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Abstract 
In one hand, the meaning of natural languages is often de-
scribed with basic semantic features and a boolean 
composition of these features. However, this approach is not 
sufficient to describe more deeply the meaning of linguistic 
units. In the other hand, the semantic of computer languages 
often  starts  from  Church’s  λ-calculus and walks up to more 
abstract levels. In this communication, is introduced a new 
general computational approach of the representation of 
meanings for high level languages (natural languages and 
programming languages), in working from the paradigm of 
compilation in computer sciences. In this compilation 
paradigm, the expressions of a high level symbolic language 
are changed in representations by means of intermediary 
levels, to hit formal representations directly compatible with 
the material structures of a machine or of a brain. From this 
analogy, expressions of a natural language can be analyzed 
by different metalinguistic levels of representations linked 
to each other by changing representation processes. The 
communication will give examples of representation 
changing between expressions of English and 
representations of meanings expressed by algebra of 
“treilles”. 

 Introduction   
In the field of artificial intelligence, questions arise: Can 
computers manage semantic representations as human do? 
Does the understanding of such representations rely on 
some operational framework? To some extent, how can we 
consider the construction of new representations by the use 
of existing ones? This is definitely a key property of 
intelligent systems. These questions will lead our reflection 
and argumentation about relationships between high levels 
representations and technical systems with compilation. By 
compilation we mean representation or structural changes 
between levels. 
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Issues and Perspectives in Linguistics and 
Computation 

In a more technical point of view: can we make an 
assumption on the building and evaluation of semantic 
representations without restricting ourselves to synonymy 
relations? Can we propose a mathematical and 
computational framework that would be able to construct 
the meaning of significant units like those handled by 
natural languages? Such that, they could operate as 
programming   languages   do   for   “functions”.   Then,   this  
framework would be an assumption to explain 
computations performed by the brain and a research 
direction to make them work effectively on a machine.  
 
 A beginning of the answer is: thinking in terms of 
compilation rather than making a direct correspondence 
between a particular area in the brain and a word or 
meaning. Compilation involves a set of properties that 
would be subject to a set of transformations between 
different levels. In that purpose, we start, in mathematics, 
with a formal description of our general computation 
system. The compilation operates inside the mathematical 
framework itself: the first change of representation is 
carried out between a particular category, T[Σ] 
(Desclés,1980), using commutative diagrams, and a linear 
algebraic structure. The second one is performed between 
this previous algebraic structure and a non-linear algebraic 
structure,   called   “treille”.  The   latter   is   a   representation   in  
the plan and is sufficient to express by itself operational 
semantic representations. In natural languages, we make 
the assumption that a similar process is involved by the 
cognition: from high level semantico-cognitive 
representations, or schemes, to utterances and vice versa.  
 

Some existing approaches use to adopt a bottom-up 
perspective. They start from observable data and elaborate 
some levels of abstraction in the hypothesis that this 
abstract or formal level is a suitable representation of the 
data. On the one hand, semantic with features presents this 
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ascending method. From properties of any extension, it 
lists the characteristics until building minimal abstract 
unities of semantic description called features, representing 
the object at an abstraction level. B. Pottier edified analysis 
with semes for semantic comprehension in linguistics 
(1963; 1985, p. 63). Some minimal semantic features can 
be distinguished and then compared, by similarities and 
differences. These semantic principles remain today, for 
semantics and synonymy relations. On the other hand, in 
computer software, high levels representations are 
compiled with a similar process down to lower levels until 
being carried out by the material of the machine: most of 
the  functional  programming  languages  rely  on  the  λ-calcul 
and develop complex type systems in order to get 
consistency. The F system from J.-Y. Girard, with 
dependent types, is definitely the most elaborate of them. 
 

After having discussed two points of the state of the art 
in a first part, we present our formal system with its 
different levels of representation in a second part, and in a 
third part we will give examples of semantic 
representations based on our mathematical and 
computational framework in the compilation paradigm. 

Formal Systems Compilation: from the T[Σ]  
category  to  the  algebra  of  “treilles”  

 Our purpose is to define here, a general consistent 
computational framework without any external references 
or dependencies. We start from the Category Theory, and 
thanks   to   “abstract   compilation”   we   change   the  
representations of our formal system down to an 
elementary writing rule and an evaluation rule (“reading  
over   nodes   of   the   product”), to build up our categorical 
computational system (Desclés 1980). This process of 
changing levels of representation is exactly the same as 
those performed by compilers in programming.     
 
Categorical Computational System: T[Σ] 
Our theoretical framework is the Category Theory. 
Categories   are   “objects   of   thoughts”   that   target   the  
expression of properties between objects rather than the 
objects themselves. They are mainly represented with 
arrows and diagrams; these arrows are identity and 
composition.  In the field of computation, the general 
case may be defined by the passage from a tuple of 
heterogeneous data to another, whatever the data (e.g. 
numbers, vectors, strings, functions…).   In   the  state  of   the  
art,  Σ-algebra  in  cartesian  closed  categories  or  the  typed  λ-
calculus from A. Church with the cartesian product achieve 
the general case. However another approach consists in 
working only with sorts or types of data rather than data. 
 Thus we split the notion of computation into, on the one 
hand,   operators   σ,   and,   on   the   other   hand,   operations   σ•.  
We will mainly focus here on the operator side. We point 

out that, an association between operators and operations 
thanks to a particular arrow called a functor A, build up 
again   the   notion   of   function.   Considering   that   μ,   ν   are  
monoidal categories and Xν. Xμ are categories of sets, our 
system is sum up by the diagram: 

Fig. 1: The T[Σ] category 
Operators are defined in fig. 1 as a specific arrow. They are 
applied on sorts structured in monoid (e.g. μ,  ν  with  μ=s1…  
s n and  ν= s’1…  s’n ) and operations on sets of typed data, 
respectively Xμ and Xν. Xμ means a set of objects of type 
μ= s 1…  s n where s i is a sort. The arrow of operators is in 
the opposite direction than the arrow of operations. This 
property is called contravariance, and is carried out by our 
contravariant functor A. This elementary property is the 
core of our general computational system.  
There are two transformations on operators, the T-
operations:   the   “greffe”   (“grafting”   or   a   functional   com-
position of operators) is comparable to composition on 
sets.  The  “intrication”  (a   tensorial  product  of  operators)   is  
specific to our computational approach and does not exist 
in other systems. Specific operators, without associated 
operations,   called   “coprojectifs”,   are   also   introduced   for  
co-projective   operations   (permutations,   deletion   …   of  
arguments, and introduction of fictive arguments). 
Formal definitions of the T-operations are now addressed.  
 
Greffe in T[Σ]  :  o   
This transformation, in the left of the fig. 2, is associative. 
Each arrow is an operator that has an associated operation 
(arrow on sets in the opposite direction) on the right of the 
figure.     

Fig. 2: Greffe in T[Σ] 
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Intrication in T[Σ]  :  ⊗  
Intrication defines a   “formal”   parallelism:   the   tensorial  
product of n operators (or multi-operators) can be 
“reduced”   to  one  arrow  or  multi-operator. Multi-operators 
are intrications of simple operators.   

Fig. 3: Intrication in T[Σ] 
 The intrication can be realized by the greffe of particular 
coprojectifs if we consider that all structures are 
“intricated”.   These categorical representations are not 
directly usable in programming, particularly intrication. 
Composition in programming languages is more often 
defined on the operation side, using variables on sets.  
 Back to our compilation paradigm, we need now to 
change the representation for our system. Moving towards 
algebraic structures is a possible solution to make it 
operational on structures and then machines down to more 
concrete representations. 
 
Linear  Algebraic  Computational  System:  T[Σ]-algebra  
The   T[Σ]-algebra is the set of arrows (that this called an 
“algebraic   theory”   by   Lawvere and Birkoff) of our T[Σ]  
category.  It  generalizes  directly  the  Σ-algebra.  

 An algebraic structure mainly relies on product and sum 
“operations”.  A  key  point  of   this  approach   is   that  product  
and   sum   won’t   be   the   primitives to build up greffe and 
intrication, but on the contrary, greffe and intrication build 
up   product   and   sum   “operations” (If the latter can be 
compared with intersection and union, there is no direct 
connection with lattices). We will develop this further with 
a nonlinear algebraic structure: the treilles. This is why, 
previous categorical definitions can be re-written within 
the current algebraic structure. This new writing is a 
change of representation under the category level. 
Operator or multi-operator 
An operator or multi-operator  σ,  of  name  v,  of input type 
ν=s’1…  s’n  and of  output  type  μ=s1…  sn is given as follow: 

where T[] ஝  is a set of arrows which are multi-operators. 
The operator has in  input,  a  word  ν  of  sorts,  and  in  output,  
a  word  μ  of  sorts. 
 

Greffe in the T[Σ]-algebra : o  
It is defined by the following rule:  
To each pair: 

we associate the unique corresponding element: 

This very simple rule forms the core of our system. The 
consistency of it is immediate: operators are theorems in 
our framework, as sorts or types are directly handled and 
not variables.  
Intrication in the T[Σ]-algebra : ⊗  
To each tuple: 

we associate the unique corresponding element: 

In order to write linear expression of operators and 
operations we need a rule to express the application of 
operators on operands to build up results.  
 
Operator and operand  
This is achieved by the following rule: 

Where each y or z resulting values, are the result of the 
action of the operation 𝛔𝛎

𝐬𝒊 •  associated to the 
corresponding 𝛔𝛎

𝐬𝒊   operator, on < x1,…xm> tuple of values. 
 
Nonlinear Algebraic Computational System: Treilles 
The present representation is nonlinear as it is defined in 
the plan or ℝ2. It comes from the compilation process from 
the  previous  algebra;;  it  is  called  algebra  of  “treilles”,  and  is  
isomorphic   to   the   T[Σ]-algebra. A treille diagram 
generalizes the algebraic structure of two-oriented trees 
(used in computer science and in linguistic); a treille is an 
algebraic version of DOAG often used in programming; it 
allows representing connections between two occurrences 
of a same unit without using linked variables, pointers or 
even stacks.  

The meaning of an expression (for instance a sentence) 
of a high level language is represented by a formal 
expression generated from a schema described in the form 
of a treille. The changing representation process from high 
level to an associated treille is explicitly defined by 
specific formal operations of compilation. 
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We proceed here as we did for the T[Σ]  category  and   the  
T[Σ]-algebra. We start with the definition of an operator 
and continue with the definitions of intrication and greffe. 
Operator and multi-operator in treilles  

Fig. 4: Operator and Multi-operator 
Treilles have  two  “orientations”:  a  hierarchical order (ver-
tical) and a succession order (horizontal) that organizes all 
immediate successors of a specific node. We emphasis that 
dead links (dotted arrows) are explicit in treilles and 
implicit in trees, and that the annotations of nodes are sorts 
s1…  sn and not variables x, y, z with variation domains. 
Intrication in the treilles: ⊗  

Fig. 5: Intrication in the treilles 
Intrication ⊗ allows building a multi-operator thanks to 
two operators or multi-operators. In the figure above, we 
have on the left two operators and on the right one 
resulting multi-operator. The operation succeeds if and 
only if the two operators have the same sorts on the 
terminal nodes (s1, s2…sn), otherwise it is not defined. 
Greffe in the treilles : o  
The greffe succeeds if and only if the terminals (sorts) of 
the upper operator are the same as the roots of the lower 
operator. Like the intrication, the greffe is also associative. 

Fig. 6: Greffe in the treilles 

The greffe is not defined everywhere: we can greffe two 
multi-operators if they have the same number of 
respectively leaves and roots. The intermediate nodes (fig. 
6) are deleted by the greffe. This can be “compared” to 
other representations, such as a simultaneous substitution 
of  linked  variables  in  the  λ-calculus or the combinator B of 
the combinatory logic from H. Curry. 
Reading over the nodes of the product  
We did all these transformations in order to get a simple 
“evaluation  rule”  for  the  system.  The  result  comes  from  the  
reading on the greffes of a treille: 

Fig. 7: Reading over the nodes of the product  
The product is then clarified: the intermediary nodes are 

forgotten inside the structure when the calculus passes over 
them.   This   “reading”   connects   inputs   and   outputs   of   the  
operator without reduction of the structure. 
 Connections with cognitive representations are close to 
this approach. Significant units of natural languages are 
markers of such structured relations   between   “objects”.  
Examples, using different representations but isomorphic 
properties, will be given now, where verbs are operators 
and semantic schemes at meaning level. The interpretation 
of previous structures in a particular domain is then dis-
cussed. 

Natural languages applications 
Linguistic utterances own semantic values. The top-

bottom method described previously is reiterated here in 
the semantic field. The semantic of expressions from 
natural languages or programming languages is defined as 
the interpretation of one syntax by another syntax (Sauzay, 
2013). In programming, interpretation means to compute 
or give the means for a calculus. Interpreting a sentence 
consist to express  a  calculus  with  all  the  “values”:  starting  
and ending situations at meaning level with relations 
between both. In other words, interpreting a sentence 
consists in building the corresponding treille.   

The correspondence between syntactic or sentence and 
semantic levels takes only place by the mean of rules from 
the mathematical framework: rules of inversion, deletion, 
duplication. All linguistic forms are composition of opera-
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tors and operands from the different levels (e.g. syntactic, 
grammatical, semantic and cognitive), handling sorts and 
composing them to produce new semantic values. 
 In this section, we present semantico-cognitive schemes, 
and corresponding treilles. We start with simple examples 
and finish with more complex ones. 
To Go Outside  
For example, if we have the sentence:  

John goes outside the house. 
The question is: can we represent the semantic of the 

predicate to go outside by a calculus? Can a structure, 
interpreted in a specific domain, express the semantic of 
the predicate to go outside (considering only the predicate, 
without aspectual values)? If predicates are operators on 
sorts, the answer is immediate: the predicate is represented 
by an intrication of treilles.  

Fig.  8:  Semantic  representation  of  “To  go  outside” 
We   just   need   to   find   linguistic   operators   to   “fill”   the  

values of the treilles, like a lexicon describes words with 
other  words,  or  like  in  programming,  ”functions”  describe  
other  “functions”  in  a  recursive  way.   

The transformation can be done by a set of compositions 
(the details are given in Sauzay 2013). 
The   first   operator   σ1 can be paraphrased by John is 

located by the interior of the place: the house, is true. The 
second,   σ2, can be paraphrased by John is located by the 
outside of the place: the house, is false. A composition 
with an inverter changes simultaneously, or in parallel, the 
semantic values of the two treilles. What was true becomes 
false and vice versa without any synonymy relation.  
In  programming,  in  a  “first  class”  point  of  view,  we  have  

two  “values”  of   treilles or operators which are applied to 
boolean sorts (and not boolean values as we use to). 
The next example introduces some control with specific 
operators.   
To Kill  
However, if we take the example:  

The hunter killed the deer 
We deduce immediately that: 

The deer is dead. 
The question is: how can we build up a calculus that 

manages the representations associated to the predicates 
“to   kill”   and   “to   die”?   These   representations   are   neither  

synonyms nor independents. As we did for the predicate to 
go outside, we present the associated treille and 
transformation for the predicate to kill. 

Fig.  9:  Transformation  associated  with  “To  Kill” 
We add some compositions inside the treille to allow a 

calculus  on  “to  die”.  We  give  the  expanded  view: 

Fig. 10: Development of the predicate “To  die” 
In  “To  die”,  there  is  a  sequence  of  compositions,  built  up  

thanks  to  the  predicate  “to  be  alive”  and  “to  be  dead”  (not  
“to  be  alive”),  and  composed  with  “to  change”. 

Fig.  11:  Calculus  over  “To  die”   
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 The   whole   is   composed   with   “to   control”   in   order to 
build   the  predicate  “to  kill”.  It   is  clear   that  we  don’t  have  
semantic features anymore. 

 
As we described the reading of the nodes of the product in 
the mathematical framework, fig. 11 can be read as the 
interpretation or result on the treille. This calculus could be 
developed adding aspectual values. Thus, the calculus 
would be able to answer questions like: Was the deer alive 
before being killed by the hunter? Or, Will the deer be dead 
after being killed by the hunter? 
 
Further examples: to enlarge, to spread, to increase 

Complex predicates can be represented by multi-
operators. For example, the predicate  “to   increase”  means  
that between an initial situation and the arrival one, an 
attribute value of an entity has changed (the size, the 
temperature, the   position…).   In   fact,   as   we   are   in   an  
algebra,  we  don’t  need   to  memorize  any   internal  number,  
but staying at the word level is here clearly insufficient. 
This level of representation is named the cognitive level by 
(Desclés, 1990). It can be described by the same algebra, 
but with different kinds of operators. To achieve that, we 
go up to the cognitive level of the Applicative and 
Cognitive Grammar, and perform a deeper analysis: The 
attribution relation between y and z (operator ATTR in the 
next figure) is present at the beginning and the end. We 
still use the same inverter to compute the predicate at the 
cognitive level. The inversions for example, and in general 
the compositions of operators, allows to understand 
meaning at a semantic level, from utterances at a syntactic 
level; this is why, compiling high level schemes is 
necessary to recognize or express any utterance at lower 
level, as a common point between a material machine and 
a brain involving such a program.  

Fig.  12:  Scheme  of  the  predicate  “To  increase” 

Conclusion 
In this article, we shown compilation between isomorphic 
formal systems. This compilation process is generalized, 
not only in computer sciences or mathematics between 
higher and lower levels and changing representations. We 
carried out linguistic calculus on semantico-cognitive 

representations in the mathematical framework; this is a 
compilation between different levels using treilles 
structures. The resulting system can manage schemes 
(semantic) for the understanding of expressions. Examples 
are given in natural languages, at the meaning level; the 
semantic  value  of  the  predicate  “go  out”  is  the  opposite  of  
the  predicate  “to  enter”.  The  opposite  values  are  connected  
thanks to intrication and an inversion of an application into 
boolean sorts. The semantic examples, as an interpretation 
in the linguistic field of treilles structures, depend of the 
mathematical framework. All of them are theorems and 
independent from material machines. A program is seen as 
a reading over the machine, comprehensive and potentially 
creating new meanings by composition of elementary 
meanings. This can be compiled on computers and provide 
an assumption of how natural language representations are 
operated by the brain. 
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