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Abstract 

The Semantic Sensor Web (SSW) will eventually 

revolutionize how we perceive and query information about 

the physical world. Currently, there is an ongoing effort to 

develop a searchable web of things that sense and control the 

world. As this new internet of things expands, there will be 

an explosion of available raw data that may not always be 

reachable by users. Bridging this gap between what the user 

wants and the information collected and represented by 

embedded devices is a critical issue. In order to really 

maximize the benefit of such a web of networked sensing 

devices, new semantic approaches that can infer and predict 

additional information about the sensors and their context 

need to be developed. This paper proposes a content 

enrichment approach that uses sensor and context data as 

features to predict new meta-tags that can further identify 

relevant categorizations for the embedded devices and the 

physical data they collect. Specifically, machine learning 

classification and regression techniques are used to predict 

semantic tags for each embedded system context. Results of 

the 10-fold cross validation analysis and feature ranking are 

presented and discussed. 

Introduction   

The Semantic Sensor Web (SSW) will eventually 

revolutionize how we perceive and query information 

about the physical world. Currently, there is an ongoing 

effort to develop a searchable web of things that sense and 

control the world. Eventually, this technology will improve 

traffic conditions, will be able to reduce costs in elderly 

care, help to monitor safety in factories and other work 

environments, and develop entire new industries that help 

to improve the way humans live and work. 

As this new internet of things expands, there will also be 

problems such as an expansion in the digital universe. This 

will present many challenges for accurate information 
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retrieval. Information that could be useful to people may 

not always be reachable by those who need it because it 

lacks proper meta-tags. Bridging the gap between what the 

user wants and the information collected and represented 

by embedded devices is a critical issue. In order to really 

maximize the benefit of such a web of networked sensing 

devices, new semantic approaches that can infer and 

predict additional information about the sensors and their 

context need to be developed. To address these issues, this 

paper proposes a content enrichment approach that uses 

sensor and context data as features to produce new meta-

tags that can further identify relevant categorizations for 

the embedded devices and the physical data they collect. 

The proposed methodology uses a 3 step approach for 

content enrichment. In step 1, the collected data from the 

sensors is combined with other API data to create features 

which can be used to build a classification model. In this 

case, the model can predict 2 classes which are polluted 

and not-polluted. For the classification analysis to predict 

between polluted and non-polluted classes, machine 

learning classification algorithms such as Naïve Bayes and 

Support Vector Machines are used. Once this class is 

predicted, this new information plus the features are added 

to a context list. In step 2, cosm.com, a website for the 

internet of things, is leveraged to find additional 

information related to the embedded devices. Cosm.com is 

similar to a social network for embedded devices. This site 

provides additional tags which can be associated with each 

embedded device. Therefore, the results from the 

classification and features, are combined with meta-tags 

from cosm.com to extend the context list. Finally, in step 3, 

a knowledge base is used to generate new words that can 

be related to the words in the context list. The final content 

enrichment stage uses simple heuristic rules and 

knowledge bases to produce additional semantic tags for 

each embedded system context. 

Packet based networks can sometimes be unreliable and 

lose packets. To address the issue of missing data, such as 

missing sensor data, a regression approach is also proposed 
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which could be used to calculate values for missing data 

based on regression modeling. This regression approach is 

also presented and discussed. 

 

Literature Review 

Background 

The semantic sensor web is a new emerging field that 

promises great benefits for the future. By including 

semantic content in web pages, the semantic web enables 

users to find, share, and combine information easily.  This 

approach encourages including semantic content such as 

meta-data to express relationships specifically between 

web pages. Important recent works in this field include 

Klusch et al. (2009); Thirunarayan and Pschorr (2009); 

Broring et al. (2011); Roman and Lopez (2009); Dlodlo 

(2012); and Ramya et al. (2012). In Klusch et al. (2009), 

the authors created ontologies to better define the structure 

of the semantic web. Structures are the key components 

that define the relationships of a semantic web. Recently 

Thirunarayan and Pschorr (2009) showed how annotating 

semantic meta-data to raw sensor observations provides 

better interpretation and context. Wireless sensor networks 

(WSN) consist of devices such as the Arduino micro-

controller connected to sensors, which collect data and 

pass their data through a network to a central location for 

further analysis.  Initially the WSN was not concerned with 

the Internet.  However, projects such as Roman and Lopez 

(2009) have involved using these sensor networks through 

the Internet to create the so called Internet of Things (IoT). 

Machine learning, which is a common approach to 

semantic analysis, has also been applied to sensor 

networks. One important area has been for environmental 

analysis. Dlodlo et al. (2012) shows how using the IoT can 

be used in environmental monitoring to improve the South 

African economy. Ramya et al. (2012) shows how 

environmental monitoring using embedded systems can 

improve the life of sensor networks inside a motor vehicle 

while maintaining quality of monitoring. The issue of how 

to search data in this new semantic web of things has been 

addressed by Broring et al. (2011). They indicated various 

technologies and frameworks to provide structure to the 

web of things.  Sensor meta-data is described using 

SensorML, which helps support discovery, provide 

information, and describe post-processing steps. 

Machine Learning Methods and Feature Ranking 

In this study, the Naïve Bayes classifier and Support 

Vector Machines are used. Naïve Bayes is a probabilistic 

classifier that assumes that all features contribute 

independently to the prediction of a class. SVMs are binary 

classifiers based on statistical learning theory. They seek to 

maximize the margin that separates samples from two 

given classes (Vapnik and Cortes (1995); Burges (1998)). 

The maximization of the margin is defined using the 

support vectors. These support vectors are the samples 

closest to the optimal separation line. The calculation of 

the separation line parameters is performed using a 

quadratic optimization technique with Lagrange 

multipliers. The constraints of the optimization model are 

defined as the boundaries set by the support vectors. 

Formally, the “objective function” and constrains are 

formulated as follows: 
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where w represents the weight vector of the model, C 

controls the priority between empirical and structural risk, 

Ei is used to calculate the sum of the errors in the model, Yi 

is the sample class for each sample, Xi is the feature vector 

for the sample, b is the offset from the origin used for the 

hyper plane, and “i” represents each sample. 

For the purposes of feature ranking, the information gain 

method has been used. Finally, to address the issue of 

missing data, regression techniques are applied. Regression 

analysis is commonly used to predict real valued variables 

using linear regression techniques. However, for non-linear 

data other techniques may be required. Support Vector 

Regression (SVR) (Smola and Scholkopf (2004)) has the 

advantage that it can rely on kernel methods to map non-

linear data to higher dimensional spaces where a linear 

regression can be calculated.  Formally, the optimization 

problem for SVR is formulated as follows: 
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where “i” represents each sample, the variable C (cost) 

represents the tradeoff between prediction error and the 

weight vector, and ϕ() maps the data to higher dimensional 
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feature space. The optimization model formulated with 

equations (3) and (4) can be represented as follows:    
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here K(xi, x) = )()( xxi
T φφ ⋅ is the kernel function that 

maps the input vectors to higher dimensional space. Here, 

x represents the input vectors, and λ’s are the LaGrange 

multipliers.  

Methodology 

Overview 

The proposed methodology uses a 3 step approach for 

content enrichment which combines data classes predicted 

using machine learning techniques with meta-tags 

extracted from an Internet of things website. The 3 steps 

are described as follows: 

  

Step 1: The collected data from the sensor is combined 

with other API data to create features which can be used to 

build a classification model. In this case, the model can 

predict between 2 classes which are polluted and not-

polluted. Once this class is predicted, this information plus 

the features are added to a context list which is associated 

with each embedded system context. 

 

Step 2: The cosm.com website is leveraged to find 

additional information related to the embedded devices. 

This site provides additional tags which can be associated 

with each embedded device. Therefore, the results from the 

classification and features, are combined with meta-tags 

from cosm.com to extend the context list. 

 

Step 3: A knowledge base called ConceptNet (Havasi et al. 

2007) is used to generate new words that can be related to 

the words in the context list. These new words provide the 

additional content enrichment. 

Web Sensor Architecture 

A total of 5 web sensor devices were developed and 

located in 5 different locations throughout northwest 

Indiana. Each embedded device had 2 sensors to measure 

environmental gases. The sensors are MQ-7 and MQ-131 

(Figure 1).  The MQ-7 sensor has a high sensitivity to 

carbon monoxide (CO) gases and the MQ-131 sensor has a 

high sensitivity to Ozone (03) gases.  The sensors are set up 

directly connected to Arduino micro-controllers via a 

breadboard. Both sensors require a warm-up period of 5-10 

minutes before sensing accurate data.  Each Arduino is 

connected to either an Ethernet or Wi-Fi shield to have a 

connection to the Internet.  The type of shield is 

determined by the type and location of the network to 

which it needs to connect.  For instance, when collecting 

polluted data in an outside environment such as a parking 

garage, the embedded devices use the wi-fi shields to be 

able to reach the internet. 

 
 

Figure 1 Embedded System Device and Sensors 

 

In Figure 1, a prototype of the embedded systems device 

with the 2 sensors can be seen. The device is housed 

indoors and has an electric power supply. The Arduino 

Uno microcontroller boards are used for this work. The 

MQ-7 sensor has a range of 20 parts per million (ppm) to 

2000 ppm for CO. The MQ-131 sensor has a range of 10 

parts per billion (ppb) to 2000 ppb for 03. 

 

 
 

Figure 2 Project Reference Model 

 

The data from the sensors was collected as ppm for CO 

and ppb for O3 and sent to the cosm server every 5 

minutes. Figure 2 shows an overview of how the project 

data flows through the network. The user configures the 

Arduino via USB so that the device knows how to connect 

to the Internet and to what pins the sensors are connected. 

The Arduino communicates with the cosm server to upload 

the data it collects.  A different web server, using a Python 
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script, then collected data from the cosm server along with 

other data. 

Pollution Data Corpus and Features 

The data set includes samples from 2 classes which are 

polluted and not-polluted. A total of 2600 un-polluted 

samples and 98 polluted samples were collected. The data 

was collected during a 3 month period whenever the 

Arduinos were connected to the Internet and at the 

designated sites. Polluted data was collected by placing the 

collecting device near the exhaust of a car. For this work, 

the PUC race car project was used. Collection took place in 

the PUC race car and manufacturing laboratory. 

A total of 10 features were used in the data set for each 

reading sample. The features of the dataset are: MQ131, 

MQ7, latitude, longitude, temperature in Fahrenheit, dew 

point, precipitation in the last hour in inches, pressure in 

Hg, relative humidity, and date and time. The MQ131 and 

MQ7 data represents the concentration for each described 

gas. Latitude, longitude, time and date help to make each 

location and time period distinct in the analysis. Finally, 

each feature related to the weather was collected to 

determine if and how gas concentration was related to 

weather.   

 

Machine Learning and Feature Ranking  
 
Once the corpus was collected, the classification analysis 

and feature ranking were performed. Classification 

analysis was performed using Support Vector Machines 

(SVM) and Naïve Bayes. These methods are selected 

because Naïve Bayes tends to be very fast but less accurate 

than SVM. In contrast, SVM can be more accurate but 

slower and harder to tune model parameters. By using both 

methods, a better understating of the classification 

accuracy and speed boundaries for the data can be 

determined. Feature ranking was performed using 

information gain based feature ranking. To address the 

issue of missing data, a regression modeling approach has 

been implemented. Both linear regression and Support 

Vector Regression are used and compared using 10-Fold 

cross validation. As a proof of concept, a regression 

function is estimated for the MQ7 variable. The 

independent variables consist of the collected features for 

the data set. The SVR technique uses the RBF kernel as a 

mapping function. Results are presented and discussed in 

the results section. 

 
Meta-tags and Cosm  
 
For this experiment, cosm (cosm.com) has been used. 

Cosm is a platform for which users can share and search 

data related to embedded devices. It contains tags that help 

to describe the embedded device and the data that the 

device collects. 

 

Semantic Content Enrichment 
 

The semantic content detection methodology proposed in 

this work is useful in content enrichment of embedded 

devices connected to the Internet of Things (IOT). Here, 

the predicted polluted vs. non-polluted class is combined 

with additional tags or keywords downloaded from the 

cosm website and other API’s to help better describe the 

site.  Each identified tag helps to enrich the overall 

embedded device. In the enrichment process, the system 

takes one embedded device as input and generates an XML 

representation of the device with a natural language text 

description. The XML mark-up serves as a semantic 

representation of the embedded device which can be used 

as input for various systems such as in building 

information modeling (BIM), information retrieval 

indexing engines, for engineering tasks, and automatic 3-D 

generation systems. 

The XML representation uses tags similar to what is used 

in current Natural Language Processing (NLP) systems. 

The tags used for representation can range from low level 

features to high level semantically rich tags. The extracted 

feature vectors described in previous sections are an 

example of low level data. High level tags can include 

predicted class tags and inference tags generated using the 

knowledge base ConceptNet. For example, if the 

embedded device tags are for exposure indoor, disposition 

as fixed, physical domain, and a user who is associated 

with a university by their email or contact name; then, the 

inference rules may determine that this device could be 

located on or near a university campus and that the purpose 

of the embedded device is for educational purposes. The 

automatic semantic tag generation step can use predefined 

text descriptions with variable parameters. 

Analysis and Results 

Classification Analysis 
 
The corpus has a high class imbalance. To address this 

issue, SMOTE oversampling technique (Chawla et al. 

2002) was used. This technique allows for balancing the 2 

classes in the data.  

Table 1: Classification Results 

 

 Naïve Bayes SVM 

Polluted 0.99 0.99 

Not-Polluted 0.99 0.99 

All 0.99 0.99 
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After applying SMOTE, the corpus consisted of 2600 

samples of un-polluted data and 2548 of polluted data. 

Naïve Bayes and SVM with a linear kernel were used. The 

analysis was performed using 10-fold cross validation. As 

can be seen from Table 1, both classifiers performed well 

on the classification task. These results show promise for 

this type of classification task. However, it is important to 

note that future work must include more polluted samples. 

Feature Analysis 
 
Results of the feature analysis using the information gain 

ranking technique can be seen in Table 2. From these 

results, it can be seen that the MQ131 and MQ7 sensors 

have the highest contribution to classification accuracy. 

Additionally, it can be seen that pressure and dew point 

have a higher contribution than temperature and 

precipitation. 

Table 2: Feature Ranking 

Rank Score Feature 

1 0.98 MQ131 

2 0.94 MQ7 

3 0.93 Pressure 

4 0.91 Dew point 

5 0.89 Relative Humidity 

6 0.80 Temperature 

7 0.00 Precipitation 

 

Regression Analysis 
 
To address the issue of missing data, a regression analysis 

was conducted for the MQ7 parameter using both linear 

regression and support vector regression. For this 

regression, the imbalanced dataset was used without 

applying the SMOTE oversampling technique. From Table 

3, it can be seen that the regression function for MQ7 

obtains a good Root Mean Squared Error (RMSE) and a 

good correlation coefficient. Additionally, the SVR 

technique obtained slightly better results than the linear 

regression approach. The linear regression model can be 

seen in Table 4. 

 

Table 3: Regression Analysis Results 

 
 RMSE Correlation 

Coefficient 

Linear Regression 0.058 0.8739 

SVR 0.058 0.90 

 

 

 

 

Table 4: Linear Regression Model 

 
Coefficients Variables 

 MQ7= 

-0.0256 *   mq131 + 

-136.6782 * lat + 

97.5126 * lon + 

0.5069 *     temp_f + 

     -0.5919 *  dewpoint_f + 

    -48.3164 * precip_1hr +  

-24.7047 * pressure_in + 

23.9518 * Relative_humidity + 

14968.1263  

 

Content Enrichment 
 
For this work, embedded devices connected to the internet 

of things can be enriched by taking the results of the 

classification task (polluted vs. un-polluted), and the 

extracted meta-tags from cosm, and producing a semantic 

representation, and a natural language description of the 

embedded device. For example, features can be used to 

predict if the area where the device is located is polluted or 

not-polluted. 

<?xml version="1.0" encoding="ANSI_X3.4-1968"?> 

<embedded_device> 

<semantic> 
     <inference> 

    <location at_location="university"/> 

    <location at_location="factory"/> 
   … 

</inference> 

<sensor orderid="3" MarkableID="D001"> 
<class is_fixed="1" polluted_site="1" > 

<type f="MQ7"/> 

</class> 
</sensor> 

… 

<raw_features> 
        <feature f=pressure value="30"> 

        <feature f=dew_point value="28"> 

        <feature f=relative_humidity value="0.45"> 
        <feature f=time value="12"> 

</raw_features> 

… 
</semantic> 

</embedded_device> 

 

Figure 3 Semantic Embedded Representation 

 

The resulting classes per device are combined with the 

extracted tags from the downloaded cosm html file to 

create a list of information tags associated with the device. 

Once the classes are assigned, and the tags extracted, the 

sematic representation and text generation system can 
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automatically produce an XML semantic data structure and 

generate a text description. Additionally, inference 

heuristics using the knowledge base ConceptNet are used 

to infer if the classes and tags describe any additional 

concepts. To generate the XML representation, the system 

iterates through a tree element data structure and fills in all 

relevant tags based on the assigned classes in the context 

list. An example of the XML representation can be seen in 

Figure 3. The XML representation has additional meta-

information about the semantic inferences, the sensors, the 

microcontroller device, as well as the raw features 

information. 

Conclusion 

In this work, a methodology for semantic content 

enrichment for embedded devices connected to the internet 

of things has been proposed. SVM and Naïve Bayes 

classifiers were used to predict if samples collected by the 

devices detected pollution. The results obtained in this 

initial study show promise for this type of classification 

task. However, it is important to note that future work must 

include more polluted samples to obtain a better 

representation of the distribution in the polluted data. 

Results of the feature analysis using the information gain 

ranking technique indicate that the MQ131 and MQ7 

sensors have the highest contribution to classification 

accuracy. Additionally, pressure and dew point data have a 

higher contribution than temperature and precipitation.  

To address the issue of missing data, regression techniques 

were applied. Results from the regression analysis show 

promising results and indicate that SVR can improve 

results over regular linear regression. These initial results 

indicate that the training set with sensor data and API data 

as features can be useful for automatic content enrichment 

of embedded systems devices connected to the internet of 

things.    

Future work will focus on collecting additional features 

and on predicting other classes from the features. These 

new classes could help to determine other locations such as 

is on highway, located in city, located in farms, etc. 

Additional samples will be collected to create a larger 

corpus and to establish a data set with a smaller class 

imbalance. Another area to explore is the incorporation and 

use of other sensor information and tags from linked sites 

which can help to improve the content enrichment of the 

embedded devices. Syntactic grammars could also be 

implemented in the system to provide a greater variety of 

natural language text descriptions based on semantic 

analysis of information collected from embedded system 

devices. 
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