewhat differ-
ent from those used in our previous work (Rissland and Xu
2011), see Table 1. We carried out 4 experiments to evalu-
ate the performance of AM-DTM. In the first experiment,
we evaluate the convergence property of AM-DTM; in the
second experiment, we evaluate the AM-DTM’s capability
of discovering K; in the third experiment, we evaluate how
well the learned decision trees resemble the three disparate
legal doctrines; and in the last one, we compare the perfor-
mance of AM-DTM with that of LDA and K-means.

Convergence
We ran AM-DTM 10 times with random initialization. As
shown in the upper panel of Figure 2, the total error rate is
plotted over the number of iterations. Error bars along the
curve show the deviation across 10 runs. The monotonic de-
crease of the total error rate indicates the convergence of
AM-DTM, which usually occurred within 5 iterations. The
misclassification rate of each learned decision tree corre-
sponding to each of the three clusters as a function of the
number of iterations is shown on the lower panel of Figure 2.

Discovering K
In order to learn the number of latent legal doctrines, or the
number of clusters K, we examined the sizes of learned deci-
sion trees and error rates in the training and cross-validation
phases. The ideal K would be corresponding to K deci-
sion trees, each of which satisfies the following three re-
quirements: (1) compact – because the doctrines are often

Figure 2: Total error rate across 10 runs (upper panel) &
misclassification rate of different learned decision trees on 1
of 10 runs (lower panel)

not very complex legal rules; (2) low training error – be-
cause a cluster should represent a coherent strategy; and (3)
low cross-validation error. When K=1, the learned decision
tree has 20 nodes with a training error of 0.2 and a cross-
validation error of 0.46. When K=2, the learned decision
trees have an average of 7 nodes; the average training and
cross-validation errors are 0.08 and 0.13, respectively. As
shown in Figure 3, when K=3, the learned decision trees are
compact with an average of 5 nodes and have the lowest
average training error of 0.01 and the lowest average cross-
validation error of 0.04.

Examining the learned decision trees
Recall that each case in the common law dataset was de-
cided by one of the following three doctrines: (1) privity for
recovery; (2) imminently dangerous exception to the privity
rule; and (3) recovery by remote buyers for defective prod-
ucts. The fact that an older doctrine was not unfollowed by
later cases immediately after the occurrence of a landmark
case establishing the new doctrine presents a challenge to
our clustering task because using landmark cases as cutoff
lines to evaluate cluster membership would not work. Alter-
natively, we can evaluate the solution quality of AM-DTM
by examining how well the decision trees learned by AM-
DTM represent the three doctrines.

To show that the learned decision trees resemble the doc-
trines, we ran AM-DTM 10 times with random initialization
and K set to 3. The top 5 features with the highest aver-

110



Table 2: The ranking list of the top 5 features with the highest average weights
(a) The Learned Decision Tree 1

Features Weights
Product type 0.62
Defendant role 0.57
Privity 0.41
Defect 0.40
Injury 0.40

(b) The Learned Decision Tree 2

Features Weights
Product type 0.79
Imminently dangerous 0.67
Defendant role 0.43
Non-obvious defect 0.37
Injury 0.36

(c) The Learned Decision Tree 3

Features Weights
Product type 0.86
Defendant role 0.76
Imminently dangerous 0.39
Defect 0.38
Non-obvious defect 0.29

Figure 3: K=3, ten-fold cross-validation & training errors of
decision trees built using each data cluster given by AM-
DTM

age weights across 10 runs for each learned decision tree are
shown in Table 2. A feature weight is defined as the ratio of
the number of cases assigned to a feature node to the num-
ber of cases underneath the root node in the same tree. Over-
all, the ranking lists with feature weights resemble the doc-
trines well. For example, in the case of the second doctrine
– ‘recovery for imminently dangerous products’, it is easy

to explain what the doctrine is based on the corresponding
ranking list. Specifically, ‘imminently dangerous’ (the sec-
ond one on the ranking list) implies that only certain types of
products (the first one on the ranking list, e.g., drugs) were
considered to be imminently dangerous and therefore only
certain defendant roles (the third on the ranking list) were
considered to be liable for the injuries (the fifth on the rank-
ing list) caused by defective products. The defects of an im-
minently dangerous product (e.g., drug) are often not obvi-
ous (the fourth on the ranking list), for example, a patient
could hardly tell a dandelion extract (a harmless medicine)
from an extract of belladonna (a deadly poison). The first
and the third doctrines can be explained in a similar way
based on their corresponding feature ranking lists. Note that
the presence of “defendant role” in the first ranking list is
due to the fact that defendant roles determine whether a case
is a privity one or not (e.g., consumers when buying certain
things from a grocery store are contracted with the vendor
not the manufacture). The presence of “defendant role” in
the third ranking list is because the manufacturer of a de-
fective product was always considered to be liable for the
injuries according to the third doctrine.

Comparing AM-DTM with K-means and LDA on
clustering dependency
We also compared AM-DTM with K-means and LDA for
clustering dependency. K-means and LDA are interesting
comparisons because one (i.e., K-means) assumes feature
independence and the other (i.e., LDA) only considers the
co-occurrence of features without explicitly modeling the
dependency of the decision label on other features. The ba-
sic idea of LDA is that documents are represented as ran-
dom mixtures over latent topics, where each topic is char-
acterized by a distribution over words. In our application,
doctrines are mapped to topics in the text analysis, cases
are mapped to documents, and case features are mapped to
words. Moreover, the term frequency of a feature was set
to 1 or 0 depending on the presence of that feature. As we
can see from Figure 4, decision trees built from clusters dis-
covered by K-means (K=3) and LDA (with alpha=17 and
beta=0.01) have high bias and variance and are relatively
complex. Specifically, both K-means and LDA have an av-
erage 0.2 training error and 0.5 cross-validation error. LDA
produced decision trees that were slightly more compact (7
leaf nodes on average) than did K-means (10 leaf nodes on
average). We were not surprised by the fact that LDA did
not outperform K-means on clustering dependency because
it did not model those desired dependency explicitly. Com-
bining with the results from Figure 3, we can easily see that

111



(a) AM-DTM (b) K-means (c) LDA

Figure 4: Ten-fold cross-validation & training errors of decision trees built using 1 of the 3 data clusters given by (a) AM-DTM,
(b) K-means, and (c) LDA. The selected clusters are representative to the general truth of all clusters.

AM-DTM significantly outperformed K-means and LDA in
the task of clustering dependency.

Related Work
To the best of our knowledge, strategy mining is a new
concept for data mining. No prior work has attempted to
solve the latent-strategy problem we proposed in this paper.
Because AM-DTM is a model-based clustering algorithm
and uses an EM-style procedure to learn a non-parametric
model, we focus on reviewing related work on the front of
clustering analysis and the front of non-parametric EM al-
gorithm for learning latent variables.

Comparing other works in clustering analysis, we think
LDA is the one most similar to our work. Although LDA
considers the co-occurrence of features, it does not explicitly
model the special dependency of the decision label on other
features. Most other clustering algorithms, such as K-means,
often assume feature independence.

Although EM-style procedures are often used to learn
parametric models, such as Gaussian mixtures, prior work
has been done on using EM to learn non-parametric models,
such as (Caruana 2001). That work presents an EM-style al-
gorithm for learning a K-nearest neighbor (KNN) model to
impute missing values in the data. However, the question of
how to insure the convergence of non-parametric EM-style
algorithm like KNN was left to open discussions. In this pa-
per, we presented two mechanisms (i.e., when to move data
and when to replace trees) to guarantee the convergence of
AM-DTM for a mixture of decision tree models.

We think, most importantly, the main difference between
those algorithms and AM-DTM is that they are not applica-
ble to clustering conditional dependency.

Conclusion
Two objectives have been fulfilled by this paper. First, we
defined latent-strategy discovery as a new problem for data
mining. Its goal is to cluster conditional dependency. Sec-
ond, we presented a baseline unsupervised algorithm to
solve the problem. In our preliminary study of learning dis-
parate legal doctrines from a real-world common law data
set, experimental results show that our algorithm signifi-

cantly outperforms K-means and LDA on the task of clus-
tering dependency.

For future work, we will explore the use of other mod-
els to represent conditional dependency and compare their
performance with the current algorithm using decision tree
models. For example, we can choose other non-parametric
statistical models (e.g., kernel Fisher discriminant analysis),
parametric discriminative models (e.g., logistic regression),
and parametric generative models (e.g.,naive Bayes).

References
Bishop, C. M. 2006. Pattern Recognition and Machine
Learning (Information Science and Statistics). New York:
Springer-Verlag.
Caruana, R. 2001. A non-parametric em-style algorithm for
imputing missing values. Artificial Intelligence and Statis-
tics.
Dempster, A. P.; Laird, N. M.; and Rubin, D. B. 1977. Max-
imum likelihood from incomplete data via the em algorithm.
Journal of the Royal Statistical Society 1–38.
Levi, E. H. 1949. An Introduction to Legal Reasoning.
Chicago: University of Chicago Press.
Little, R. J. A., and Rubin, D. B. 2002. Statistical Analysis
with Missing Data, Second Edition. Wiley-Interscience.
MacQueen, J. 1967. Some methods for classification and
analysis of multivariate observations. Proc. of the Fifth
Berkeley Symposium on Mathematics, Statistics and Prob-
ability 1(5):281–296.
Quinlan, J. R. 1993. C4.5: programs for machine learning.
San Francisco, CA: Morgan Kaufmann Publishers Inc.
Rissland, E. L., and Xu, X. 2011. Using case-based tests
to detect gray cygnets. In Case-Based Reasoning Research
and Development. Springer. 258–273.
Steyvers, M., and Griffiths, T. 2007. Probabilistic topic mod-
els. Handbook of Latent Semantic Analysis 22:424–440.
Vapnik, V. 2000. The Nature of Statistical Learning Theory
(Information Science and Statistics). Springer Verlag.

112




