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Abstract

Pattern classification algorithms have been applied in
data mining and signal processing to extract the knowl-
edge from data in a wide range of applications. The
Fuzzy inference systems have successfully been used to
extract rules in rule-based applications. In this paper,
a novel hybrid methodology using: (i) fuzzy logic (in
form of if−then rules) and (ii) a bio-inspired optimiza-
tion technique (firefly algorithm) is proposed to improve
performance and accuracy of classification task. Exper-
iments are done using nine standard data sets in UCI
machine learning repository. The results show that over-
all the accuracy and performance of our classification
are better or very competitive compared to others re-
ported in literature.

1 Introduction
Classification is a predictive technique with the ability to sci-
entists to extract knowledge from a large set of data. Nowa-
days classification techniques can be seen in every area of
science such as finance, biomedical expert systems, data
mining, bio informatics, signal processing and so on (Nisbet,
Elder IV, and Miner 2009)(Michalski, Bratko, and Bratko
1998). In classification, extracting a predictive model of data
is very important. With this model, the data instances can be
classified into predefined classes and we can predict class of
new instances that may be generated in future. The extracted
knowledge from the data model can be shown in the form
of conditional statements or if-then prediction rules. This
kind of rules have several merits such as concise form, inter-
pretability of extracted rules, obvious knowledge exhibition
and better understanding of feature relationship in existing
rules for expert people.

Fuzzy logic (Zadeh 1965) provides an empirical approach
to interpretable data analysis and robust inference processes.
In several fields of science, fuzzy systems have been suc-
cessfully used (Lee 1990). Fuzzy techniques have been
applied for classification problems which interpretability is
as important as accuracy for them. The fuzzy logic uses
concepts such as membership function and certainty coef-
ficient to enhance the classification performance (Ishibuchi
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et al. 1995)(Nozaki, Ishibuchi, and Tanaka 1996). The re-
sults of fuzzy classifier can be shown as ”if-then” rules
that make discovered knowledge from database more un-
derstandable. Fuzzy if-then rules were obtained from hu-
man experts. Various methods have been proposed to au-
tomatically produce and intelligently regulate fuzzy if-then
rules, without any interference of human experts (Wang
and Mendel 1992)(Abe and Lan 1995)(Roubos and Setnes
2001). Authors in (Baran Pouyan et al. 2009) applied a
hybrid algorithm of Simulated Annealing (SA) and Genetic
Algorithm (GA) for extracting the fuzzy rules. Genetic Al-
gorithm (GA) has been used to extract a set of good fuzzy
rules from numerical data (Mansoori, Zolghadri, and Katebi
2008). In reference (Keleş, Keleş, and Yavuz 2011), an
expert system for diagnosing of breast cancer using neuro
fuzzy rules was developed.

Nature-inspired algorithms are iterative search techniques
becoming more efficient in solving complicated optimiza-
tion problems. For example, references (Xiang and Lee
2008)(Jeong et al. 2010)(Yang 2010a) show some of these
applications. The two important components of any meta-
heuristic algorithms are: selection of the best solution and
randomization. The selection of the best ensures that the
solutions will converge to the optimality, while randomiza-
tion eschews the solution being trapped at local optima and
of course increase the diversity of the solution. All nature-
inspired algorithms apply a balance between randomization
and local search (Yang 2010a). There are some probabilistic
steps to avoid being trapped in local optima (Abbass, Sarker,
and Newton 2002). So, we need a robust strategy to have a
better search in problem space and be able to converge to the
global optima.

Firefly Optimization Algorithm (FA), introduced by Xin-
She Yang (Yang 2009), is among the most recent and rig-
orous optimization methods. The authors in (Yang 2009)
formulated the conduct of the flashing properties of fire-
flies. The light intensity I at a particular distance r from
the source decreases as the distance r increases. These two
twisted factors make a swarm communication between fire-
flies to find the new positions of fireflies with more light
intensity (Yang 2010b).

Firefly optimization has recently been applied in many
problems that need complicated optimization process. A
novel approach to determine the feasible optimal solution
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of the Economic Dispatch (ED) problems is presented in
(Yang, Sadat Hosseini, and Gandomi 2012). Authors in
(Senthilnath, Omkar, and Mani 2011) have applied FA for
clustering on benchmark problems. Their results and com-
parison with other clustering methods indicate that FA is
very efficient for clustering problems. Reference (Yang
2009) compared bio-inspired algorithms in solving some
hard problems and concluded that FA can be potentially
more powerful in solving NP-hard problems.

Utilization of FA to extract a set of high accuracy and
interpretable fuzzy classifier rules is our main contribution.
In this paper, we propose and implement an efficient fuzzy
classifier to better explore of the huge problem search space.
FA in this work is the search strategy and is applied to find
the optimum set of fuzzy rules as classifier rules.

The subsequent sections of this paper are organized as
follows. In Section II, we review the background on fire-
fly optimization and discuss on fuzzy-rule based model for
classification. In Section III, we present our Fuzzy - Firefly
hybrid system. Experimental results are shown in Section
IV. Finally, Section V is devoted to concluding remarks.

2 Background
2.1 Firefly Optimization
The firefly optimization algorithm operates based on the
shining characteristic of fireflies in nature. In this algorithm,
we have three main rules: (i) Fireflies are considered uni-
sex, so that a firefly is attracted to another firefly regardless
of its sex; (ii) Attractiveness is proportional to their bright-
ness which means the less shining one tends to approach the
brighter one. The brightness of two considered fireflies de-
creases as their distance increases. If a firefly cannot find the
brighter firefly, it will move in a random direction; (iii) The
last rule states that brightness of each firefly is determined
by the the landscape of the objective function (Yang 2010b).

This method works like other bio-natured algorithms such
as genetic algorithm or simulated annealing. It first launches
a random initial state which means some random fireflies
(solutions) are generated in the problem space. The bright-
ness I of a firefly at location x, has a direct relationship with
problem objective function. The attractiveness coefficient β
will be altered with the distance between two fireflies. So,
β should be sensed between any two fireflies. Since β is
changed by distance, it can typically be defined by Eqn. (1)
(Yang 2010b):

β(r) = β0e
−γrm (1)

where r is the distance between two fireflies and β0 is attrac-
tiveness in r = 0. Parameter γ characterizes the variation of
the attractiveness and m is a constant often considered as 2
in most optimization applications of firefly optimization. In
general, β(r) can be any monotonically decreasing function
(Yang 2010b). The movement of firefly FFi toward firefly
FFj can be determined by Eqn. (2):

Xi(t + 1) = Xi(t)+
β0

1 + γrm
[Xj(t)−Xi(t)] + R(α)

(2)

where Xi(t) is the present position of firefly FFi,
Xi(t + 1) is the next position of FFi after moving toward

FFj . In this equation, firefly attraction rule is incorporated
in the second term. R(α) is the randomization step that di-
rectly depends on α (randomization parameter). Diversity of
the solutions and ability to escape from local optima traps is
increased with the third term that is the randomization phase.
More specifically, R(α) indicates our strategy for the local
search. Randomization step can be implemented in several
ways. For instance, authors in (Łukasik and Żak 2009) ap-
plied a random step according to the uniform distribution.

2.2 Fuzzy System for Classification
The goal is to classify m instances each of which consid-
ered in a vector model as xp=(xp1, xp2, ..., xpn), p =
1, 2, 3, ...,m, in a problem with c classes. At first, we change
the search space in our problem and normalize any feature
value to be between [0,1]. On the other hand, our pattern
space will be revised to [0, 1]n by:

AVNorm =
AV −AVmin

AVmax −AVmin
(3)

where AV denotes attribute value. Consider the following
rule template as the general form of fuzzy “if-then” rule:

Rule Rj : if(x1 is Aj1) and (x2 is Aj2) · · · (xn is Ajn),
Class is Cj with certainty CFj

(4)
where Rj is the label of the jth fuzzy if-then rule; Aj1, , Ajn
values are antecedent fuzzy sets, Cj is the consequent class,
and CFj is the certainty grade of related fuzzy if-then rule
and is a real value in (0,1) range. By usingCFj , the covering
area of each rule in problem space can be regulated. Domain
range of each feature is partitioned based on the membership
function representing the linguistic similarity value. Cj and
CFj for each rule Rj can be detected by using the training
set. Reference (Ishibuchi, Nozaki, and Tanaka 1992) pro-
posed a simple procedure using four steps to ascertain Cj
and CFj of rules in training phase:
Step 1: Compatibility of each training pattern
xp=(xp1, xp2, , xpn) with rule Rj is calculated as:

µj(xp) = µj1(xp1)× ...×µjn(xpn) p = 1, ...,m (5)

where µji(xpi) is the membership function of Aji and m is
the number of patterns in the territory of that rule.
Step 2: Relative sum of the compatibility grades of the train-
ing instances with the Rj is computed using:

βClass h(Rj) =
∑

xp∈Class h

µj(xp)

NClass h
h = 1, 2, .., c

(6)
where βClassh(Rj) is the sum of the compatibility grades of
the training patterns in Class h with the fuzzy if-then rule
Rj . βClass h(Rj) is the number of instances of Class h in
our training set.
Step 3: A class ĥ with the maximum value of βClass h(Rj)
is chosen for Rj :

ĥ = arg max
1≤k≤c

{βClass k(Rj)} (7)

where c is the number of classes.
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Step 4: Each rule in fuzzy classifier system must have a cer-
tainty grade, which implies the strength of that fuzzy rule
and clarifies the size of the covering territory of that rule.
So, we have:

CFj =
βClass ĥj

(Rj)− β̄∑c
h=1 βClass h(Rj)

(8)

where

β̄ =
∑
h6=ĥj

βClass h(Rj)

c− 1
. (9)

When an input pattern vector xp=(xp1, xp2, ..., xpn) is be-
ing classified by a rule set Srule, a single winner rule Rj∗
must have the maximum product of the compatibility and
the certainty grade CFj , where:

j∗ = arg max
Rj∈Srule

{µj(xp).CFj} (10)

meaning that, the winner rule (Rj∗ ) has the highest
value of the product certainty grade and compatibility
(µj(xp).CFj). If all µj(xp) values in Eqn. (10) become
0, in this situation the classification of xp is, per definition,
declined.

3 Hybrid Fuzzy - Firefly Classifier
A set of triangular fuzzy sets have been chosen for fuzzy
membership function in this work. Triangular fuzzy sets are
simple and in comparison with the other membership func-
tions such as gaussian, can effectively reduce the computa-
tion complexity of the algorithm. In computer simulation, a
typical set of linguistic values shown in Figure. 1 (Mansoori,
Zolghadri, and Katebi 2008), is used.

Figure 1: The antecedent fuzzy sets. (a) 1: small (S), 2:
medium small (MS), 3: medium (M), 4: medium large
(ML), 5: large (L). (b) 6: don’t-care (DC).

As shown in Fig. 1 (a), each value domain is divided
to 5 overlapping regions: Small (S), Medium-Small (MS),
Medium (M), Medium-Large (ML) and Large (L). In addi-
tion, we consider the feasible sixth value (don’t-care) with
linguistic value 6 (Fig. 1 (b)) enable our classifier to mask
some attribute in its search space. According to these values
in any classification problem with n attributes, the possible
number of fuzzy if-then rules will be 6n. Search in this very
huge space to find a small set of fuzzy classifier rules with
most accuracy exhaustively is not practical. So, we need a
robust strategy to learn from training samples in order to re-
duce the searching complexity. Assume, we have a set of
fuzzy rules generated randomly in our linguistic value set
as a first solution. The fuzzy rules are coded as a string of 6

possible linguistic value mentioned earlier. For example, the
string “513624” is a code representing rule Rj that means:
If A1 is large and A2 is small and A3 is medium-small and
A4 is don’t-care and A5 is medium-small and A6 is medium,
then class is Cj with certainty CFj .

The main goal is finding the best (or one of the best) rule
set S∗rule in problem space to get better fuzzy learning model
for our data set. Since the problem space is huge, we employ
the Firefly optimization that has shown a good performance
with low running time for combinatorial optimization prob-
lems. By using the fuzzy classification system, the accuracy
rate of each rule in fuzzy rule set Srule is determined. The
firefly optimization improves the performance of classifica-
tion. The proposed hybrid fuzzy-firefly classifier runs in four
steps as explained next.

3.1 Step I: Generate the Initial Firefly Population
At first, an empty roster of learned (chosen) rules is consid-
ered, i. e. Srule={}. Let SOF be the firefly set with the size
Nff . The rule Ri is generated by a firefly. To avoid overfit-
ting issue, the initial rules (fireflies) are generated randomly
but we consider the probability of each linguistic value in
pertinent class. The highest probability of all linguistic val-
ues in each class is considered for don’t-care value in this
work. The firefly parameters (β0, γ, α) are adjusted in this
phase. The class and certainty degree for each firefly (rule)
are calculated by the procedure mentioned in the section II.
B. Powerful and weak rules should be detected by a fitness
function for each firefly as follows:

fit(FFj) = Nc(FFj)−Nnc(FFj) (11)

where fit(FFj) is the fitness value for FFj that can be
computed according to fuzzy classification rules. Similarly,
Nc(FFj) implies the number of correctly classified training
patterns by FFj . Nnc(FFj) is the total number of incor-
rectly classified and not-classified patterns.

3.2 Step II: Firefly Movement
In Firefly optimization, a firefly is inclined to move toward
brighter firefly. It means a brighter firefly has better fitness.
By the second part of Eqn.(2), firefly FFi must be closer
to firefly FFj . In other words, their distance must be de-
creased after this step. The distance between two fireflies
must be described in the problem space. In our problem,
each firefly is a fuzzy rule. Let us consider two fireflies FFi
and FFj in a pattern classification problem with k attributes.
If FFi is shinier than FFj , it does not change its position.
But, if FFj is brighter than FFi, it means FFj has better
fitness in comparison with FFi and consequently, FFi has
to move toward FFj . The following two steps (attraction
and randomization) show this movement:
II.1. Attraction Step: Consider two fireflies FFi =
{ffi,1, ..., ffi,k} and FFj = {ffj,1, ..., ffj,k}. The
distance between FFi and FFj is defined as follow:

r[FFi, FFj ] =
k∑
l=1

|ffi,l − ffj,l| (12)
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where r is distance between two rules (fireflies). In our
work, since the attribute values are discrete (1 to 6), we de-
fine β as:

β(r) =
β0

1 + γr
. (13)

We can show by this definition that fireflies can move closer
to each other according to the firefly attractiveness. When
ffi,l = ffj,l, we don’t have any change in that position.
When they are not equal, according to Eqn. (13) and with
the probability β, ffi,l will be randomly updated in their
difference range. By a uniform probability, we assign a ran-
dom number in the range between ffi,l and ffj,l to modify
ffi,l.

For example, suppose we have two fireflies with 8 at-
tributes, FFi=[1,4,3,5,5,4,6,2] and FFj=[3,6,3,2,6,4,3,5].
Using Eqn. (12), r[FFi, FFj ]=14. With β0= 1 and γ = 0.5,
we get β = 0.125. Since we apply absolute distance, the
amount of their common elements have to increase. First,
the new common attribute of FFi with FFj will be: FFi=[-
,-,3,-,-,4,-,-]. In the second step, β is applied to get the prob-
ability to change the value of each undecided element in dif-
ferent range ffi,l and ffj,l. If no element changes, one ele-
ment is selected randomly and will be changed in the related
range. If in this example, only the fourth attribute of FFi
can be altered, FFi=[1,4,3,3,5,4,6,2]. So, the distance be-
tween FFj and new location of FFi becomes 12. Thereby,
the two fireflies get closer.
II.2. Randomization Step: After fireflies movement by at-
tractiveness property, there is a randomization step. In this
step according to a predefined value of the α, we have a
random operation. α represents a fraction of rule elements
which should be altered randomly. In other words, R(α)
changes the chosen element value by uniform probability.
This process is repeated for all rules in each class. If there is
a rule (firefly) that has not changed its position (the strongest
rule in each class), this rule will alter through changing a
small number of its elements (one or more) randomly. The
problem space can be very huge and modifying too many
rule component values can cause getting farther from global
optimum solution.

3.3 Step III: Firefly Set Modification
After any iteration, the following perturbation operation is
applied on the current fireflies set. First, a firefly FF ∗ is
selected using the following probabilistic equation:

P (FF ∗) =

max
1≤i≤Nff

{fit(FFi)} − fit(FF ∗)∑Nff

i=1 [fit(FFi)− min
1≤i≤Nff

{fit(FFi)}]

(14)
where fit(FFi) is the fitness value of firefly FFi. This is
obvious that the weak rules have more chance to be chosen
for changing. Randomly swapping and mutation operations
are applied between some elements of the selected firefly
and to generate a new firefly to substitute the parent rule.
The resulting class of the new firefly (rule) must be updated.
This generated firefly (rule) can help its class subset of rules
to escape from the local optima. After Tsel (a predefined

number) iterations, the best firefly is selected. The best fire-
fly generates a rule Rj∗ according to its elements and adds
Rj∗ to S∗rule. The correct classified instances in training set
by Rj∗ are eliminated from the training set. Afterwards, the
fitness values of all fireflies are calculated.

3.4 Step IV: Termination and Evaluation
Steps I through III have to be done for each class separately.
In most bio-natured optimization algorithms, a predefined
number of iteration is considered as termination condition.
Using the number of iterations may cause rule set escape
from optimum status. Therefore, in our work, this condition
is adjusted. We stipulate a condition related to the an initial
number of iteration and the number of uncovered instances
for each class. After the algorithm passes this primitive it-
erations, when the number of uncovered instances in two
consecutive iteration doesn’t change, the algorithm will be
terminated. Afterwards, the final rule set can be applied for
our pattern classification problem. We also use this final set
for getting accuracy rate on training and test set. To evaluate
this final set, the accuracy metric, A(S∗rule), is defined:

A(S∗rule) = (1/m) ∗ [m−
Nr∑
j=1

Nc(Rj)] (15)

where Nr is the number of rules in final learned list (Nr =
|S∗rule|). m is the number of training set instances and the
second term in Eqn. (15), denotes the number of all correctly
classified by S∗rule. Fig. 2 shows the pseudocode of four key
steps in our proposed approach.

For each class in training set {
Generate Nff of fireflies
Preset α, γ, β0, Tsel

S∗rule={}
While (fireflies moving) {

f or k=1 to Tsel {
f or all i and j (1 ≤ i, j ≤ Nff ) {

Decide on moving FFi toward FFj by fuzzy rules
If not moving, force a slight random move
}
}
Select the best rule Rj∗ corresponding to the firefly FF ∗

S∗rule = S∗rule ∪ {Rj∗}
Remove correctly classified instances from training set
}
}

Figure 2: Pseudocode of Hybrid Fuzzy-Firefly Classifier.

4 Experimental Results
The key parameters of our algorithm are shown in Table 1.
We ran our algorithm with several number of fireflies Nff .
When Nff gets bigger, the algorithm needs more time in
training step. There is a tradeoff between number of fireflies
(Nff ) and the running time. While we experimented using
various Nff , we empirically found 60 fireflies provide an
excellent tradeoff. The proposed pattern classification tech-
nique has been well evaluated by extensive testing. Nine
various data sets of the University of California at Irvine

360



Parameters Symbol Value
attractiveness in r = 0 β0 1
absorbtion coefficient γ 0.5

perturbation factor α 0.1
max number of fireflies Nff 60

Table 1: Parameter Setting in Computer Simulation.

Name No. Instances No. Features No. Class
wdbc 569 30 2
pima 768 8 2
wine 178 13 3
cra 690 15 2
ion 351 34 2
iris 150 4 3

bswd 625 4 3
lab 57 16 2
gid 214 9 6

Table 2: UCI Data set Properties.
(UCI) machine learning repository (Asuncion and Newman
2007) are used to evaluate performance of this algorithm.
These data sets are: (i) Wisconsin diagnosis breast cancer
(wdbc), (ii) pima Indians diabetes (pima), (iii) wine recogni-
tion data (wine), (iv) credit approval, (v) John Hopkins Uni-
versity ionosphere database (ion), (vi) iris plants database
(iris), (vii) balance scale weight and distance (bswd), (viii)
final settlements in labor negotiation in Canadian industry
(lab), and (xi) glass identification database (gid).

Table 2 summarizes the key properties of these data sets.
Algorithm performance in this work is measured based on
the accuracy of train and test sets and is computed and
compared against several classification machine learning
methods. LIBSVM , XCS, KNN , NaiveBayes(NB),
C4.5, GAssist, Part (all reported in (Bacardit 2004)) that
are among prominent classification techniques and another
fuzzy based technique SA-GA (reported in (Baran Pouyan et
al. 2009)) are considered. To have diversity in the exper-
iments, ten-fold cross-validation (10-CV) technique, some-
times called rotation estimation, is used to have a better eval-
uation of our classification algorithm. The data sets are di-
vided into 10 subsets of the same size randomly. Nine sub-
sets are used as training patterns, and the tenth subset is used
as test. The comparative results with different algorithms on
training and test sets are presented in Tables 3 and 4.

The performance of our algorithm (i. e. accuracy as
shown in Eqn. (15)) on the train data set like the other al-
gorithms is expectedly very good. As shown in Table. 3,
XCS has the best performance on training sets. Since all
approaches apply training set in the learning phase, it is not
enough to evaluate a classifier only for training set. The
main goal of any classifier is the good performance on test
data set. In Table 4, the performance of our approach on data
sets in test phase are shown. The performance of our algo-
rithm on wdbc, pima and gid specifically is the best. The
classification performance of proposed method on pima set
is in particular salient. Benchmark pima attracted a lot of at-
tentions due to its inherent difficulty of classification for di-
agnosis of diabetic disease. For example, reference (Kahra-
manli and Allahverdi 2008) summarized 43 algorithms that

wdbc pima wine cra ion iris bswd lab gid
483 462 217 456 502 137 145 344 154

Table 5: Training time of our algorithm (Seconds).

achieved accuracy of 59.5% to 84.2%. Our proposed algo-
rithm shows accuracy of 85.30% which is the best reported
for pima in literature. Also, our proposed classifier per-
formed superior for the data set gid, that is one of the most
difficult data sets for all of the classifiers. The performance
of our algorithm is low for lab. We believe this is due to
insufficient number of instances (57) with respect to num-
ber of features (16) in comparison with other data sets. If
more data is provided, like other examples, our algorithm
will perform much better. As shown in Table 4, our pro-
posed classification algorithm has the best average accuracy
of nine cases.

The training time of our algorithm on all data sets us-
ing a 3GHz CPU running on a desktop reported in Table
5. Note that running time for test sets are less than 0.1 sec-
ond. We do not have access to the running time forGAssist
and XCS. For the other algorithms, with our simulation by
weka, the training time is lower than 10 seconds. Note that
for most data mining applications, the training is done only
once a priori. Therefore, fast execution during training is
not considered a major advantage. The real advantage of
our method is its superior accuracy as reflected in Tables 3
and 4.

5 Conclusion
In this work, a novel hybrid classification approach using
fuzzy logic and firefly optimization is presented. First, the
data set was modeled using fuzzy membership function.
Then, a set of fuzzy if-then rules were generated by prede-
fined fuzzy set and by applying firefly optimization, the best
fuzzy if-then rules to classify patterns were constructed. The
proposed algorithm shows a very promising and reliable per-
formance when it was tested against various data sets. When
applied to classify nine benchmarks in UCI database, our al-
gorithm shows the best average result in terms of accuracy
of classification. This includes the best accuracy compared
to all reported in literature for the two most challenging data
sets, i. e. pima and gid.
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