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Abstract
With the recent popularity of electronic medical
records, enormous amount of medical data is being
generated every day at an exponential rate. Machine
learning methods have been shown in many studies to
be capable of producing automatic medical diagnostic
models such as automated prognostic models. However,
many powerful machine learning algorithms such as
support vector machine (SVM), Random Forest (RF) or
Kernel Logistic Regression (KLR) are unbearably slow
for very large datasets. This makes their use in med-
ical research limited to small to medium scale prob-
lems. This study is motivated by an ongoing research
on prostate cancer mortality prediction for a national
representative of US population where the SVM and
RF took several hours or days to train whereas simple
linear methods such as logistic regression or linear dis-
criminant analysis take minutes or even seconds. Be-
cause, most real-world problems are non-linear, this pa-
per presents a large scale algorithm enabling a recently
proposed least squares extreme logistic regression to
learn very large datasets. The algorithm is shown on a
case study of mortality prediction for men diagnosed
with early stage prostate cancer to provide very fast and
more accurate result than standard statistical methods.

1 Introduction
Accurate survival prediction and prognostic risk factor iden-
tification is essential to offering appropriate care for men
with early stage prostate cancer. The first question that a
newly diagnosed man with prostate cancer asks his physi-
cian is: “What are my survival chances?” The answer to this
question is not very straight forward because survival is de-
pendent on the inter-play of multiple factors. These factors
can be roughly divided into three main categories: (1) pa-
tient specific factors (e.g age and comorbidities), (2) tumor
specific factors (e.g PSA and Gleason score), (3) treatment
types (e.g radiation or watchful waiting). Knowing the effect
of these risk factors on mortality, the physician has to then
decide whether immediate aggressive treatment is necessary
or not.

The determination of the effects of the various prostate
cancer risk factors on mortality is a difficult task even for the
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most experienced prostate cancer urologist. Despite the im-
portance of timely and accurate prediction of prostate can-
cer mortality for medical decision making, it is known that
physicians are very poor judges of prognostic (Chow et al.
2001). Physicians are overly optimistic in survival predic-
tions and this action may adversely affect the quality of care
offered to patients.

Machine learning on the other hand provide several indis-
pensable tools for the intelligent analysis of medical data.
Electronic medical records has been popularized in the past
few years and many hospitals are equipped with inexpen-
sive devices that collect and store data in large amounts on
a daily basis. Machine learning algorithms can be used to
learn these data and produce prognostic models. These mod-
els can be created as automatic such that when new data is
gathered the model can update itself to learn the new data.

One draw back of machine learning however, is that the
most powerful algorithms in this field are very slow to train
on large datasets. KLR for example is a very powerful algo-
rithm that is very competitive with state-of the art methods
like SVM and RF. However, like most kernel learning ma-
chines, training time can be overly long due to the expen-
sive kernel computation and parameter tuning. These slow
learners have made the use of machine learning in health-
care to be limited to small to medium scale problems. This
paper was motivated by such problems encountered with the
training of SVM and RF in an ongoing research project on
prostate cancer mortality prediction using a very large co-
hort study of men. These algorithms took several hours or
days to train and make predictions. In particular, selecting
optimal training parameters for SVM was extremely painful
and time consuming. The researchers in the project had to
resort to simple linear and non-optimal methods like logis-
tic regression or linear discriminant analysis whose training
took minutes or even seconds.

To address the problem of slow learning, recently an ex-
tremely fast and accurate method to train KLR was proposed
in (Ngufor and Wojtusiak 2013a) based on a simple approx-
imation of the logistic function and the extreme learning
machine (ELM) (Huang et al. 2012). Instead of the the tra-
ditional KLR that uses kernels to evaluate dot products of
data points in a feature space, Ngufor and Wojtusiak (2013a)
proposed to explicitly build a feature space through a Sin-
gle hidden Layer Feed-forward Network (SLFN) and uses it
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to construct an “ELM-Kernel” as done in ELM for training
KLR. The approach was used to train iterative re-weighted
least squares kernel logistic regression (IRLS-KLR) and the
results obtained were comparable to SVM but with a much
faster training speed. Further, based on a simple approxi-
mation of the logistic function, the authors converted IRLS-
KLR into a non-iterative least-squares KLR (LS-KLR) that
was found to be very fast and outperformed SVM on most
of the experiments performed in the paper. Extreme learning
method was then extended to LS-KLR and an even faster al-
gorithm called least-squares extreme logistic regression (LS-
ELR) was obtained.

LS-ELR can efficiently learn medium to large scale prob-
lems, however, as the number of training points increases
the ELM-kernel size increases. Therefore solution by LS-
ELR can be prohibitive for very large scale problems due
to memory requirements and other computational complex-
ities. This paper proposes an extension to LS-ELR enabling
it to learn very large datasets. The complexity of the new al-
gorithm depends only on the dimension of the SLFN hidden
layer feature space which can be significantly less than the
number of training data points.

The extended algorithm was applied to predict mortal-
ity for a large population of men from the SEER-Medicare
database diagnosed with early stage prostate cancer. To
appropriately account for censoring, each observation was
weighted using the inverse-probability of censoring weight-
ing (IPCW) obtained through the Nelson-Aaalen estimator
of the survival function. The effect of several risk factors
such as age, Elixhauser comorbidities, aggregated Clinical
classification Software (CCS), tumor characteristics and ini-
tial treatment types on mortality was assessed by progres-
sively increasing the information level of the models gener-
ated.

With respect to scalability and accuracy of the algo-
rithm, numerical results show that the extended algorithm
is very fast, accurate and compares favorably in terms of
weighted-accuracy to traditional cox-proportional hazard
model. Adding more detailed diagnosis information in the
models resulted in increasing accuracy of the models.

Unless otherwise mentioned, the following notations will
be adopted throughout the paper:D = {(xi, yi)}ni=1 is train-
ing data with x ∈ Rd a d-dimensional column vector and
y ∈ {0, 1} is the class label of x. In and 1n are the n × n
identity matrix and n×1 column vector of ones respectively.

The paper is hence organized as follows: Section 2 briefly
reviews IRLS-KLR and its approximation to obtain LS-
KLR. The extension of ELM to LS-KLR is briefly described
in Section 3, and the section ends by presenting the proposed
large scale learning algorithm. Section 4 describes the ex-
perimental set-up for the case study of mortality prediction.
Results are reported in Section 5 and Section 6 concludes
the paper.

2 Kernel Logistic Regression
One major disadvantage of classical logistic regression (LR)
is that it is a linear classifier. It assumes that the outcome
or log-odds is a linear function of the independent variables.

However, most real world classification problems are non-
linear, and so LR cannot capture any non-linearity that may
exist in the data.

Using the “kernel trick” however, a kernelized version
of LR, or Kernel Logistic Regression (KLR) can be con-
structed. A mapping function φ : x ∈ Rd → φ(x) ∈ Rdf
is chosen to convert the non-linear relationship between the
response and the independent variable into a linear relation-
ship in a higher (and possibly infinite) dimensional feature
space. φ is however usually unknown, but dot products in
the feature space can be expressed in terms of the input vec-
tor through the kernel function: K(x, y) = φ(x) · φ(y).

Using φ, the “logit” transformation can be written as
log(π/(1− π)) = φ(x) · β + b

where π = Pr(y = 1|x;β) = 1/(1 + exp(−φ(x) · β − b))
is the class posterior probability and b is a bias term. Given
the training data D, the regularized negative log-likelihood
function to maximize can be written as

l(β) =
1

2
‖β‖2 − γ

2

n∑
i=1

[
yi(φ(xi) · β + b)

− log (1 + exp(φ(xi) · β + b))
]
. (1)

As with LR, maximum likelihood estimates of the parame-
ters of KLR can be obtain through iterative methods such as
the Newton-Raphson algorithm.

Iterative Re-weighted Least Squares KLR
Assume for the moment that the map φ(x) includes a con-
stant term 1 i.e φ(x) ≡ (φ(x), 1) and β ≡ (β, b). After
taking the first and second partial derivative or Eqn. 1 with
respect to the parameters β, a Newton-Rahpson update for-
mula for the parameters is given by

βnew = βold +

(
φ ·W · φ+

1

γ
Idf

)−1
· φ · (Y− π)

=

(
φ ·W · φ+

1

γ
Idf

)−1
· φ ·W · z (2)

where W is an n × n diagonal matrix of weights with i′th
element wi = πi(1 − πi), π = (π1, · · · , πn) and z =
φ · βold + W−1 · (Y− π).

Equation 2 can be cast into the following constrained op-
timization problem (Ngufor and Wojtusiak 2013a)

min
β
L =

1

2
‖β‖2 + γ

2

n∑
i=1

wiε
2
i (3)

subject to : zi = φ(xi) · β + b+ εi, ∀ i = 1, . . . n. (4)
where the bias term b has been re-introduced. The La-
grangian for this optimization problem is given by

L(β, b,α, ε) = 1

2
‖β‖2 + γ

2

n∑
i=1

wiε
2

−
n∑
i=1

αi (φ(xi) · β + b+ εi − zi) (5)
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where α = (a1, . . . , αn) ∈ Rn is the Lagrange multipliers.
The optimality condition can be derived as

∂L
∂β

= 0 =⇒ β =
n∑
i=1

αiφ(xi) (6)

∂L
∂b

= 0 =⇒
n∑
i=1

αi = 0 (7)

∂L
∂εi

= 0 =⇒ αi = wiγεi, ∀ i = 1, . . . n (8)

∂L
∂αi

= 0 =⇒ φ(xi) · β + b+ εi = zi, ∀ i = 1, . . . n

(9)

Using Eqns. 6 and 8 to eliminate β and ε from Eqn. 9 gives
the linear systemK + 1

γW−1 1n

1Tn 0

(α
b

)
=

(z

0

)
(10)

where K = φ · φ and

z = Kα+ b1n + W−1(Y− π). (11)

The IRLS-KLR algorithm proceeds iteratively, updating α
and b according to Eqn 10 and then updating z according to
Eqn. 11. As demonstrated in (Ngufor and Wojtusiak 2013a),
this recursive training can be unbearably slow for even small
to medium scale datasets.

Least Squares Kernel Logistic Regression
Based on an initial approximating idea of the logistic func-
tion first introduced in (Ngufor and Wojtusiak 2013b), the
authors in (Ngufor and Wojtusiak 2013a), approximated the
right hand side of Eqn. 10 by substituting for π its first or-
der Taylor expansion there by converting IRLS-KLR into a
non-iterative least-square or LS-KLR algorithm given by the
linear systemK + 4

γ In 1n

1Tn 0

(α
b

)
=

4(Y− 1
21n)

0

 . (12)

3 Extreme Learning Machine
Extreme learning machine (ELM) (Huang et al. 2012) is a
learning algorithm based on the was proposed in (Huang,
Zhu, and Siew 2006) based on the SLFN in which the in-
put weights and biases are randomly selected and the output
weights obtained through a minimal norm least squares so-
lution. Since the weights and biases are randomly generated
no iterative tuning was required and this significantly reduce
computational time for both model training and parameter
selection.

The output function of ELM for generalized SLFNs is
given by

f(x) =

p∑
i=1

βiφi(x) = φ(x)β

where β = (β1, . . . , βp) is the vector of output weights be-
tween the hidden layer of p nodes and the output nodes and
φ(x) = (φ1(x), . . . , φp(x))

T is the output row vector of
the hidden layer with respect to the input x. It can be seen
that φ maps the data from a d-dimensional feature space to
a p-dimensional hidden layer feature space.

The original implementation of ELM uses minimal norm
least squares method instead of standard optimization.
Huang et al. (2012) introduced regularization and trans-
formed the ELM algorithm into a constrained optimiza-
tion algorithm. After defining the constrained-optimization-
based ELM and applying the optimality condition, Huang
et al. (2012) obtained a simple linear system for the output
weights given by

φT
(
φφT +

1

γ
In
)
β = Y. (13)

4 Extreme Logistic Regression

The learning process of ELM proceeds in two steps: (1) the
input data points are mapped into the hidden-layer with the
input weights and biases randomly generated, (2) a regular-
ized least squares solution is obtained through Eqn 13 where
φ is the hidden-layer output matrix. The hidden-layer output
matrix is used to defined a randomized kernel or ELM-kernel
given by φφT .

Commonly used ELM hidden-layer output map functions
include the Sigmoid function φ(w, b0, x) = 1/(1+exp(−w·
x − b0)) with w ∈ Rd, b0 ∈ R and the Gaussian function
φ(w, b0, x) = exp(−b0‖x − w‖2) with b0 > 0. The val-
ues {(wi, b0i)}ni=1 are randomly generated according to any
continuous probability distribution.

A number of authors (Frénay and Verleysen 2010; Liu,
He, and Shi 2008) have derived extreme learning methods
for SVM by simply plugging in the ELM-kernel for the stan-
dard SVM kernel and obtained similar generalization per-
formance as SVM but at a much lesser computational cost.
No such extension existed for the KLR until recently where
Ngufor and Wojtusiak (2013a) applied the ELM-kernel tech-
nique to KLR and also obtained similar generalization per-
formance but with a significantly faster training speed. They
called the method “Extreme Logistic Regression” (ELR).
Precisely, the ELM-kernel K = φφT is substituted for the
kernels in Eqns. 10 and 12 producing IRLS-ELR and LS-
ELR respectively.

The interest of this paper is on ELR, since unlike SVM
and ELM, ELR yield class posterior probability outcomes
based on maximum likelihood criterion, whereas SVM and
ELM outputs class decision scores. This can be very useful
in many real-world applications such as in medical diagno-
sis where class probabilities are more important than class
decisions. For example in survival analysis, given a patient’s
data, a survival model attempts to determine the probability
of the event occurring or not. A mere decision of whether
the event occurs or not is not very useful for a urologist who
wants to decide whether to administer an aggressive treat-
ment or not.
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A Large Scale Learning Algorithm
Though it is a nice property in kernel methods that explicit
representation of the map function φ and the weights β are
not required, this however may lead to systems that grows
as the number of sample points. For example, the solutions
for IRLS-KLR and LS-KLR represented by Eqns. 10 and 12
involves solving linear systems with the n × n kernel ma-
trix K. Such systems are appropriate for small to medium
scale problems. For large scale problems, the solution can
be prohibitive due to the expensive computation of the ker-
nel matrix and memory requirements. On the other hand, in
ELM methods, the explicit representation of φ and hence
the weights β whose dimension depends on the dimension
of the hidden-layer feature space pmakes it possible to solve
a much smaller system as will now be shown.

With LS-ELR as defined by Eqn. 12, as the sample size
increases, it may become difficult to solve the linear system
due to the increasing size of the n × n ELM-kernel K =
φφT . A different system can be obtain by taking advantage
or the fact that the weights β can be computed explicitly.
The optimality conditions represented by Eqns. 6 -8 shows
that

α = (φT )†β, 1Tnα = 0 and α = γWε
where φ† is the Moore-Penrose generalized inverse of the
matrix φ. LS-ELR uses W = In and replaces π by its first
order Taylor expansion in Eqn. 9 leading to

ε+
1

4
φφTα+

1

4
b1n = Y− 1

2
1n.

Substituting the expressions for ε and α and multiplying
both sides by φT gives the linear system

φT
(
1

4
φ+

1

γ
(φT )†

)
β +

b

4
φT 1n = φT (Y− 1n)

1Tn (φ
T )†β = 0.

Using the generalized matrix inverse identity (φT )† =
φ(φTφ)† and noting that if the p columns ofφ are randomly
and independently chosen, then the above linear system can
be written in a concise form as φTφ+ 4

γ Ip φT 1n

1Tnφ(φTφ)−1 0

(β
b

)
=

4φT (Y− 1
21n)

0

 .

(14)
Unlike the solution of Eqn 12, the solution of Eqn. 14 in-
volves solving a linear system with a p × p matrix where
p� n.

A similar system for ELM is also derived in (Huang et al.
2012) and given by(

φTφ+
1

γ
Ip
)
β = φTY. (15)

5 Experiments
This section describes the experimental set-up for a case
study of survival predictions using the large scale algorithm
presented in this paper. Five algorithms: LS-ELR, ELM, Lo-
gistic Regression (LG), Naive Bayes (NB) and Cox propor-
tional hazard model (COX) are compared in terms of time
scalability and two accuracy measures.

Model Selection
LS-ELM is trained using Eqn. 14 while ELM is trained us-
ing Eqn 15 with the Sigmoid function as the ELM hidden-
layer map function. In both algorithms, γ and p are two pa-
rameters that need to be selected during training. However
it has been shown in many works on ELM that setting p to
a sufficiently large number such as p ≥ 103 is sufficient to
get good generalization. Further, the computational cost in
choosing optimal values for γ is significantly lessen due to
the simplicity of the models. In the numerical experiments,
γ is selected by a standard 10-fold cross-validation using the
training set.

Data Source and Study Population
Data for this study were from the Surveillance, Epidemiol-
ogy, and End Results (SEER) linked with Medicare claims
database. SEER combines tumor registry data covering a
population based sample of approximately 26% of the US
population with claims data from Medicare (Warren et al.
2002). Specifically, in the presented work the target popula-
tion were individuals diagnosed with prostate cancer start-
ing 2002 through 10 years of follow up. Claims for these
individuals were pulled from the Medicare Provider Analy-
sis and Review (MedPAR, Part A), Carrier Claims (Physi-
cians/Suppliers, Part B) and the Out Patient claims files. In-
dividuals were eligible for the study if they were continu-
ously enrolled in Medicare Part A or Part B for at least a
year prior to 1’st cancer diagnosis and were at least 66 years
old at 1’st diagnosis. Individuals with more than one prostate
cancer diagnosis where excluded from the study. A total of
105,000 individuals were identified for potential inclusion in
the study.

The outcome variable of interest is death due to all causes.
By the end of the 10 years follow up 24% of the patients had
died and 0.04% died of prostate cancer.

Measurement of Comorbidity
An important prostate cancer risk factor of interest in this
study are the individuals comorbid conditions. Medicare
claims prior to 1’st prostate cancer diagnosis were used to
compute comorbidities. ICD-9-CM codes available in the
claims data have been aggregated to form:

• Elixhauser comorbidity (Elixhauser et al. 1998). A com-
prehensive list of 30 comorbidity measures. Unlike other
comorbidity measures such as the Chalson comorbid-
ity, the Elixhauser comorbidity is not simplified into a
weighted index because each comorbidity was found to
affect the outcome differently. Among the various exist-
ing comorbidity indices, the Elixhauser index has been
found to be a better predictor of mortality (Sharabiani,
Aylin, and Bottle 2012).

• Clinical Classifications Software (CCS) for ICD-9-CM
(Elixhauser, Steiner, and Palmer 2008). The CCS col-
lapses the over 14,000 ICD-9-CM codes into a smaller
number of clinically meaningful categories. The sin-
gle level classification scheme which groups ICD-9-CM
codes into mutually exclusive categories was used in this
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study. Among the 285 CCS categories, 56 were dropped
because their frequency was less than 0.05%.

• Age. Age at diagnosis was also included in the predictive
models. The average age for the data considered was 74
years.

In computing the comorbidities, a comorbid condition
was identified if its corresponding ICD-9-CM diagnosis or
procedure code appears more than once in the Carrier and
Outpatient claims and more than 30 days apart, or appeared
in the MedPAR claims at least once.

Tumor Risk Factors
Tumor related information such as the clinical stage, diag-
nostic prostate specific antigen (PSA) level, Gleason score
and Prostatic acid phosphatase (PAP) were extracted for all
individuals in the study. The PAP was included in the study
due to its recent popularity in the medical literature as a sig-
nificant prognostic factor for patients with intermediate and
high-risk prostate cancer (Al Taira et al. 2007).

Initial Treatment Types
Initial treatment types (within 3 months of diagnosis) for all
patients were identified in the Medicare files by the Health-
care Common Procedure Coding System (HCPCS) codes.
The treatments types was categories into two main groups:
Aggressive therapy (surgery, external beam radiation ther-
apy, brachytherapy, cryotherapy, or hormone replacement)
and Non-Aggressive therapy (conservative management or
active surveillance). Non-Aggressive therapy was defined as
the non-presence of any code defining Aggressive therapy or
if the SEER data reported no treatment was administered.

About 81% of patients had some Aggressive treatment
within 3 months of diagnosis.

Performance Measure
In learning imbalanced data such as the survival data in this
study, the overall classification accuracy is often not an ap-
propriate measure of performance. A trivial classifier that
predicts every case as the majority class can still achieve
very high accuracy. The traditional approach is to use met-
ric such as Recall, Precision, and Weighted Accuracy. These
measures can be derive directly from the confusion matrix
given in Table 1 as: Recall = a/(a+c), Precision = a/(a+

Table 1: Confusion Matrix
Predicted Class

Positive Negative Total

True Class Positive a b a+ b
Negative c d c+ d

Total a+ c b+ d n

b), Weighted-Accuracy = λa/(a+ c) + (1− λ)c/(b+ c)
For a physician to make informed decision about treat-

ment options, it is desirable to have a classifier that gives
high prediction accuracy for deaths while maintaining rea-
sonable accuracy for survival. The Weighted-Accuracy is a

good performance measure in such cases. The weights λ can
be adjusted to suit the particular problem.

Another popular performance measure commonly used in
survival analysis is the concordance index (C-Index) (Har-
rell, Lee, and Mark 1996). The C-Index is interpreted as the
probability that, given two randomly drawn patients, the pa-
tient who experience the event first has a predicted higher
probability of the event occurring. Such pairs of patients
are called concordant. The C-index is computed as the fre-
quency of all concordant pairs among all pairs of patients in
the test data.

The Weighted-Accuracy and C-index was used to eval-
uate the algorithms. However, because ELM does not out-
put probabilities which is required for the computation of C-
Index, only the Weighted- Accuracy will be reported for this
algorithm. The weight in Weighted-Accuracy was set equal
to the observed mortality rate in the training set i.e λ = 0.24.

IPCW Analysis
The prostate cancer data used in this study is censored, i.e it
includes a survival time (in months) and an indicator vari-
able indicating if the outcome of interest (death) has oc-
curred within the 10 years follow up. The analysis therefore
has to take into account the fact that for some observations,
the follow up may end before the event occurs or are lost to
follow-up. Simply ignoring the censored observations may
lead to bias estimates. IPCW analysis (Robins, Rotnitzky,
and Zhao 1994) is a method proposed to account for the cen-
soring.

The dependence of censoring on the outcome event is
used to up or down-weight the censored observations. Thus
in order to avoid bias in the estimates, one can reweight the
censored observations using the censoring probability or the
probability of not being censored.

In this work, the Nelson-Aaalen estimator of the censor-
ing probability conditioning on the independent variables is
used to weight the censored observations in the training set
while weights for the uncensored is set to 1.

6 Results
To investigate the effect of age, comorbidities, tumor risk
factors and initial treatment types, 6 models were con-
structed in increasing complexity. The independent variable
for the respective models were as follow:

• M1: Age + Elixhauser comorbidity,
• M2: Age + CCS
• M3: M1 + Tumor Risk Factors
• M4: M2 + Tumor Risk Factors
• M5: M3 + Initial Treatment Types
• M6: M4 + Initial Treatment Types

Table 2 and 3 shows the performances of the 5 classifiers
for each of the 6 model specifications M1-M6. Overall, LS-
ELR and ELM performed better than the other models with
respect to the Weighted-Accuracy measure. A slight advan-
tage can be seen for LS-ELR. Cox proportional harzards
model outperformed all models with respect to the C-Index.
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logistic regression performed poorly when evaluated using
the Weighted-Accuracy, but its performance improves for
the C-Index. It should be noted however that, experiments
without the IPCW analysis for logistic regression produced
significantly better results with the 2 performance measures.
Because this study aimed at accounting for censoring the re-
sults are not reported.

The last row in both tables is the total computational
time for models M1-M6. Clearly, LS-ELR and ELM outper-
formed the other models in time scalability. LS-ELR runs
about 13.5 times faster than Naive Bayes, 3.2 times faster
than Cox model and 2.8 times faster than logistic regres-
sion and more accurate than these models when using the
Weighted-Accuracy.

LS-ELR and ELM performed best when the Elixhauser
comorbidities, tumor risk factors and initial treatment types
are included as independent variables. The best results for
these models was obtained with model M5. A similar result
can be seen for Naive Bayes especially for the C-Index. On
the other hand, Cox model and Logistic regression seems to
performed better with the CCS comorbidities.

Table 2: Performance Comparison: Weighted-Accuracy
Models LS-ELR ELM LR NB COX

M1 0.77 0.76 0.61 0.67 0.72
M2 0.75 0.75 0.62 0.65 0.72
M3 0.78 0.78 0.62 0.66 0.73
M4 0.75 0.76 0.62 0.65 0.73
M5 0.79 0.79 0.61 0.67 0.72
M6 0.76 0.75 0.65 0.65 0.73

time (sec) 67.08 66.15 188.12 909.38 208.52

Table 3: Performance Comparison: C-Index
Models LS-ELR LR NB COX

M1 0.69 0.67 0.68 0.71
M2 0.66 0.67 0.67 0.72
M3 0.73 0.70 0.69 0.75
M4 0.67 0.69 0.67 0.76
M5 0.75 0.70 0.70 0.75
M6 0.70 0.69 0.65 0.76

time (sec) 95.50 223.05 1774.63 207.39

7 Conclusions
The application of machine learning tools in healthcare re-
search is often limited to small scale problems primary due
to the slow learning rate of most of its effective algorithms.
This study presented a large scale algorithm permitting LS-
ELR to learn very fast on very large data sets. The complex-
ity of the presented algorithm depends only on the dimen-
sion of the SLFN hidden layer feature space which can be
fixed for most problem sizes.

The performance of LS-ELR is tested on a large case
study of mortality prediction for men newly diagnosed with
prostate cancer from the SEER-Medicare database. Numeri-
cal results show that the algorithm is extremely fast and can

be more accurate in survival predictions than standard sta-
tistical methods.
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