
The Use of Paraphrase Identification in the Retrieval of
Appropriate Responses for Script Based Conversational Agents

Jerome L. McClendon, Naja A. Mack, Larry F. Hodges

Abstract

This paper presents an approach to creating intelligent
conversational agents that are capable of returning ap-
propriate responses to natural language input. Our ap-
proach consists of using a supervised learning algorithm
in combination with different NLP algorithms in train-
ing the system to identify paraphrases of the user’s ques-
tion stored in a database. When tested on a data set con-
sisting of questions and answers for a current conversa-
tional agent project, our approach returned an accuracy
score of 79.15%, a precision score of 77.58% and a re-
call score of 78.01%.

Introduction
In this paper we concentrate on the problem of retrieving
an appropriate response for a conversational agent based
on the user’s natural language input. Previous studies done
on conversational agents found that, if the agent is unable
to produce an appropriate response to the user’s last state-
ment, the user may become frustrated and is less likely
to use the system (Bloodworth et al. 2012). The difficulty
in retrieving an appropriate response for a working con-
versational agent is determined by the complexity of the
inputs that the system will accept. A straightforward ap-
proach is to have the conversational agent control the con-
versation by asking questions and provide the human user
with a list of possible keyword responses. A more gen-
eral approach is to create a set of questions paired with
answers (a script or conversational corpus) stored in ei-
ther an XML file or a database (Dickerson et al. 2005;
Leuski et al. 2009). The conversational agent then tries to
match a freeform natural language question to the most simi-
lar question contained in the conversation corpus. The paired
answer is then returned as the most appropriate response. If
the question by the user is outside of the expected domain of
the conversation and there is no appropriate answer stored in
the database, then the appropriate response should be equiv-
alent to “I do not understand that question.”

The difficulty in matching the user’s question to the most
similar question in the corpus is due to the variability of nat-
ural language (Dickerson et al. 2005). The conversational

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

User Question Questions stored in Cor-
pus

What does the pain feel
like when you are eating ?

Explain the pain you feel
when eating.

Table 1: The user’s question and a variation of that question
stored in the corpus.

agent must be able to identify that a question stored in the
corpus is a variation of the user question. Question varia-
tions or question paraphrases are questions that have been
derived by changing the syntax of the original question by
rearranging words, removing words, inserting words, and/or
replacing words with synonyms while leaving the meaning
of the question unchanged (Bernhard and Gurevych 2008).
An example of this would be the two questions shown in
Table 1.

In our system, known as Caesar, we used a supervised
learning algorithm in combination with different natural lan-
guage processing(NLP) algorithms in training the system to
identify paraphrases of the user’s question stored in the cor-
pus.

Related Work
Supervised Learning Algorithms used in paraphrase iden-
tification consist of two phases: training and classification.
During the training phase, a supervised learning algorithm
produces an output function (the classifier) based on labeled
examples (the training set). The labeled examples are sen-
tence pairs labeled 1 or 0. A 1 represents a paraphrase (pos-
itive example) and a 0 indicates a non-paraphrase (nega-
tive example). Using the sentence pairs, a feature vector is
created using NLP modules that produce similarity scores
that measure the similarity between the two sentences. Once
the system has been trained, the classifier takes in two sen-
tences and creates a feature vector based on those sentences.
The classifier then uses this feature vector to decide if the
unseen instance is a positive example or negative exam-
ple of a paraphrase (Brockett and Dolan 2005; Zhao, Zhou,
and Liu 2007; Chitra and Kumar 2010). We chose to use
a support vector machine(SVM) because of its ability to
work with noisy training data (Brockett and Dolan 2005;
Chitra and Kumar 2010).

Proceedings of the Twenty-Seventh International Florida Artificial Intelligence Research Society Conference

196

Brockett & Dolan, use a SVM along with several NLP
features that include: string similarity modules, morpholog-
ical variants, WordNet lexical mappings and word associa-
tion pairs to extract paraphrases from a corpus of news clus-
ters for the creation of a large monolingual paraphrase cor-
pora (Brockett and Dolan 2005). In order to train the sys-
tem the authors of the paper used a training set consisting
of 10,000 sentence pairs labeled 1 (positive example) or 0
(negative example) by human judges. Of the 10,000 sen-
tence pairs 2,968 sentences were labeled 1 and 7,032 were
labeled 0.

Chitra & Kumar also uses a SVM with a combination of
lexical and semantic features to identify paraphrases. The
lexical features measured the amount of word level over-
lap found between two input sentences. The semantic fea-
tures measured the amount of meaning or concepts shared
between the two sentences. Results from their experiments
revealed that the features that relied on common consecu-
tive or insequence matches were able to identify 70% of the
paraphrases (Chitra and Kumar 2010).

The implementation of our system Caesar uses a SVM in
combination with different NLP algorithms in training the
system to identify paraphrases of the user’s question stored
in the corpus. An advantage to using machine learning over
other techniques is its ability to analyze and incorporate dif-
ferent information sources (NLP algorithms) such as mor-
phologic, syntactic, and semantic when determining para-
phrases (Chitra and Kumar 2010).

Modules Descriptions
For our system we use ten different NLP modules when
determining whether two sentences are paraphrases. These
modules can be broken into three different categories, each
examining different aspects of the sentence: word overlap,
word order and n-grams. Each module produces a score be-
tween 0 and 1, where 0 indicates that the module found no
commonality and 1 indicates maximum commonality. These
scores define the feature vector that is later used in the train-
ing and classification stages.

Word Overlap
Word overlap modules compute commonality scores based
on what words or parts of speech the two sentences have
in common. We have implemented six word overlap scor-
ing methods: Jaccard Coefficient, Common Noun Similarity,
Proper Noun Similarity, Verb Similarity, Subject Similarity,
and Object Similarity.

Let |s| represent the number of items in the set.
In set theory, the Jaccard Coefficient is defined as the

number of unique items two sets have in common over the
total number of unique items in the two sets (Achananuparp,
Hu, and Shen 2008). This is computed as:

JC =
|s1 ∩ s2|
|s1 ∪ s2|

(1)

If sentences are viewed as sets then the JC can be defined
as the number of unique words two sentences have in com-
mon over the total number of unique words in the two sen-

tences. We have also modified JC by using a multiset ap-
proach that computes for a word appearing in the same sen-
tence multiple times. For the remainder of the paper, we will
use the term, array, when referring to a multiset.

The Common Noun Similarity module finds all the com-
mon nouns for each sentence and places them into arrays,
cn1 and cn2 . CNS is thus defined as the number of com-
mon nouns the two sentences share over the length of the
largest array. CNS is computed as:

CNS =
|cn1 ∩ cn2|

max(|cn1|, |cn2|)
(2)

The Proper Noun Similarity module finds all the proper
nouns for each sentence and places them into arrays pn1 and
pn2 . PNS is thus defined as the number of proper nouns the
two sentences share over the length of the largest array(Chi-
tra and Kumar 2010). PNS is calculated using the following:

PNS =
|pn1 ∩ pn2|

max(|pn1|, |pn2|)
(3)

The Verb Similarity module finds all the verbs for each
sentence and places them into arrays, v1 and v2. VS is thus
defined as the number of verbs the two sentences share over
the length of the largest array. The formula for calculating
VS is below:

V S =
|v1 ∩ v2|

max(|v1|, |v2|)
(4)

The Subject Similarity module finds all the common sub-
jects for each sentence and places them into arrays, sub1 and
sub2. SS is thus defined as the number of subjects the two
sentences share over the length of the largest array. SS is
computed as:

SS =
|sub1 ∩ sub2|

max(|sub1|, |sub2|)
(5)

The Object Similarity module finds all the common ob-
jects for each sentence and places them into arrays, obj1 and
obj2. OS is thus defined as the number of objects the two
sentences share over the length of the largest array. OS is
computed as:

OS =
|obj1 ∩ obj2|

max(|obj1|, |obj2|)
(6)

Word Order
When determining if two sentences are similar it is also im-
portant to examine the structure of the sentence. Although
two sentences share the same words, this does not mean
that they are paraphrases of each other. We implemented
two word order scoring modules: Maximum Common Sub-
sequence and Longest Common Subsequence. We define a
subsequence as a sequence of words that have been selected
from a sentence and placed in an array in the same order as
they appeared in the sentence.

The Longest Common Subsequence module finds every
consecutive subsequence that two sentences have in com-
mon and places the length of these sequences into an array

197

of scores. LCS is thus defined as the maximum value in the
scores array over the length of the longest sentence (Chitra
and Kumar 2010). LCS is calculated as the following:

LCS =
max(scores)

max(|s1|, |s2|)
(7)

The Maximum Common Subsequence module finds every
subsequence that two sentences have in common and places
the length of these sequences into an array of scores. It dif-
fers from the LCS in that it allows for words to be skipped
as long as the common words in the resulting subsequence
are in the same order. MCS is thus defined as the maximum
value in the scores array over the length of the longest sen-
tence (Hirschberg 1977). MCS is computed as:

MCS =
max(scores)

max(|s1|, |s2|)
(8)

N-Grams
N-grams are a neighboring subsequence of n words from
a given sentence. N-Gram modules compute commonality
scores based on what n-grams they have in common using
approximate string matching, a method for finding strings
that match a particular pattern. We have implemented two
N-gram scoring modules: Word N-Gram Overlap and Skip-
grams.

WNGO is defined as 1 over N times the summation from
n to N : where the numerator is defined as the number of
n-grams that the two sentences have in common for a par-
ticular n and the denominator is defined as the length of the
sentence with the most n-grams for a particular n. WNGO
is computed as:

WNGO =
1

N

N∑
n=1

|Gn(s1) ∩Gn(s2)|
max(|Gn(s1)|, |Gn(s2)|)

(9)

Where Gn(s) is the set of n-grams of length n for sen-
tence s and N is equal to 4 (Bernhard and Gurevych 2008).

Skipgrams use n-grams but allow words to be skipped
within the subsequence (Chitra and Kumar 2010). There-
fore, k-skip-n-grams allow a total of k or less skips to con-
struct the n-gram. 2-skip-bi-grams were used in implement-
ing this module.

SKIP =
|sk1 ∩ sk2|
|sk1 ∪ sk2|

(10)

Classifier
To determine if the user’s question and a candidate question
taken from the conversation corpus are paraphrases we im-
plemented a SVM classifier to label the sentence pair as a
positive or negative example. The SVM was implemented
using the LibSVM library using the RBF kernel (Chang and
Lin 2011). Based on the user’s question and the candidate
question a feature vector is created using the NLP modules
discussed earlier. The classifier uses this feature vector to
determine whether the sentence pair is a paraphrase. Along

with a class output label the classifier also generates a con-
fidence score that gives us the probability that this particu-
lar instance belongs to the predicted class. As it relates to
our system, the confidence score is a value between 0 and
1 and represents how confident the system is in its decision
that the two sentences are positive or negative examples of
a paraphrase. Using that confidence score we rank the ques-
tions from the corpus that have been labeled as a paraphrase
when compared to the user’s question. We then use the high-
est ranked question’s paired answer as the response. If there
are no questions classified as a paraphrase, meaning all the
questions were classified as dissimilar, then the answer of “I
do not know” is returned.

Trainer
To train the system to identify paraphrases we needed a large
set of positive and negative sentence pairs to use in the train-
ing set. Since there exists a limited number of paraphrase
training sets we created our own training set using multiple
English translations of the book of Genesis in the Bible. The
Bible was chosen for the following reasons:
• Among different versions of the Bible, semantically

similar text existed.
• The organizational structure of the Bible allowed us to

automate the process of aligning similar and dissimilar
verses.

Using the 1,533 verses from Genesis we were able to cre-
ate positive and negative sentence pairs. Our final training
set consisted of 24,416 samples pairs labeled either 1 or 0
along with the feature vector for that sentence pair. The fea-
ture vector is a vector of scores computed using the modules
described in the previous section. Out of the total 24,416
sentence pairs:
• 20,668 sentences were labeled 1’s
• 3,748 were labeled 0’s
To create the positive examples (1’s), we took five differ-

ent versions of the Bible stored in a text file and inserted
verses into a database. We then aligned the different ver-
sions of the Bible by chapter and verse number. Chapter
1 verse 2 of the American Standard Version would align
with Chapter 1 verse 2 of the King James Version. Since
the two sentences were taken from two different versions of
the Bible we knew that a large amount of the verses gath-
ered would be expressed differently. Meaning, the words in
the sentence would be rearranged, removed, inserted, and/or
replaced with synonyms. However, the essential meaning of
the two verses would be the same. We also knew that in us-
ing this technique we would also produce identical sentence
pairs. From previous experiments, we learned that having
identical sentence pairs in our training set helped in identi-
fying paraphrases.

To create negative examples (0’s) we aligned passages
together that had different verse numbers or had the same
verse number but came from a different chapter of Gene-
sis. Chapter 26 verse 11 of the American Standard Version
would align with Chapter 26 verse 14 of the King James
Version.

198

Soft Filtering
During the classification step, most of the algorithm’s com-
putation time is spent in creating the feature vector that will
be used by the classifier. In order to increase the speed of our
system, we used an approach called soft filtering to perform
classifications on only a subset of questions from the cor-
pus. Soft filtering is a technique used to reduce a large set of
potential answers to a smaller set of answers before passing
the answers to more time consuming operations (Ferrucci et
al. 2010). Since our questions and answers were stored in a
MySQL database, we used the Full Text Search option in the
database to return a ranked list of ten questions sorted in de-
scending order of relevance as determined by the database.
Only the top ten questions were passed to the classifier to
be ranked based on their class output label and probability
estimates.

System Evaluation
In order to evaluate the system’s ability to return appropriate
responses from the conversation corpus, we measured the
system’s overall accuracy, defined as the number of ques-
tions answered correctly over the number of questions asked
in total. The number of questions answered correctly was
separated into two categories: true positives (TP) and true
negatives (TN). A TP occurs when the system returns an ap-
propriate answer from the corpus. A TN occurs when the
system returns “I do not know” and the appropriate answer
to that question was not present in the corpus.

The number of questions answered incorrectly were also
separated into two categories: false negatives (FN) and false
positives (FP). A false negative occurs when the system
returns “I do not know” when an appropriate answer was
stored in the corpus. A FP occurs when the answer returned
from the system is inappropriate. The FPs were separated
into two categories, Type I and Type II false positives. Type I
FPs occur when the system returns an incorrect answer from
the corpus when an appropriate answer is present in the cor-
pus. Type II FPs occur when the system returns an answer
from the corpus when it should not have, because the true
value was “I do not know”. Accuracy is defined as the total
of number of questions answered correctly out of the total
number of questions asked. Accuracy is computed as:

Accuracy =
TP + TN

TP + TN + FPI + FPII + FN
(11)

Precision is defined as the total of number of questions
answered correctly out of the total number of answers the
system returned that were from the corpus. Precision is com-
puted as:

Precision =
TP

TP + FPI + FPII
(12)

Recall is defined as the total of number of questions an-
swered correctly out of the total number of questions asked

where there was a correct answer stored in the corpus. Recall
is computed as:

Recall =
TP

TP + FN + FPI
(13)

For our data set, we began with a set of questions gath-
ered from a group of nurses for a related project involving
the development of a conversational agent. We chose this
data set because we wanted to test Caesar on data created by
real application area professionals. The agent was designed
to help student nurses learn how to interview patients. From
that original set of questions, variations were created from
each question by potential users of the system. This process
of taking an original set of questions and generating varia-
tions is similar to process performed by Leuski et al., when
testing their conversational agent SGT Blackwell (Leuski et
al. 2009). When creating a question variation words were re-
arranged, removed, inserted and/or replaced with synonyms.

Having the users create variations from an original set of
questions produced semantically similar categories. Mean-
ing, questions from the same category had similar meanings
and therefore the same answer could be returned for each
question in that category.

Before inserting variations of the original question into
the corpus, we verified that the questions being inserted and
the original question:

1. Had identical meanings

2. Could both return the same answer

3. Both presented alternate wording

These standards were derived from Bernhard and
Gurevych’s definition of a question paraphrase (Bernhard
and Gurevych 2008). If a variation failed to meet any of
these standards then it was removed from the category.

The nursing data set consisted of 172 unique ques-
tion/answer pairs plus paraphrases of every unique question
that, altogether, totaled 1,509 question/answer pairs. The
number of questions in each category varied from 5 to 68.
For each category there were a minimum of five different
variations.

Using the questions from the different categories as test
data, a program was written that went through each cate-
gory and randomly shuffled the order in which the ques-
tions appeared in the file. After rearranging the order of the
questions, the first half of questions was placed into the test
data set and the second half into the conversational corpus.
If there were an odd number of questions in a category, then
the number of questions in that category was divided by two;
with the ceiling of the total number of questions going into
the corpus and the floor of the total number of questions go-
ing into the test set.

During the experiment, when the system returned a ques-
tion from the same category as the input question, the out-
put was marked as a correct response. Fifty different test
sets were produced, creating 50 trials. Each trial randomly
put approximately half (plus/minus 1 since categories could

199

Category Caesar M(SD) FTS M(SD) p-value
True Posi-
tive

539.82 (9.99) 538.64 (9.26) p >.05

True Neg-
ative*

87.04 (2.98) 0.4 (0.61) p <.05

False
Negative

9.08 (2.46) 0 p >.05

False Pos-
itive I*

143.10 (10.17) 153.36 (9.29) p <.05

False Pos-
itive II*

12.96 (2.98) 99.6 (0.61) p <.05

Accuracy* 79.15% (1.30) 68.06(1.18) p <.05
Precision* 77.58% (1.46) 68.04 (1.17) p <.05
Recall 78.01% (1.44) 77.84 (1.34) p >.05

Table 2: Relative Performance of Caesar Compared to
MySQL Full Text Search over 50 Trials. ‘*’ signifies sig-
nificant difference.

have an odd number of entries) of the questions in each cate-
gory into the corpus and used the rest of the questions as the
test set. Also, for each trial the system was asked 100 ran-
dom questions for which there was no answer present in the
corpus. This was done to test Caesar’s ability to recognize
when no answer was present in the corpus. These questions
were chosen from a set of 1,000 questions that were picked
from the web and were not related to the questions contained
in the corpus. Thus, each test set consisted of 792 questions
where 692 questions were randomly selected from the 172
categories and 100 questions were randomly selected from
1,000 questions chosen from the web .

Results and Discussion
In each of the 50 trials, 792 questions were asked. The means
and standard deviations over all 50 trials for each category
are shown in Table 2.

Caesar correctly recognized that a question was not in the
corpus 87.04% of the time. Inappropriate answers to ques-
tions primarily consisted of False Positives of Type I. The
small relative standard deviation for recognizing TPs and
TNs also indicate that Caesar’s results were very consistent
over the 50 trials.

From Equation 11 the mean accuracy over all 50 trials was
79.15%. Caesar returned appropriate responses to questions
whose answer was in the corpus 78.01% of the time (Equa-
tion 13). When selecting a response from the corpus 77.58%
of the responses selected were correct (Equation 12).

There is no universal test set or universal standard that
is used to judge the relative performance of conversation
agents. There are also few papers in the literature that re-
port implementation details and accuracy values for their
approach to retrieving appropriate responses in a conver-
sational agent. We could not make direct comparisons be-
tween Caesar and other systems since we did not have ac-
cess to their test sets or even their method for judging ac-
curacy. Since we used the MySQL Full Text Search (FTS)
option to narrow down the candidate matches to ten before
we sent them through the classifier, we compared our results

Category Caesar M(SD)
False Negative 1.92(1.31)
False Positive I 16.64(4.17)

Total Error 18.56(4.35)

Table 3: Average number of errors caused by soft filtering
over 50 trials.

to the top ranked question returned by FTS alone as a base-
line comparison. These results are shown in Table 2.

The most obvious result was that FTS was extremely poor
at recognizing that a question was not in the corpus (TNs)
while Caesar correctly made this distinction 87.04% of the
time. We found this to be an important result because it is
better for the conversational agent to say it does not under-
stand what is being asked and gather more information than
to return a random answer which could potentially frustrate
the user.

Using a Matched Pairs t-test on all categories, we found
that Caesar improved performance significantly in recogniz-
ing TNs and significantly decreased the number of FPs of
both types. When looking at accuracy and precision Cae-
sar also significantly improved performance when compared
to FTS. There was no significant difference between Caesar
and FTS when it came to TPs and recall. Caesar returned
significantly more FNs due to the fact that FTS almost never
returned a FN response. Most (86.65%) of Caesar’s inap-
propriate answers were Type I FPs. After analyzing the data
we determined that the majority of the Type I FPs occurred
when the user’s question and the incorrect question it was
matched to shared more words in common than the user’s
question and the appropriate question stored in the corpus.

As discussed in the previous section we used the tech-
nique of soft filtering to reduce the number of potential can-
didates to ten before moving to the machine learning classi-
fication stage. Since we used the soft filtering to reduce the
amount of candidates it is possible for an appropriate answer
not to be present in the top ten causing the machine learn-
ing algorithm to produce an error. If an appropriate answer
is not contained in the top ten the system will either pro-
duce a Type I FP selecting the wrong response from the ten
candidates or the system will decide that an appropriate an-
swer was not present in the database producing a FN. Table
3 shows the average number of FN errors , Type I FP errors
and the total number of errors caused by an appropriate an-
swer not being present in the top ten. These numbers were
calculated by counting the number of times an appropriate
answer did not appear in the top ten for all questions that
had an appropriate answer stored in the database. This was
done for all 50 trials.

Using the data from Table 3 we adjusted the accuracy,
precision and recall based on how well the machine learning
algorithm performed alone. The adjusted accuracy is com-
puted as:

Accuracy =
TP + TN

TP + TN + FPI + FPII + FN − TE
(14)

200

Category Caesar M(SD)
Adjusted Accuracy 81.05% (1.33)
Adjusted Precision 79.48% (1.50)

Adjusted Recall 80.16%(1.48)

Table 4: Adjusted Performance of Caesar over 50 Trials .

Let TE represent the Total Error.
Adjusted Precision is computed as:

Precision =

TP

TP + FPI + FPII − SoftF ilteringErrorFPI
(15)

Adjusted Recall is computed as:

Recall =
TP

TP + FN + FPI − TE
(16)

Table 4 shows the results from the adjusted accuracy , pre-
cision and recall scores .

On average it took Caesar four seconds to identify and
select a response from the conversation corpus. Lester et al.,
suggested the total response time should be between one and
two seconds (Lester, Branting, and Mott 2004). To reduce
the total time it takes to return a response from the corpus
we will modify the system so that actions will be performed
in parallel which will lead to an in increase the speed of the
system.

Conclusion
Our approach of creating a training set, in which we took
five different versions of the book of Genesis from the Bible
to create positive and negative paraphrase is novel in the area
of paraphrase identification. We were able to use these para-
phrases to create a training model which was used in later
stages to test on a unrelated data set. When tested on 50 test
sets consisting of 792 questions, Caesar returned a correct
response 79.15% of the time (Equation 11). This included
Caesar returning an appropriate response 78.01% of the time
when an answer was present in the corpus (Equation 13).
It also included Caesar correctly recognizing when a ques-
tion was not in the corpus 87.04% of the time. When se-
lecting a response from the corpus 77.58% of the responses
selected were correct (Equation 12). We found that the ma-
jority (86.65%) of Caesar errors occurred when the system
returned an incorrect answer from the corpus when appro-
priate answers were present (Type I FPs).

In analyzing Type I FPs we found that a large amount of
these errors were due to the classifier’s understanding of a
positive and a negative example of a paraphrase. The mod-
ules used by the classifier are based on the number of words
two sentences share. Therefore two sentences can be seman-
tically similar and be labeled as not a paraphrase by the clas-
sifier because of the few words they share in common. The

classifier can also label two sentences as a paraphrase be-
cause of the large amount of words they share in common
when the sentences are actually dissimilar in meaning. To
increase accuracy, our current work now focuses on incor-
porating semantic techniques that examine the meaning of
words and how they relate to each other.

References
Achananuparp, P.; Hu, X.; and Shen, X. 2008. The evalua-
tion of sentence similarity measures. Data Warehousing and
Knowledge Discovery 305–316.
Bernhard, D., and Gurevych, I. 2008. Answering learn-
ers’ questions by retrieving question paraphrases from social
q&a sites. In Proceedings of the Third Workshop on Inno-
vative Use of NLP for Building Educational Applications,
44–52. Association for Computational Linguistics.
Bloodworth, T.; Carico, L.; McClendon, J.; Hodges, L.;
Babu, S.; Meehan, N.; and Johnson, A. 2012. Initial eval-
uation of a virtual pediatric patient system. In Carolinas
Women in Computing (CWIC).
Brockett, C., and Dolan, W. 2005. Support vector ma-
chines for paraphrase identification and corpus construction.
In Proceedings of the 3rd International Workshop on Para-
phrasing, 1–8.
Chang, C., and Lin, C. 2011. Libsvm: a library for support
vector machines. ACM Transactions on Intelligent Systems
and Technology (TIST) 2(3):27.
Chitra, A., and Kumar, C. 2010. Paraphrase identification
using machine learning techniques. In Proceedings of the
12th international conference on Networking, VLSI and sig-
nal processing, 245–249. World Scientific and Engineering
Academy and Society (WSEAS).
Dickerson, R.; Johnsen, K.; Raij, A.; Lok, B.; Hernandez,
J.; Stevens, A.; and Lind, D. 2005. Evaluating a script-
based approach for simulating patient-doctor interaction.
In Proceedings of the International Conference of Human-
Computer Interface Advances for Modeling and Simulation,
79–84.
Ferrucci, D.; Brown, E.; Chu-Carroll, J.; Fan, J.; Gondek,
D.; Kalyanpur, A.; Lally, A.; Murdock, J.; Nyberg, E.;
Prager, J.; et al. 2010. Building watson: An overview of
the deepqa project. AI Magazine 31(3):59–79.
Hirschberg, D. 1977. Algorithms for the longest com-
mon subsequence problem. Journal of the ACM (JACM)
24(4):664–675.
Lester, J.; Branting, K.; and Mott, B. 2004. Conversational
agents. The Practical Handbook of Internet Computing.
Leuski, A.; Patel, R.; Traum, D.; and Kennedy, B. 2009.
Building effective question answering characters. In Pro-
ceedings of the 7th SIGdial Workshop on Discourse and Di-
alogue, 18–27. Association for Computational Linguistics.
Zhao, S.; Zhou, M.; and Liu, T. 2007. Learning question
paraphrases for qa from encarta logs. In Proceedings of
the 20th International Joint Conference on Artificial Intel-
ligence, 1795–1801.

201

