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Abstract 

Endowing the semantically-oblivious Internet with 
Intelligence would advance the Internet capability to learn 
traffic behavior and to predict future events. In this paper, 
we propose a hybrid intelligence memory system, or 
NetMem, for network-semantics reasoning and targeting 
Internet intelligence. NetMem provides a memory 
structure, mimicking the human memory functionalities, 
via short-term memory (StM) and long-term memory 
(LtM). NetMem has the capability to build runtime 
accessible dynamic network-concept ontology (DNCO) at 
different levels of granularity. We integrate Latent Dirichlet 
Allocation (LDA) and Hidden Markov Models (HMM) to 
extract network-semantics based on learning patterns and 
recognizing features with syntax and semantic 
dependencies. Due to the large scale and high-
dimensionality of Internet data, we utilize the Locality 
Sensitive Hashing (LSH) algorithm for data dimensionality 
reduction. Simulation results using real network traffic 
show that NetMem with hybrid intelligence learn traffic 
data semantics effectively and efficiently even with 
significant reduction in volume and dimensionality of data, 
thus enhancing Internet intelligence for self-/situation-
awareness and event/behavior prediction. 

Introduction 

Due to semantically-oblivious protocol operations, the 

current Internet cannot effectively or efficiently cope with 

the explosion in services with different requirements, 

number of users, resource heterogeneity, and widely 

varied user, application and system dynamics (Feldmann, 

2007). This is leading to increasing complexity in Internet 

operations, thus multiplying challenges to achieve better 

security and performance or even maintain satisfaction of 

applications with static or dynamic QoS requirements. 

The current Internet largely lacks capabilities to extract 

network-semantics to efficiently build runtime accessible 

dynamic behavior models of Internet elements (e.g., 

applications, services, protocols, etc.) at different levels of 

granularity to pervasively observe, inspect, analyze, 

predict and act upon network dynamics. We refer to the 

limited utilization of Internet traffic semantics in 

networking operations as the “Internet Semantics Gap”. 

 The current and future internets (e.g., Internet of 

things) support a massive number of entities with 

extensive amounts of data. Fortunately these data 

generally exhibit multi-dimensional patterns (e.g., 

patterns with dimensions such as time, space, and various 

Internet elements) that can be learned to extract network-

semantics (Srivastava et al., 2000). Network-semantics 

represent implicit information that can be extracted from 

analyzing raw Internet data using reasoning models for 

better understanding anomalous/emergent behavior of 

Internet elements. Recognizing and maintaining semantics 

as accessible behavior models related to various Internet 

elements will aid elements in possessing intelligence thus 

helping elements in predicting future events (e.g., attacks) 

and learning novel things. For instance, a router can 

classify a new running service in a network as a specific 

type of TCP-based file transfer service when it finds 

similarity between behavior of that new service and that 

of the already known service.  

 Hence, there is a need to endow Internet operations and 

running services and applications with intelligence to 

mitigate the Internet semantics gap. In the literature, 

Internet (or network) intelligence (referred here as 

InetIntel) is defined as the capability of Internet elements 

to understand network-semantics to be able to make 

effective decisions and use resources efficiently (Li et al., 

2007). InetIntel can be achieved via employing 

intelligence techniques to efficiently reason about 

semantics from tons of Internet traffic raw data and 

provide runtime accessible valuable information at 

different levels of granularity. InetIntel systems use either 

monolithic or hybrid intelligence techniques (HIT). 
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 Network-data characteristics include massive volume, 

high- and multi-dimensionality, dynamicity and 

complexity (variety in representation models and 

languages). In (Griffiths et al., 2004), authors proposed a 

generative model based on Latent Dirichlet Allocation 

(LDA) (Blei et al., 2003) and HMM (Rabiner and Juang, 

1986) for learning words with short-range syntax and 

long-range semantics dependencies. Consequently, this 

aids in forming richer ontology with more associated 

semantic topics and classes. There is similarity between 

characteristics (e.g., huge volume, high dimensionality, 

and complexity) of datasets in networks and language 

modeling.  

 In this paper, we present a system, called NetMem, for 

targeting InetIntel. NetMem provides a semantics 

reasoning model via a HIT integrating LDA and HMM 

algorithms for combining the advantages of both 

algorithms in efficiently: a) learning patterns of big data 

with high- and multi-dimensionality; and b) building 

dynamic network-concept ontology (DNCO) showing 

different and correlated concept classes (Rajpathak and 

Chougule, 2011). NetMem uses the proposed HIT-based 

reasoning model in order to have highly abstracted and 

associated application-agnostic semantics on different 

levels of granularity and related to various network 

concerns. We are motivated in our HIT design by the 

capability of LDA (Blei et al., 2003) to discover latent 

and classified high-level features from multi-dimensional 

network-data patterns with long-range semantic 

dependencies. Those classified features will be sequenced 

to enable semantic reasoning via HMM with higher 

accuracy. HMM (Rabiner and Juang, 1986) are structured 

architectures that are able to predict sequences of 

semantic topics (related to different network concerns) 

based on input sequences of extracted network features by 

LDA. Depending on input sequences or pattern of highly-

discriminative network-data features, HMM with forward 

and backward algorithms can learn semantics showing 

their functional, behavioral, and structural (FBS) aspects.  

 NetMem design is inspired by the functionalities of 

human memory (Hawkins and Blakeslee, 2005), which 

maintains conceptual models that describe associative 

concepts according to learned multi-dimensional patterns 

of data captured from the outside world through our 

sensory system. Those models are updated continually and 

used for future predictions achieving human intelligence. 

Analogy with human memory’s functionalities, NetMem 

has a memory system structure comprising short-term 

memory (StM) and long-term memory (LtM). StM 

maintains for a short-time highly dynamic raw data while 

LtM keeps for long-time little varying information, which 

is used in matching and prediction processes. From a 

system’s perspective, NetMem can be viewed as an 

overlay network of distributed “memory” agents targeting 

various data abstraction levels. 

NetMem adopts Locality Sensitive Hashing (LSH) 

(Mimaroglu and Simovici, 2008) to reduce dimensions of 

large scale network-data. LSH can search for similarity in 

high-dimensional data and minimize required storage 

spaces. We focus in this paper on the design and 

evaluation of NetMem with the designed HIT by 

integrating LDA and HMM and with/without utilizing 

LSH. Our contributions are as follows: 

- Memory system design with hybrid intelligence for 

efficient extraction of high-level features and 

reasoning about semantics in network traffic; and 

- Runtime on-demand accessible application-agnostic 

customizable DNCO of concept classes related to 

various network concerns showing FBS aspects per 

each class; to have, for example, better enhanced 

decision making and anomaly detection. 

Hybrid Intelligence Network Memory System 

NetMem is a shared distributed semantics management 

system that can be built as an overlay network of 

“memory” agents. NetMem system can be built separately 

on multiple autonomous entities (e.g., intelligent agents) 

with capability of inter-communication and semantics 

integration.  

NetMem Architecture Components 

NetMem architecture, as shown in figure 1, comprises the 

following interacting components targeting InetIntel: 

1- Short-term memory (StM) and long-term memory 

(LtM): StM, or working memory, maintains raw data 

which possess higher levels of details and are related 

to various Internet elements. LtM maintains data 

semantics with higher levels of abstraction. StM and 

LtM consist of sets of big extensible relational data 

tables, which are a cloud-like data storage technique; 

2- Data virtualization and access (DVA): performs data 

collection and acquisition operations. DVA 

implements data virtualization techniques for data 

homogenization via using data models to unify 

 

Figure 1: NetMem with HIT reasoner 
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network-data representation as profiles of attribute-

value pairs in NetMem tables. DVA adopts LSH 

algorithm for data reduction, grouping, and similarity 

matching processes; 

3- Semantic manager (SM): executes semantics reasoning 

operations. SM is responsible for discovering/ 

generating/matching semantics in LtM using LDA and 

HMM algorithms (i.e., HIT) and based on: a) 

monitoring raw data or data profiles in StM and 

learning their patterns; and b) extracted and classified 

data attributes via adopting Associative Rule Learning 

(ARL) with Apriori algorithm and Fuzzy Membership 

Functions (FMF). The implemented ARL algorithm, 

as shown in figure 2, is used to relate groups of data 

attributes that are most found in data profiles. FMF 

can classify attributes based on their values; and 

4- NetMem controller and interface (NCI): responsible 

for handling raw data and semantics (or concepts) 

requests from Internet elements in various networking 

domains. It has the capability to differentiate requests, 

and accordingly sends tasks, e.g., data discovery, to 

DVA or SM. It receives responses from DVA or SM 

including required data to be accessed by Internet 

elements. 

Dimensionality Reduction 

NetMem DVA applies LSH algorithm with bit sampling 

for hamming distance to reduce number of attributes 

represented by each profile and finding similarities among 

group of expressed profiles to be stored in one location in 

StM. Reduced dimensional profiles of length k attributes 

are constructed via selecting k attributes among n 

attributes where n>k. Attributes’ selection depends on 

using hash functions which might be chosen randomly or 

according to specific directions such as focusing on 

attributes of certain Internet elements (e.g., services). 

Hybrid Intelligence Technique for Semantics 

Reasoning 

We provide for NetMem the hybrid LDA-HMM or HIT 

model, as illustrated in figure 3, through integrating two 

monolithic intelligence techniques (i.e., LDA and HMM) 

to make use of their abilities. We provide the hybrid 

model to strengthen the capability of NetMem for 

reasoning efficiently about network-semantics based on 

learning patterns of full or reduced-dimensional data. 

Semantic reasoning process via the implemented HIT in 

SM is executed for learning high-level data features with 

long-range syntax and semantic dependencies. The 

process is performed every defined reasoning window or 

through other criteria as triggering signal sent from 

NetMem DVA to SM. The HIT operation depends on 

learning patterns of kept profiles and comprised attributes 

in StM. Groups of profiles’ attributes are discovered using 

the applied ARL algorithm and a defined set of FMFs in 

SM. For instance and through a defined reasoning 

window, SM aggregates information, initially, via learning 

patterns of TCP data profiles in StM through recognizing 

and classifying attributes of each profile. Analyzing TCP 

data profiles in StM by ARL and FMF might give for 

LDA the following classified attributes: 10000 profile’s 

instances, large_TCP_packet_size,TCP-

SYN_packet_type, file_ transfer_service_type.  

 Based on learned attributes, LDA extracts and classifies 

high-level features associated with each analyzed m data 

profile of total M profiles in StM. LDA samples a hidden 

semantic topic z for each m data profile through 

calculating sampled posterior probability vector θ of 

topic-data profile association which depends on prior 

association weight α, number of the m
th

 profile’s attributes 

related to a certain topic z, and total number of attributes 

in the m profile. Also, LDA calculates sampled posterior 

probability φ of attribute-topic association based on prior 

attribute-topic association weight β, number of attribute 

instances assigned to topic z, and total number of 

attributes in all M profiles assigned to topic z.   

 

Figure 3: Pseudo code of the LDA-HMM-based reasoning model 

 

Figure 2: associative rule learning algorithm in SM 
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Table 1: Prediction analysis metrics and equations 
Unit Equation Function Metric 

min 

T = TR  where TR is the time-overhead caused by the 

implemented algorithms in the semantic Reasoning 

model 

Measures the time complexity of the implemented semantics 

reasoning model for detecting and learning all behavior classes 

of running service flows 

Processing 

Overhead (T) 

Kbytes 
S = StM_size where StM_size is the storage space of 

the working memory for learning data patterns 

Identifies the storage space required for maintained data that 

will be used by the implemented semantics reasoning model  

Space 

Complexity(S) 

--- Ac =(Tp+Tn) / Nc 
Calculates ratio of true positive (Tp) classes and true negative 
(Tn) classes that are learned with respect to all behavior classes 

(Nc) that should be learned 

Prediction 

Accuracy (Ac) 

--- Fp / Nc 
Calculates ratio of normal behavior classes that misclassified to 

abnormal classes according to Nc 

False Positive 

(Fp) Ratio 

--- Fn / Nc 
Calculates ratio of abnormal behavior classes that misclassified 

to normal classes according to Nc 

False Negative 

(Fn) Ratio 

--- R= Tp/(Fn+Tp) 
Measures the effectiveness of system to learn abnormal 
behavior classes (including classes of attacks) with respect to Fn 

Recall (R) 

 

 In our proposed HIT, through a certain number of 

iterations and using Gibbs sampling (Casella and George, 

1992) LDA draws hidden topics for each m data profile 

and then draws feature topics for comprised attributes in 

each analyzed data profile. For example, three feature or 

semantic topics are defined in LDA: (“normal TCP 

packet”, “normal comm-flow”,“TCP comm-protocol”). 

Ten data profiles (M=10) in StM yield the same three 

classified attributes. Each attribute and profile has a prior 

topic association weight vector. Based on the overall prior 

weight vectors (α and β) and number of semantic topics, a 

sampled topic association probability vector passoc of 

length equals the number of available semantic topics is 

calculated like passoc=p(semantic_topic_1)=0.75, p(s_2)= 

0.2, p(s_3)=0.05. In each LDA iteration, the current 

assigned topics for a data profile and comprised attributes 

are removed. Then, a random number u is sampled based 

on passoc and the summation of its contents. The higher p 

topic association value will be chosen and the related 

topic is assigned. For example, if u equals 0.6, number of 

attributes and related profiles assigned to the first 

semantic topic (i.e., the new topic) increases since (p(s_1) 

=0.75) is greater than 0.6. Thereafter, updates will be 

happened to posterior association weights θ and φ 

according to changes in number of attributes and profiles 

that relate to the first semantic topic.  Hence, the posterior 

association weight of the first topic with data profiles and 

comprised topic-related attributes increases. 

Extracted and classified features, output from LDA, 

form a sequence and convey to parameters of HMM (A, 

B, π) to generate semantics. The HMM parameters, 

discussed shortly, are trained and assigned using the 

unsupervised Baum-welch learning algorithm. That 

algorithm depends on an initial developed HMM for 

finding the maximum likelihood HMM parameters 

through iteratively training the parameters of the initial 

model relied on the observed output sequence. The ability 

of input to HMM sequence of data features related to 

diverse network concerns enables getting output sequence 

with associated semantic topics or concept classes on 

different level of abstraction. For example, an input 

sequence to HMM might be (“normal TCP packet size”, 

“normal comm-flow”, “TCP comm-protocol”) with equal 

initial state probability π (i.e., π =1/3) and state transition 

probabilities A (i.e., Aij = 1/2 for i≠j and Aij = 0 for i=j 

where Aij is the transition probability form state i to state 

j). The first feature can be classified as an application 

concern and the other two features as communication 

concerns. Accordingly, the expected HMM output 

observation based on the previous sequence with any 

feature order might be “normal TCP-based service”. To 

get the previous output, the observation probability B 

matrix, which relates each input state with an output, 

regarding that concept class (i.e., output) will be high. For 

instance, B matrix might consist of three rows r and three 

columns c; and it might equal ((0.3,0.5,0.2),(0.2,0.8,0.0), 

(0.4,0.45,0.05)) where the number of r equals the number 

of input features and the number of c equals the number 

of output concept classes. According to the previous 

example, all input features have high observation 

probability with the “normal TCP-based service” concept. 

Evaluation 

We study the effectiveness of NetMem’s HIT via 

simulation. We target a case study where NetMem is used 

to achieve predictive networking operations via better 

anomaly detection. A practical and simple network of five 

entities was implemented. Those entities connect to the 

Internet. There were two hosts and two servers. FTP and 

Web servers were implemented over two static laptops 

running Windows 7. Two hosts were built over another 

two static laptops to handle data from servers. NetMem 

was implemented over a Windows 7 laptop, an entity with 

routing functionalities that can capture data/control 

packets going from/to hosts to/from servers and Internet. 

NetMem was implemented as an application written in 

Java for the operations of NetMem entities: NCI, DVA, 

StM, LtM, and SM. Real traffic was collected via snort 

(Caswell and Beale, 2004). We compared NetMem system 

effectiveness with snort in learning classes of 

normal/abnormal data flows and detecting classes of 

attacks. Table 1 shows metrics used to evaluate 

performance of NetMem. In our scenario, hosts run file 
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transfer services on top of TCP to get files and access 

pages from FTP and Web servers, respectively. Also, 

hosts utilize UDP to transfer data packets through the 

Internet. One of the two hosts was malicious and it sent 

the web server succession of TCP SYN requests to form 

TCP-SYN flood attack. The other host is a legitimate user 

which requests file from FTP server.  

 In our evaluation, we tested NetMem performance in 

correctly learning semantics of running services’ flows 

and forecasting behavior of unfamiliar traffic flows using 

LDA-, HMM- and HIT-based reasoning models. We 

compared results with snort based on its set of defined 

traffic-content-based rules. We evaluated NetMem 

performance without LSH and with LSH at various k 

values (3, 4 and 5). The k value refers to the reduced 

number of attributes in reduced-dimensional data profiles. 

 Figure 4 shows the impact of adopting LSH in 

minimizing StM storage space required for reasoning 

about semantics compared with different operation cases; 

NetMem system without LSH and with LSH at different 

values of k. Figure 5 shows the percentage of storage 

space saving according to the usage of LSH. As in the 

figure, the usage of LSH saved over 96% of storage space 

than in the case of operations without LSH. Figure 6 

illustrates the processing time overhead of NetMem’s 

semantic reasoning model using different algorithms to 

recognize semantics of normal/abnormal flows and to 

detect running malicious flows and attacks accordingly. 
Figure 7 shows the prediction accuracy and false negative 
ratio of NetMem versus snort for learning 
normal/abnormal flows’ behavior classes and detecting 
related attacks. The NetMem’s semantic reasoning model 
using HIT with/without LSH was able to learn most of the 
behavior classes with higher accuracy. Simulation results 
showed that snort was not able to learn correctly all 

normal behavior classes of running flows because snort is 
considered a stateless firewall in general (Caswell and 
Beale, 2004). As an example, a stateless firewall will 
prevent legitimate packets concerning a TCP-based traffic 
from passing since it has no knowledge that those packets 
destined to a protected network adopt a certain host's 
destination port such as 51282. From the previously 
obtained results, we conclude the following: a) NetMem 
can provide an effective and efficient capability through 
the designed HIT for learning behavior classes of 
normal/abnormal network-data traffic relying on learning 
patterns of full- or reduced-dimensional profiles of traffic 
data; and b) NetMem can support existing networking 
tools (e.g., intrusion detection systems such as snort) to 
execute their functions more effectively and efficiently. 

Related Work 

Recent works targeted intelligence-based solutions to 

enhance operation performance in networking. In (Idris 

and Shanmugam, 2005), authors provided a HIT-based 

system for intrusion detection that combines: a) misuse 

detection (e.g., detect attacks based on learning patterns 

and matching with already known attack patterns); and b) 

 

Figure 5: Storage space reduction 

 

Figure 4: Storage space saving in StM due to using LSH 

 

Figure 6: Processing time overhead by reasoning processes 

 

(a) Detection accuracy 

 

(b) False negative (Fn) ratio 

Figure 7: Detection accuracy and Fn ratio of NetMem system and 
Snort in detecting classes of abnormal flows and attacks 
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anomaly detection (e.g., learn unfamiliar attacks or threats 

by applying statistical analysis methods over data and 

compare results with historical knowledge). The proposed 

HIT comprised fuzzy logic and a data mining mechanism 

with the usage of NN. They depended on extracting 

features from large sets of real network-data and applying 

those features over simple if-then fuzzy rules. Khan et al. 

(Khan et al., 2012) provided HMM for discovering 

abnormal temporal events in sensor networks. The 

assumption was that unusual events are rare and not 

enough data are found for training. Different detection 

models were implemented where abnormal activities were 

detected if their likelihood were below defined thresholds. 

How NetMem Differs? 

 Compared with related work such as (Idris and 

Shanmugam, 2005; Khan et al., 2012), NetMem provides 

a storage memory structure which comprise StM and LtM 

to facilitate data patterns learning and semantics 

reasoning/retrieval for matching and prediction processes. 

Additionally, NetMem’s HIT can provide behavior 

models related to various Internet elements through the 

formed application-agnostic runtime accessible ontology.  

NetMem’s HIT achieves ontology of richer network 

concept classes, extracted with high prediction accuracy 

and good level of computation time compared with 

NetMem at using monolithic reasoning algorithms. 

Furthermore, the formed ontology can be customized to 

maintain concept classes related to specific Internet 

elements showing various FBS aspects per each class. 

Derived concept classes are accessed and learned by 

Internet elements at runtime and on-demand enabling, for 

example, learning services’ QoS requirements and better 

anomalies detections. 

Conclusion  

In this paper, we presented hybrid intelligence memory 

system, or NetMem, targeting Internet intelligence. 

NetMem integrated LDA and HMM for semantic 

reasoning, and utilized LSH to reduce data dimensionality 

and to have low time-overhead for learning and matching 

Internet behavior classes. NetMem provided a memory 

structure mimicking the human memory functionalities 

via StM and LtM to enable learning data patterns and 

semantics reasoning. Evaluation of networking operations 

using real-time Internet traffic data showed the efficacy of 

NetMem for learning behavior classes of 

normal/anomalous flows and attacks. Also, NetMem with 

hybrid intelligence provided better effectiveness and 

efficiency compared with monolithic intelligence 

techniques. Future work includes (i) leveraging 

NetMem’s hybrid intelligence capability of learning 

dynamic and abnormal behavior to enhance behavior 

prediction and self- and situation-awareness by the 

various Internet elements, and (ii) expanding our 

evaluation to study a fuller large-scale NetMem system 

with distributed intelligent heterogeneous multi-agent 

system with dynamic adaptation to various reasoning 

models. 
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