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Abstract
Probabilistic Relational Models (PRMs) are directed proba-
bilistic graphical models representing a factored joint distri-
bution over a set of random variables for relational datasets.
While regular PRMs define probabilistic dependencies be-
tween classes’ descriptive attributes, an extension called PRM
with Reference Uncertainty (PRM-RU) allows in addition to
manage link uncertainty between them, by adding random
variables called selectors. In order to avoid variables with
large domains, selectors are associated with partition func-
tions, mapping objects to a set of clusters, and selectors’ dis-
tributions are defined over the set of clusters. In PRM-RU, the
definition of partition functions constrains us to learn them
only from concerned individuals entity attributes and to as-
sign the same cluster to a pair of individuals having the same
attributes values. This constraint is actually based on a strong
assumption which is not generalizable and can lead to an un-
der usage of relationship data for learning. For these reasons,
we relax this constraint in this paper and propose a differ-
ent partition function learning approach based on relationship
data clustering. We empirically show that this approach pro-
vides better results than attribute-based learning in the case
where relationship topology is independent from involved en-
tity attributes values, and that it gives close results whenever
the attributes assumption is correct.

Introduction
Many machine learning approaches assume individuals as
being independent and identically distributed (i.i.d.). How-
ever, multiple problems in real life break this hypothesis. For
example, the probability of a person to develop some genetic
disease is influenced by the history of his family’s medical
issues.

Bayesian networks (Pearl 1988) are probabilistic graphi-
cal models for propositional datasets, where we assume in-
dividuals as i.i.d. Probabilistic Relational Models (Koller
and Pfeffer 1998; Pfeffer and Koller 2000) (PRMs) extend
Bayesian networks to relational data, releasing the i.i.d. as-
sumption. Several problems have been addressed with PRM
framework in the literature such as recommendation (Huang,
Zeng, and Chen 2004) and clustering (Taskar, Segal, and
Koller 2001). Recent work has also shown a use of PRM
for Enterprise Architecture Analysis (Buschle et al. 2011).

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In PRM, the learning task aims at finding general proba-
bilistic dependencies between class attributes, using infor-
mation about both classes’ individuals’ inner information
and relationships between them. In this case, relationships
between individuals are supposed to be known and are not
part of the learned model.

PRM with Reference Uncertainty (Getoor et al. 2000;
Getoor 2001; 2007)(PRM-RU) is an extension of PRM re-
moving the need for exhaustive knowledge of relationships
between individuals. Link uncertainty for a specific individ-
ual is represented as a random variable following a distribu-
tion over possible individuals it can be related to. However,
in order to avoid large variables problems, the possible in-
dividuals are grouped thanks to the use of a partition func-
tion and the random variable simply follows a distribution
over these groups. To the best of our knowledge, no work
has been published to study the impact of partition function
choice to learning performances. The only solution involves
a determinism based on individuals inner information. Be-
sides, partition functions, as defined in PRM-RU, must re-
spect the constraint that individuals sharing the same inner
description are grouped together.

This is a strong assumption which cannot be generalized
in every case. As an example, students of same gender and
age do not necessarily have close study patterns. Thus, given
a set of attributes supposed to explain a relationship for one
entity, parameters estimation of the model can lead to high
variances inside each partition, resulting in poor parameters
estimation results. Besides, it means that a relationship with
no attribute cannot be used for learning.

In this paper, instead of building deterministic parti-
tion functions based on an attributes-oriented learning, we
choose to use a clustering algorithm to learn relationship-
based partition functions from data. We use for this task
the so-called non-negative matrix factorization techniques
(NMF) and empirically show that: 1) clustering based parti-
tion function learning provides more accurate models than
currently used Cartesian product (CP) partition functions
whenever relationships are not well explained by attributes;
2) clustering based partition functions provides close results
to CP ones for cases where attributes perfectly describe the
relationship and where CP is optimum.

The rest of the paper is organized as follows. We first de-
scribe PRM with Reference Uncertainty models, a defini-
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tion of their learning algorithm and discuss their weaknesses
concerning partition functions. Then, we propose a brief
overview of non-negative matrix factorization approaches
and their use for clustering. Next, we describe our partition
function learning approach using NMF and finally show ex-
perimental results.

Probabilistic Relational Models with
Reference Uncertainty

Probabilistic Relational Models (PRMs) are an extension
of Bayesian networks to learn from and infer in relational
datasets with uncertainty.

Relational schema
In order to be compatible, a PRM and a dataset must respect
the same underlying data structure, which is formalized un-
der the concept of relational schema. A relational schema
describes a set of classes X . Every Xi ∈ X is composed
of a set of descriptive attributes and a set of reference slots.
The set of descriptive attributes for a class Xi is denoted
A(Xi) and its set of reference slots is R(Xi). The attribute
A and the reference slot r of Xi are respectively denoted
as Xi.A and Xi.r. We call slot chain of size l, a sequence
(r1, . . . , rl) ∈ R(X )l, where R(X ) is the set of all the ref-
erence slots in the schema and in which for all i ≤ l we have
Ran[ri−1] = Dom[ri]. An instance I of the schema is a
set of individuals Xi for every class Xi ∈ X , each individ-
ual being assigned a set of valid values for its attributes and
reference slots.

Probabilistic Relational Model
Given a relational schema, a Probabilistic Relational Model
defines a probability distribution over its instances. PRMs
are formally described in definition 1.

Definition 1 (Pfeffer and Koller 2000) Probabilistic Rela-
tional Models (PRM) are composed of a qualitative depen-
dency structure S and a set of parameters Θ. The structure
defines, for every class Xi and every attribute Xi.A in the
relational schema, a set of parents Pa(Xi.A). Each parent
of Xi.A is of the form Xi.K.B, where K is a slot chain with
Dom[K] = Xi and Ran[K] = Xj ∈ X . Given a structure,
Θ defines, for every attributeXi.A, a conditional probability
distribution (CPD) P (Xi.A|Pa(Xi.A))

PRMs allow us to learn probability distributions over indi-
vidual attributes values of relational datasets. Assuming that
learned probability distributions are stationary over consid-
ered instances, it is possible to instantiate a learned PRM
Π from a new instance I of the same relational schema, in
order to infer on its objects. Concretely, we consider the re-
lational skeleton of I, denoted σr(I), which is composed
of both objects lists for every class of the relational schema
and value of reference slots for every object. From Π and
σr(I), it is possible to build a ground Bayesian network in
which we can make regular Bayesian network inference for
the objects of I. PRMs can thus be seen as templates of joint
probability distributions for any instance (or any relational
skeleton) of the relational schema.

The problem with attributes-oriented PRMs is the require-
ment of a full specification of the relational skeleton for any
instance to infer on. Thus, there can be no uncertainty on
reference slot values, which make these PRMs unsuited for
link-prediction tasks. This latter problem can however be
tackled by the use of dedicated PRM extensions. We focus
on one such extension in this article, called PRM with Ref-
erence Uncertainty.

PRM with Reference Uncertainty
We now consider the case where we do not have a full spec-
ification of reference slot values in instances we want to
infer on. Given an instance I, we extract its object skele-
ton, denoted σo(I), consisting in the list of all the objects
identifiers without any information about their descriptive
attribute and reference slot values.
Probabilistic Relational Models with Reference Uncertainty
(PRM-RU) are made to deal with situations whenever all
objects are defined but links between them are uncertain,
and thus define probability distributions for both attributes
and reference slots values. Note that for a reference slot
Xi.R, where Ran[Xi.R] = Xj , R can take any value in
σo(I(Xj)), the set of objects’ identifiers of class Xj in I.
Thus, in order to define a distribution over these values, we
could simply define a distribution over all objects identifiers
of Xj . This is however not recommended for several rea-
sons. First, a learned PRM-RU would be difficult to instan-
tiate and generalize for other instances. Then, it seems un-
reasonable to store and compute distributions over huge do-
mains, since relational datasets may have millions individu-
als. Finally, we can doubt on the quality of learned models,
since it is unlikely to have sufficient statistics for this task.
To solve these problems, PRM-RU relies on the concept of
objects partitioning, making the assumption that an object
is chosen during a two-steps process where we first choose
a subset of objects and then choose an object inside it. In
order to build these subsets, every reference slot Xi.R with
Ran[Xi.R] = Xj is associated to a partition function ψR

mapping individuals of Xj to a set of groups CR. In addi-
tion, every reference slot Xi.R is associated to a selector
attribute Xi.SR taking values in CR. This selector is finally
treated as another attribute, having parents and a CPD given
these parents. PRM-RU are formally defined in 2.

Definition 2 (Getoor et al. 2001) A PRM with Reference
Uncertainty (PRM-RU) is a PRM as described in definition
1. In addition, we add for every reference slot Xi.R: a parti-
tion function ψR mapping the set of individuals Ran[Xi.R]
to a set of groups CR; a selector attribute Xi.SR taking
on values in CR; a set of parents Pa(Xi.SR); a CPD
P (Xi.SR|Pa(Xi.SR)).

The Figure 1(bottom) shows an example of PRM-RU de-
fined from the relational schema in Figure 1(top).

Learning PRM-RU and PRM
PRM learning shares the same principles as for Bayesian
networks. The structure learning is based on an iterative
greedy search method where each iteration consists in: 1)
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Figure 1: (top) Experiments relational schema. An arrow
from A to B means that attribute A references class B. (bot-
tom) PRM-RU structure to learn in experiments. An arrow
from attribute A to attribute B means that A is a parent of B.

generating all current structure’s neighbors; 2) learning pa-
rameters for each neighbor; 3) evaluating each neighbor’s
score using both its structure and parameters; 4) choosing
the one maximizing it as new current structure for next it-
eration. However, unlike Bayesian networks, the informa-
tion coming from the relational schema is used in PRMs
learning to constrain the choice of possible parents for a
node. Indeed, the greedy search algorithm for PRMs pro-
gressively checks dependencies between attributes separated
by longer and longer slot chains, privileging the shortest
ones first. The algorithm continues until convergence. In
Bayesian networks and PRMs, the structure is a Directed
Acyclic Graph (DAG) describing (in)dependencies between
variables. Thus, neighbors of a specific model are obtained
with three possible edges manipulation operators: add, re-
move and reverse. In PRM-RU, in addition, the partitions
functions are also considered as part of the model structure.
As a consequence, two new partition functions manipulation
operators are added in PRM-RU structure learning: refine
and abstract. The former (resp. latter) leads to more (less)
detailed functions, with more (less) clusters.

Partition functions in PRM-RU
As seen before, learning a PRM-RU implies to learn par-
tition functions, defined as a mapping of objects from one
specific class to a specific set of clusters. To the best of our
knowledge, existing literature about PRM-RU do not pro-
vide detailed information about partition function learning
(Getoor et al. 2000; Getoor 2001; 2007). Cartesian prod-
uct (CP) of some attributes values’ sets are used in practice.
More formally, CP partition functions are defined as follows:
Let ψR be a partition function for a reference slot Xi.R of a
PRM-RU, withRan[Xi.R] = Xj . If it is a Cartesian product
partition function, and if PR ⊆ A(Xj) is the set of involved
attributes for ψR, then for an instance I, two individuals of
I(Xj) are assigned to the same cluster in the set of clusters

CR if and only if they have the same attributes values in PR.
In the CP partition function case, the refine (resp. ab-

stract) operator adds (resp. removes) an involved attribute.
Note that learning partition functions in this case simply
boils down to executing k simple SELECT queries in the
database. In the case where involved attributes are indexed,
the complexity can be of O(k × log(n)).

In the definition of partitions functions for PRM-RU, it is
required that two individuals having the same attributes val-
ues must be in the same partition. The CP partition function
meets this requirement. However, this constraint induces
that relationships can be fully explained by their involved
entities’ attributes, and thus that two individuals having the
same inner description are related in a similar way to other
individuals. This is actually a strong assumption which can-
not be verified in every situation and can thus lead to poor
results whenever the relationship is not clearly related to at-
tributes values. As an example, two students having the same
age and gender do not necessarily study the same subjects.
Thus, the study relationship cannot be explained by grouping
students by age and gender, and trying to define one single
pattern of study for each group. Besides, we see that this as-
sumption makes the relationship strongly dependent of the
granularity of entities description. In addition, since the par-
tition functions are determined without examining the rela-
tionship data, this information is not used.

These limitations are as much reasons for relaxing the
constraint. We propose in this paper a completely differ-
ent approach of partition functions learning, using clustering
methods on the relationship data itself. We choose the so-
called non-negative matrix factorization (NMF) approach to
tackle the problem, since it is very generalizable, customiz-
able and extended in many ways. The next section briefly
describes NMF and its clustering effects.

Non-negative Matrix Factorization clustering
NMF problem formulation
Considering a matrix V of size n × m, and a dimension
value k, non-negative matrix factorization methods focus on
finding non negative factors W of size n × k and H of size
k×m, such that, with respect to some dissimilarity measure
∆, we have ∆(V,W.H) ≈ 0. Generally, k is chosen small
with respect to n and m. In the literature, most famous mea-
sures are the Frobenius norm, also known as the Euclidean
norm, and KL Divergence, but many frameworks have been
developed to compute NMF with other measures such as any
Bregman divergence (Banerjee et al. 2004). Note that even
if NMF leads to good results in practice, it has been proved
it is an NP-hard problem (Vavasis 2009).

NMF for clustering
Experiments show that NMF provides good clustering re-
sults (Hoyer 2004) and NMF techniques for clustering have
been widely studied in the literature. It has notably been
proved (Ding et al. 2006) that NMF factorization with Eu-
clidean distance is equivalent to K-Means clustering if we
add the orthogonality constraint to H . Thus, this constraint
is often encountered when dealing with NMF for clustering,
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especially as it guarantees a unique solution. In a clustering
context, W can be interpreted as a degree of belonging of
each clustered individual to each of the k clusters. Comple-
mentarily, H can be interpreted as a set of k clusters cen-
troids description.

Learning PRM-RU with NMF methods
Let us consider an instance of an unvalued binary relation-
ship R as a n ×m matrix M(R) where n is the number of
individuals for the first involved entity and m is the number
of individuals for the second one. Let M(R)ij be equal to
1 if there exist a link between ith individual of entity 1 and
jth individual of entity 2, and 0 otherwise.

Since this relationship involves two entities, we must
learn two different partition functions. Thus, in order to learn
partition function for entity 1 (resp. entity 2), we apply NMF
algorithm on M(R) (resp. M(R)T ) to find, for each line of
the matrix, the distribution over clusters for the correspond-
ing individual.

Once NMF has been computed, individuals of the learn-
ing dataset are assigned to a cluster based on the maximum
likelihood estimation of the corresponding W matrix line.
Finally, once each individual is assigned to a cluster, regular
parameters learning can be made. Note that, since the used
NMF approach does not use the attributes values here, it is
useless to explore the hypothesis space of involved attributes
during structure learning. However, we could for example
redefine the refine and abstract operators to make them in-
crease or decrease the clusters number k.

After learning, in order to find the cluster C(i) value of
any new individual i, considering its relationship vector with
distant entity’s individuals v, and the learned factor matrix
H , we calculate:

C(i) = argmin
j

∆(v,Hj.) (1)

where ∆ is a dissimilarity measure, rationally equal or
close to the one used for NMF learning.

NMF partition functions learning brings several advan-
tages. First, since it does not depend on attributes values,
we can still find some accurate dependencies between clus-
ters and other nodes of the PRM-RU during structure learn-
ing, even if there are no attribute. In addition, one of the
advantage of this method is to make full use of the relation-
ship data, even when the relationship itself does not have
any attribute. It is important to note that, beyond these spe-
cific cases tackled by our approach, if a relationship is per-
fectly described by involved entity attributes, it should also
be found by NMF approach and then lead to close results as
what would be obtained with CP partition functions learn-
ing.

In the next section, we empirically validate benefits of this
method over CP partition function learning.

Experiments
In this section, we test our relational based partition learn-
ing approach on generated datasets, and compare its perfor-
mance with existing attributes-oriented CP partition function
learning.

Datasets generation
In our experiment, two datasets generation processes have
been created: one aims at privileging results of clustering
based learning, whereas the other aims at privileging Carte-
sian product learning. The relational schema of generated
datasets consists in three classes: two entities called E1 and
E2, and a relationship class called R. R only contains one
reference slot to E1 and another one to E2. E1 and E2 classes
contain the same parametrized number of binary descriptive
attributes. We generate the same number of E1 and E2 in-
dividuals by independently drawing their attributes values
from some defined distribution P(Ei.Aj) for the jth attribute
of Ei. We then assign E1 and E2 individuals to the corre-
sponding set of clusters C1 and C2, in a different way de-
pending on the dataset generation method: the NMF favor-
able method randomly assigns cluster value to E1 and E2
individuals, following some distributions P(S1) and P(S2)
given as parameter; the NMF unfavorable method assigns
cluster values according to E1 and E2 individuals’ attributes’
values, respecting the constraint of two individuals being in
the same partition if they have similar inner description. Af-
ter this step, we can generate R individuals. This is done by
first drawing a cluster from C1 using P(S1) defined above.
Then, draw a cluster from C2 using some P(S2|S1) given
as parameter and finally uniformly choose an E2 individual
from the selected C2 cluster. This individual is finally added
to the typical vector of selected C1 cluster. Indeed, in this ex-
periment, every E1 individual is supposed to have the exact
same relationships vector to E2 individuals as other E1 indi-
viduals of the same cluster. In order to allow simple compar-
ison between NMF and CP partition function learning, we
must keep strict structure equality. Thus, the number of built
clusters in generated datasets is always equal to 2m where
m is the number of binary attributes of entities classes.

Learning protocol
An experiment execution consists in first generating either
a favorable or unfavorable dataset, and then splitting the
dataset into 10 parts in order to make 10 folds cross vali-
dation learning, each time using 1/10th of dataset as testing
set and the remaining 90% as training set. During an execu-
tion, 3 models are simultaneously learned: our model using
NMF, the CP based model, and an optimistic model know-
ing the real assignations to clusters. The learned structure
is the same for each model (cf. Figure 1(bottom)) and has
been chosen since it maximizes the number of parameters
that can be learned for R individuals (adding more edges is
not allowed due to PRM-RU cycle constraints: see (Getoor
2007) for further details). For each cross-validation fold and
for each of the 3 compared models, we keep the log likeli-
hood calculated on the test set after learning on remaining
data, and the purity clustering score for partitions functions.
The NMF implementation used was the freely available one
of (Pathak et al. 2007), minimizing KL-divergence, a com-
mon divergence measure for NMF problems.

An execution differs from the other by several parameters:
the number of E1 and E2 binary attributes (which determines
also the number of clusters) and the number of individuals of
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E1 and E2. In order to avoid problems while learning NMF,
the number of clusters asked for the E1 partition function
can be updated to reflect the real number of clusters present
in the training dataset. Indeed, even if the data generation
process has been made to give individuals to each cluster,
some selection for the training dataset can result in the miss-
ing of some clusters representatives. Not changing the num-
ber of clusters in this case could lead to drastically different
mean-prototypes and thus poor learning results, especially
if the number of clusters is high compared to the number of
individuals.

Evaluation method
We evaluate an experiment execution by calculating the
mean and standard deviation of the 10 log-likelihoods ob-
tained for each learned model during the 10 fold cross-
validation process. We also calculate for each execution the
statistical significance, for the alternate hypothesis that our
NMF model gives better results than the CP one. In order to
compute this significance, we calculate for each experiment
execution the z-score z with the following formula:

z =
µNMF − µCP

σNMF
(2)

where µNMF , µCP and σNMF respectively represent for
a set of cross-validation results: the mean of NMF results,
the mean of CP results, and the standard deviation of NMF
results. We then compute the left-tailed p-value of this z-
score, which can be computed from the cumulative standard
normal distribution:

P (Z ≤ z) =

∫ z

−∞

1

2π
e

−u2

2 du (3)

The one tailed p-value indicates the probability for NMF re-
sults to reject our null hypothesis stating that the mean of
NMF results is not significantly lower than the mean of CP
results. The lower the value, the more the NMF results are
significantly lower.

Results
We run several experiments, in order to study the impact of
different parameters on the obtained log-likelihood. More
concretely, we made the number of individuals vary from 25
to 200, leading to an R matrix size from 625 to 40000. We
also studied the impact of the number of attributes variation
from 1 to 4, implying a number of clusters variation from
2 to 16. Log likelihoods’ mean and standard deviation dur-
ing 10 folds cross-validation process are given in Figure 2
for each combination of parameters and learning method, as
well as statistical significance corresponding to previously
explained p-value from z-score computation.

According to Figure 2 (top), we can see that our NMF
model performs better than the CP one in a favorable case
whenever clusters are not explained by entities’ attributes.
However, this is not true anymore whenever the number of
clusters is high relatively to the number of entities individu-
als. In this case, it seems that CP methods can learn detailed
enough parameters to fit the data. These results can be never-
theless explained by the experiment protocol itself. Indeed,

the more we raise the number of clusters for a fixed num-
ber of entities, the more we take the risk of having some
clusters not represented in some cross-validation fold. As
a consequence, and even if we chose to change the cluster
number depending on the learning instance, individuals on
the test set of the unknown cluster would have poor likeli-
hood results, which can explain the difference. An evidence
of this in results can be seen thanks to the purity of NMF
models which goes for the single time below 1 (0.95) for
entity 1 only whenever there are 16 clusters in NMF favor-
able datasets. We can also see, according to Figure 2 (bot-
tom) that our NMF model is not necessarily better or do
not have significantly better accuracy in an unfavorable case
whenever clusters are totally explained by attributes val-
ues. However, NMF results are neither significantly worse.
This seems intuitive since if individuals having the same at-
tributes values also have the same relationship patterns, then
the NMF method should see it through the relationship ma-
trix. Our model appears to be then more generalizable than
Cartesian product one. We can note an exception in the un-
favorable data for some cases whenever the NMF method is
significantly better than Cartesian product. However, since
significant p-values seem randomly distributed in the table,
nothing can explain it better than chance.

Discussion
It is important to note that this experiment could be modi-
fied in some ways. First, the typical vectors assumption is a
rather ideal hypothesis, ensuring some stability in data, al-
lowing to focus on learning comparison of models. How-
ever, it can explain the very closeness of some results of
both NMF and Cartesian product learning to the optimal
one. It would be interesting to remove this assumption by
also drawing E1 individuals during the relationship individ-
uals generation step, in order for individuals of same cluster
to have the same distribution of data over the other entity’s
clusters but not necessarily the same individuals. In addi-
tion, we should insist on the fact that data generation for this
experiment is entity 1 oriented. Thus, similarity between E2
individuals of same clusters is not guaranteed, which can
lead to some variability in results.

Conclusion and Perspectives
In this paper, we have proposed a relationship-oriented par-
tition function learning algorithm, based on clustering meth-
ods for PRM with Reference Uncertainty models. We have
seen that it allows for more accurate results whenever the
relationship topology is not just a consequence of entity at-
tributes values, and that it has comparable results to the cur-
rently used partition functions learning methods whenever
attributes fully explain the relationships entities. Note that
many clustering methods could be used to follow the ap-
proach. A recent overview on clustering can be found in
(Aggarwal and Reddy 2014). We chose the so-called non-
negative matrix factorization (NMF) approach here, since it
is very generalizable, customizable and extended in many
ways. We can cite as examples 3-factors NMF for co-
clustering (Ding et al. 2006) or NMF with Laplacian regu-
larization (Gu and Zhou 2009). Note that performance could

494



Figure 2: Log likelihood means (and standard deviations) and results of significance test p for: (top) NMF-favorable data
(bottom) CP-favorable data. Significance tests of the NMF > CP hypothesis are noted OK if the p-value score is below 0.001.

also be improved by the use of fast NMF algorithms, as in
(Wang et al. 2011).

It is important to note that our method is for now limited
to binary relationships. This limitation could be removed, as
for example through the use of Tensor Factorization tech-
niques (Shashua and Hazan 2005).
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