
[THIS SPACE MUST BE
KEPT BLANK]

Towards a Mathematical and Computational

Benoît Sauzay, Gaëll Guibert, Jean-Pierre Desclés
Université Paris-Sorbonne, STIH-LaLIC
 28, rue serpente, 75006, Paris, France

benoit.sauzay@gmail.com, gaell.guibert@wanadoo.fr, Jean-pierre.Descles@paris4.sorbonne.fr

Abstract
In one hand, the meaning of natural languages is often de-
scribed with basic semantic features and a boolean
composition of these features. However, this approach is not
sufficient to describe more deeply the meaning of linguistic
units. In the other hand, the semantic of computer languages
often starts from Church’s λ-calculus and walks up to more
abstract levels. In this communication, is introduced a new
general computational approach of the representation of
meanings for high level languages (natural languages and
programming languages), in working from the paradigm of
compilation in computer sciences. In this compilation
paradigm, the expressions of a high level symbolic language
are changed in representations by means of intermediary
levels, to hit formal representations directly compatible with
the material structures of a machine or of a brain. From this
analogy, expressions of a natural language can be analyzed
by different metalinguistic levels of representations linked
to each other by changing representation processes. The
communication will give examples of representation
changing between expressions of English and
representations of meanings expressed by algebra of
“treilles”.

 Introduction
In the field of artificial intelligence, questions arise: Can
computers manage semantic representations as human do?
Does the understanding of such representations rely on
some operational framework? To some extent, how can we
consider the construction of new representations by the use
of existing ones? This is definitely a key property of
intelligent systems. These questions will lead our reflection
and argumentation about relationships between high levels
representations and technical systems with compilation. By
compilation we mean representation or structural changes
between levels.

Copyright © 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Issues and Perspectives in Linguistics and
Computation

In a more technical point of view: can we make an
assumption on the building and evaluation of semantic
representations without restricting ourselves to synonymy
relations? Can we propose a mathematical and
computational framework that would be able to construct
the meaning of significant units like those handled by
natural languages? Such that, they could operate as
programming languages do for “functions”. Then, this
framework would be an assumption to explain
computations performed by the brain and a research
direction to make them work effectively on a machine.

 A beginning of the answer is: thinking in terms of
compilation rather than making a direct correspondence
between a particular area in the brain and a word or
meaning. Compilation involves a set of properties that
would be subject to a set of transformations between
different levels. In that purpose, we start, in mathematics,
with a formal description of our general computation
system. The compilation operates inside the mathematical
framework itself: the first change of representation is
carried out between a particular category, T[Σ]
(Desclés,1980), using commutative diagrams, and a linear
algebraic structure. The second one is performed between
this previous algebraic structure and a non-linear algebraic
structure, called “treille”. The latter is a representation in
the plan and is sufficient to express by itself operational
semantic representations. In natural languages, we make
the assumption that a similar process is involved by the
cognition: from high level semantico-cognitive
representations, or schemes, to utterances and vice versa.

Some existing approaches use to adopt a bottom-up
perspective. They start from observable data and elaborate
some levels of abstraction in the hypothesis that this
abstract or formal level is a suitable representation of the
data. On the one hand, semantic with features presents this

Theory of Meaning in Natural Languages

Proceedings of the Twenty-Seventh International Florida Artificial Intelligence Research Society Conference

461

ascending method. From properties of any extension, it
lists the characteristics until building minimal abstract
unities of semantic description called features, representing
the object at an abstraction level. B. Pottier edified analysis
with semes for semantic comprehension in linguistics
(1963; 1985, p. 63). Some minimal semantic features can
be distinguished and then compared, by similarities and
differences. These semantic principles remain today, for
semantics and synonymy relations. On the other hand, in
computer software, high levels representations are
compiled with a similar process down to lower levels until
being carried out by the material of the machine: most of
the functional programming languages rely on the λ-calcul
and develop complex type systems in order to get
consistency. The F system from J.-Y. Girard, with
dependent types, is definitely the most elaborate of them.

After having discussed two points of the state of the art
in a first part, we present our formal system with its
different levels of representation in a second part, and in a
third part we will give examples of semantic
representations based on our mathematical and
computational framework in the compilation paradigm.

Formal Systems Compilation: from the T[Σ]
category to the algebra of “treilles”

 Our purpose is to define here, a general consistent
computational framework without any external references
or dependencies. We start from the Category Theory, and
thanks to “abstract compilation” we change the
representations of our formal system down to an
elementary writing rule and an evaluation rule (“reading
over nodes of the product”), to build up our categorical
computational system (Desclés 1980). This process of
changing levels of representation is exactly the same as
those performed by compilers in programming.

Categorical Computational System: T[Σ]
Our theoretical framework is the Category Theory.
Categories are “objects of thoughts” that target the
expression of properties between objects rather than the
objects themselves. They are mainly represented with
arrows and diagrams; these arrows are identity and
composition. In the field of computation, the general
case may be defined by the passage from a tuple of
heterogeneous data to another, whatever the data (e.g.
numbers, vectors, strings, functions…). In the state of the
art, Σ-algebra in cartesian closed categories or the typed λ-
calculus from A. Church with the cartesian product achieve
the general case. However another approach consists in
working only with sorts or types of data rather than data.
 Thus we split the notion of computation into, on the one
hand, operators σ, and, on the other hand, operations σ•.
We will mainly focus here on the operator side. We point

out that, an association between operators and operations
thanks to a particular arrow called a functor A, build up
again the notion of function. Considering that μ, ν are
monoidal categories and Xν. Xμ are categories of sets, our
system is sum up by the diagram:

Fig. 1: The T[Σ] category
Operators are defined in fig. 1 as a specific arrow. They are
applied on sorts structured in monoid (e.g. μ, ν with μ=s1…
s n and ν= s’1… s’n) and operations on sets of typed data,
respectively Xμ and Xν. Xμ means a set of objects of type
μ= s 1… s n where s i is a sort. The arrow of operators is in
the opposite direction than the arrow of operations. This
property is called contravariance, and is carried out by our
contravariant functor A. This elementary property is the
core of our general computational system.
There are two transformations on operators, the T-
operations: the “greffe” (“grafting” or a functional com-
position of operators) is comparable to composition on
sets. The “intrication” (a tensorial product of operators) is
specific to our computational approach and does not exist
in other systems. Specific operators, without associated
operations, called “coprojectifs”, are also introduced for
co-projective operations (permutations, deletion … of
arguments, and introduction of fictive arguments).
Formal definitions of the T-operations are now addressed.

Greffe in T[Σ] : o
This transformation, in the left of the fig. 2, is associative.
Each arrow is an operator that has an associated operation
(arrow on sets in the opposite direction) on the right of the
figure.

Fig. 2: Greffe in T[Σ]

462

Intrication in T[Σ] : ⊗
Intrication defines a “formal” parallelism: the tensorial
product of n operators (or multi-operators) can be
“reduced” to one arrow or multi-operator. Multi-operators
are intrications of simple operators.

Fig. 3: Intrication in T[Σ]
 The intrication can be realized by the greffe of particular
coprojectifs if we consider that all structures are
“intricated”. These categorical representations are not
directly usable in programming, particularly intrication.
Composition in programming languages is more often
defined on the operation side, using variables on sets.
 Back to our compilation paradigm, we need now to
change the representation for our system. Moving towards
algebraic structures is a possible solution to make it
operational on structures and then machines down to more
concrete representations.

Linear Algebraic Computational System: T[Σ]-algebra
The T[Σ]-algebra is the set of arrows (that this called an
“algebraic theory” by Lawvere and Birkoff) of our T[Σ]
category. It generalizes directly the Σ-algebra.

 An algebraic structure mainly relies on product and sum
“operations”. A key point of this approach is that product
and sum won’t be the primitives to build up greffe and
intrication, but on the contrary, greffe and intrication build
up product and sum “operations” (If the latter can be
compared with intersection and union, there is no direct
connection with lattices). We will develop this further with
a nonlinear algebraic structure: the treilles. This is why,
previous categorical definitions can be re-written within
the current algebraic structure. This new writing is a
change of representation under the category level.
Operator or multi-operator
An operator or multi-operator σ, of name v, of input type
ν=s’1… s’n and of output type μ=s1… sn is given as follow:

where T[] ஝ is a set of arrows which are multi-operators.
The operator has in input, a word ν of sorts, and in output,
a word μ of sorts.

Greffe in the T[Σ]-algebra : o
It is defined by the following rule:
To each pair:

we associate the unique corresponding element:

This very simple rule forms the core of our system. The
consistency of it is immediate: operators are theorems in
our framework, as sorts or types are directly handled and
not variables.
Intrication in the T[Σ]-algebra : ⊗
To each tuple:

we associate the unique corresponding element:

In order to write linear expression of operators and
operations we need a rule to express the application of
operators on operands to build up results.

Operator and operand
This is achieved by the following rule:

Where each y or z resulting values, are the result of the
action of the operation 𝛔𝛎

𝐬𝒊 • associated to the
corresponding 𝛔𝛎

𝐬𝒊 operator, on < x1,…xm> tuple of values.

Nonlinear Algebraic Computational System: Treilles
The present representation is nonlinear as it is defined in
the plan or ℝ2. It comes from the compilation process from
the previous algebra;; it is called algebra of “treilles”, and is
isomorphic to the T[Σ]-algebra. A treille diagram
generalizes the algebraic structure of two-oriented trees
(used in computer science and in linguistic); a treille is an
algebraic version of DOAG often used in programming; it
allows representing connections between two occurrences
of a same unit without using linked variables, pointers or
even stacks.

The meaning of an expression (for instance a sentence)
of a high level language is represented by a formal
expression generated from a schema described in the form
of a treille. The changing representation process from high
level to an associated treille is explicitly defined by
specific formal operations of compilation.

463

We proceed here as we did for the T[Σ] category and the
T[Σ]-algebra. We start with the definition of an operator
and continue with the definitions of intrication and greffe.
Operator and multi-operator in treilles

Fig. 4: Operator and Multi-operator
Treilles have two “orientations”: a hierarchical order (ver-
tical) and a succession order (horizontal) that organizes all
immediate successors of a specific node. We emphasis that
dead links (dotted arrows) are explicit in treilles and
implicit in trees, and that the annotations of nodes are sorts
s1… sn and not variables x, y, z with variation domains.
Intrication in the treilles: ⊗

Fig. 5: Intrication in the treilles
Intrication ⊗ allows building a multi-operator thanks to
two operators or multi-operators. In the figure above, we
have on the left two operators and on the right one
resulting multi-operator. The operation succeeds if and
only if the two operators have the same sorts on the
terminal nodes (s1, s2…sn), otherwise it is not defined.
Greffe in the treilles : o
The greffe succeeds if and only if the terminals (sorts) of
the upper operator are the same as the roots of the lower
operator. Like the intrication, the greffe is also associative.

Fig. 6: Greffe in the treilles

The greffe is not defined everywhere: we can greffe two
multi-operators if they have the same number of
respectively leaves and roots. The intermediate nodes (fig.
6) are deleted by the greffe. This can be “compared” to
other representations, such as a simultaneous substitution
of linked variables in the λ-calculus or the combinator B of
the combinatory logic from H. Curry.
Reading over the nodes of the product
We did all these transformations in order to get a simple
“evaluation rule” for the system. The result comes from the
reading on the greffes of a treille:

Fig. 7: Reading over the nodes of the product
The product is then clarified: the intermediary nodes are

forgotten inside the structure when the calculus passes over
them. This “reading” connects inputs and outputs of the
operator without reduction of the structure.
 Connections with cognitive representations are close to
this approach. Significant units of natural languages are
markers of such structured relations between “objects”.
Examples, using different representations but isomorphic
properties, will be given now, where verbs are operators
and semantic schemes at meaning level. The interpretation
of previous structures in a particular domain is then dis-
cussed.

Natural languages applications
Linguistic utterances own semantic values. The top-

bottom method described previously is reiterated here in
the semantic field. The semantic of expressions from
natural languages or programming languages is defined as
the interpretation of one syntax by another syntax (Sauzay,
2013). In programming, interpretation means to compute
or give the means for a calculus. Interpreting a sentence
consist to express a calculus with all the “values”: starting
and ending situations at meaning level with relations
between both. In other words, interpreting a sentence
consists in building the corresponding treille.

The correspondence between syntactic or sentence and
semantic levels takes only place by the mean of rules from
the mathematical framework: rules of inversion, deletion,
duplication. All linguistic forms are composition of opera-

464

tors and operands from the different levels (e.g. syntactic,
grammatical, semantic and cognitive), handling sorts and
composing them to produce new semantic values.
 In this section, we present semantico-cognitive schemes,
and corresponding treilles. We start with simple examples
and finish with more complex ones.
To Go Outside
For example, if we have the sentence:

John goes outside the house.
The question is: can we represent the semantic of the

predicate to go outside by a calculus? Can a structure,
interpreted in a specific domain, express the semantic of
the predicate to go outside (considering only the predicate,
without aspectual values)? If predicates are operators on
sorts, the answer is immediate: the predicate is represented
by an intrication of treilles.

Fig. 8: Semantic representation of “To go outside”
We just need to find linguistic operators to “fill” the

values of the treilles, like a lexicon describes words with
other words, or like in programming, ”functions” describe
other “functions” in a recursive way.

The transformation can be done by a set of compositions
(the details are given in Sauzay 2013).
The first operator σ1 can be paraphrased by John is

located by the interior of the place: the house, is true. The
second, σ2, can be paraphrased by John is located by the
outside of the place: the house, is false. A composition
with an inverter changes simultaneously, or in parallel, the
semantic values of the two treilles. What was true becomes
false and vice versa without any synonymy relation.
In programming, in a “first class” point of view, we have

two “values” of treilles or operators which are applied to
boolean sorts (and not boolean values as we use to).
The next example introduces some control with specific
operators.
To Kill
However, if we take the example:

The hunter killed the deer
We deduce immediately that:

The deer is dead.
The question is: how can we build up a calculus that

manages the representations associated to the predicates
“to kill” and “to die”? These representations are neither

synonyms nor independents. As we did for the predicate to
go outside, we present the associated treille and
transformation for the predicate to kill.

Fig. 9: Transformation associated with “To Kill”
We add some compositions inside the treille to allow a

calculus on “to die”. We give the expanded view:

Fig. 10: Development of the predicate “To die”
In “To die”, there is a sequence of compositions, built up

thanks to the predicate “to be alive” and “to be dead” (not
“to be alive”), and composed with “to change”.

Fig. 11: Calculus over “To die”

465

 The whole is composed with “to control” in order to
build the predicate “to kill”. It is clear that we don’t have
semantic features anymore.

As we described the reading of the nodes of the product in
the mathematical framework, fig. 11 can be read as the
interpretation or result on the treille. This calculus could be
developed adding aspectual values. Thus, the calculus
would be able to answer questions like: Was the deer alive
before being killed by the hunter? Or, Will the deer be dead
after being killed by the hunter?

Further examples: to enlarge, to spread, to increase

Complex predicates can be represented by multi-
operators. For example, the predicate “to increase” means
that between an initial situation and the arrival one, an
attribute value of an entity has changed (the size, the
temperature, the position…). In fact, as we are in an
algebra, we don’t need to memorize any internal number,
but staying at the word level is here clearly insufficient.
This level of representation is named the cognitive level by
(Desclés, 1990). It can be described by the same algebra,
but with different kinds of operators. To achieve that, we
go up to the cognitive level of the Applicative and
Cognitive Grammar, and perform a deeper analysis: The
attribution relation between y and z (operator ATTR in the
next figure) is present at the beginning and the end. We
still use the same inverter to compute the predicate at the
cognitive level. The inversions for example, and in general
the compositions of operators, allows to understand
meaning at a semantic level, from utterances at a syntactic
level; this is why, compiling high level schemes is
necessary to recognize or express any utterance at lower
level, as a common point between a material machine and
a brain involving such a program.

Fig. 12: Scheme of the predicate “To increase”

Conclusion
In this article, we shown compilation between isomorphic
formal systems. This compilation process is generalized,
not only in computer sciences or mathematics between
higher and lower levels and changing representations. We
carried out linguistic calculus on semantico-cognitive

representations in the mathematical framework; this is a
compilation between different levels using treilles
structures. The resulting system can manage schemes
(semantic) for the understanding of expressions. Examples
are given in natural languages, at the meaning level; the
semantic value of the predicate “go out” is the opposite of
the predicate “to enter”. The opposite values are connected
thanks to intrication and an inversion of an application into
boolean sorts. The semantic examples, as an interpretation
in the linguistic field of treilles structures, depend of the
mathematical framework. All of them are theorems and
independent from material machines. A program is seen as
a reading over the machine, comprehensive and potentially
creating new meanings by composition of elementary
meanings. This can be compiled on computers and provide
an assumption of how natural language representations are
operated by the brain.

References
Abraham, M. 1995. Analyse sémantico-cognitive des verbes de
mouvement et d'activité. Contribution méthodologique à la constitution
d'un dictionnaire informatique des verbes. Thèse : Paris, Ecole des Hautes
Etudes en Sciences Sociales.
Aho, A., Lam, M., Sethi, R., & Ullman, J. 2007. Compilateurs, principes,
techniques et outils. Paris: Pearson Education.
Arbib, M., & Give'on, Y. 1968. Algebra Automata I: Parallel
Programming as a Prolegomena to the Categorial Approach. Dans
Information and Control (pp. 331-345).
Backus, J. 1959. the syntax and semantics of the proposed international
algebraic language of the Zurich ACM-GAMM Conference. Proc. Intl.
Conf. Information Processing (pp. 125-132). Paris: UNESCO.
Curry, H.,Feys, R.& Craig, W. 1958. Combinatory Logic. Amsterdam :
North-Holland.
Desclés, J.-P. 1980. Opérateurs Opérations. Paris: Thèse d'Etat -
Université de Paris 7.
Desclés, J.-P. 1990. Langages applicatifs, langues naturelles et cognition.
Paris: Hermès.
Desclés, J.-P. 2009. Le concept d'opérateur en linguistique. Histoire,
Epistémologie, Langage 31/1.
Djioua, B. 2000. Modélisation informatique d'une base de connaissances
lexicales (DiSSC) : Réseaux polysémiques et Schèmes Sémantico-
Cognitifs. Thèse, Paris-Sorbonne.
Guibert, G. 2010. Le "dialogue" homme-machine: un qui-pro-quo? Paris:
L'Harmattan.
Harris, Z. 1968. Mathematical Structures of Language, traduit en français
par C. Fuchs. New-York: John Wiley & Sons, traduit en français par C.
Fuchs, Structures mathématiques du langage, Dunod, Paris 1971.
Lawvere, W., & Rosebrugh, R. 2003. Sets For Mathematics. Cambridge:
Cambridge University Press.
Pottier, B. 1985. Linguistique générale, théorie et description. Paris:
Klincksieck.
Sauzay, B. 2013. Le concept informatique de "compilation généralisée"
dans les sciences cognitives (linguistique, logique et intelligence
artificielle): contribution aux rapports entre la logique combinatoire et
les T[Σ]-algèbres. Thèse, Université de Paris-Sorbonne.

466

	Abstract
	Issues and Perspectives in Linguistics and Computation
	Formal Systems Compilation: from the T[Σ] category to the algebra of “treilles”
	Natural languages applications
	Conclusion
	References

