Proceedings of the Fourteenth International Conference on Principles of Knowledge Representation and Reasoning

Tweety: A Comprehensive Collection of Java Libraries for
Logical Aspects of Artificial Intelligence and Knowledge Representation

Matthias Thimm
Institute for Web Science and Technologies (WeST)
University of Koblenz-Landau
Germany

Abstract

This paper presents Tweety, an open source project for
scientific experimentation on logical aspects of artifi-
cial intelligence and particularly knowledge represen-
tation. Tweety provides a general framework for im-
plementing and testing knowledge representation for-
malisms in a way that is familiar to researchers used
to logical formalizations. This framework is very gen-
eral, widely applicable, and can be used to implement
a variety of knowledge representation formalisms from
classical logics, over logic programming and computa-
tional models for argumentation, to probabilistic mod-
eling approaches. Tweety already contains over 15 dif-
ferent knowledge representation formalisms and allows
easy computation of examples, comparison of algo-
rithms and approaches, and benchmark tests. This pa-
per gives an overview on the technical architecture of
Tweety and a description of its different libraries. We
also provide two case studies that show how Tweety can
be used for empirical evaluation of different problems in
artificial intelligence.

1 Introduction

Knowledge Representation and Reasoning (KR) [Brachman
and Levesque, 2004] is an important subfield in Artificial
Intelligence (AI) that deals with issues regarding formaliz-
ing knowledge in such a way that machines can read, un-
derstand, and reason with it. Nowadays, KR has a lot of
applications within, e. g., the semantic web [Antoniou and
van Harmelen, 2004], as a lot of work on description logics
[Baader et al., 2003] and ontologies originate from this field
(at least the technical or computer-science-oriented perspec-
tives on those). Apart from that, more fundamental work in
KR deals with issues regarding uncertainty of beliefs, dy-
namics of belief, and defeasible reasoning. Many branches
of research in knowledge representation and reasoning is
theoretical in nature and researchers usually do not put ef-
fort in implementation and empirical evaluation. To address
this issue we present in this field study the Tweety libraries
for logical aspects of artificial intelligence and knowledge
representation.

Approaches to knowledge representation follow almost
always a specific pattern. Starting from a formal syntax one

Copyright (© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

528

can build formulas which are collected in knowledge bases.
Using knowledge bases one can derive new information us-
ing either the underlying semantics of the language or a spe-
cific reasoner. For example, propositional logic is the most
basic form for knowledge representation. Given some set of
propositions (or atoms) one can build complex formulas us-
ing disjunction, conjunction, or negation. A set of propo-
sitional formulas, i.e., a knowledge base, can be used to
derive new propositional formulas as conclusions. For in-
stance, this can be done using the standard model-theoretic
semantics of propositional logic or more sophisticated rea-
soning techniques such as paraconsistent reasoning. Most
logical approaches to knowledge representation such as first-
order logic, description logics, defeasible logics, default log-
ics, probabilistic logics, fuzzy logics, etc. follow this pat-
tern. Moreover, many other formalisms which are not so
obviously rooted in logic such as abstract argumentation or
Bayes nets can also be cast into this framework. For exam-
ple, for abstract argumentation frameworks [Dung, 1995], a
knowledge base is given by a conjunction of attack state-
ments between arguments and different kinds of semantics
such as grounded or stable semantics determine how sets of
arguments can be derived from a knowledge base.

The Tweety libraries support the implementation of such
approaches by providing a couple of abstract classes and in-
terfaces for components such as Formula, BeliefBase,
and Reasoner. Furthermore, many strictly logic-based ap-
proaches to knowledge representation can also utilize fur-
ther classes such as Predicate, Atom, and Variable,
to name just a few. Currently, Tweety already contains im-
plementations of over 15 different approaches to knowledge
representation such as propositional logic, first-order logic,
several approaches to probabilistic logics, and several ap-
proaches to computational models of argumentation.

In this paper, besides giving an overview on the technical
details of Tweety and its libraries, we also report on two case
studies that use Tweety as a framework for experimenta-
tion and empirical evaluation. The first study is on inconsis-
tency measurement for probabilistic logics [Thimm, 2011;
2013b]. In general, probabilistic logics are concerned with
using quantitative uncertainty for non-monotonic reasoning.
Naturally, these approaches are computationally hard and
not easy to understand, as the underlying reasoning mech-
anisms are quite complicated. Consequently, implementa-

tions serve well to understand examples and to (in-)validate
conjectures. Our second case study is about strategic argu-
mentation in multi-agent systems [Thimm and Garcia, 2010;
Rienstra, Thimm, and Oren, 2013]. Similarly, when defining
agent models and negotiation strategies in such an environ-
ment, effects that occur on a larger scale are hard to predict
by hand. Moreover, just an analytical evaluation of differ-
ent negotiation strategies is often also simply too weak to
provide meaningful insights [Rienstra, Thimm, and Oren,
2013]. For that reason Tweety can also be used as a tool
for empirical evaluation as it has been done in [Rienstra,
Thimm, and Oren, 2013] to provide average performance
results on a series of experiment runs in random settings.
Further works that use Tweety for implementing knowledge
representation formalisms or for empirical evaluation are,
e.g., [Thimm and Kern-Isberner, 2008; Thimm and Gar-
cia, 2010; Kriimpelmann et al., 2011; Thimm, 2011; Kern-
Isberner and Thimm, 2012; Thimm, 2012; 2013b; Rienstra,
Thimm, and Oren, 2013; Thimm, 2013a; Kriimpelmann and
Kern-Isberner, 2012].

The rest of this paper is organized as follows. Section 2
gives an overview on the architecture of Tweety and Sec-
tion 3 presents some technical details on its different li-
braries. In Section 4 two case studies are presented that show
how Tweety can be used for evaluation in scientific research.
Section 5 concludes with a summary and pointers to future
work.

2 Technical Overview

Tweety is organized as a modular collection of Java li-
braries with a clear dependence structure. The program-
ming language Java has been chosen as it is easy to un-
derstand, commonly used, and platform-independent. Each
knowledge representation formalism has a dedicated Tweety
library (ranging from a library on propositional logic to li-
braries on computational models of argumentation) which
provides implementations for both syntactic and semantic
constructs of the given formalism as well as reasoning ca-
pabilities. Several libraries provide basic functionalities that
can be used in other projects. Among those is the Tweety
Core library which contains abstract classes and interfaces
for all kinds of knowledge representation formalisms. Fur-
thermore, the library Math contains classes for dealing with
mathematical sub-problems that often occur, in particular,
in probabilistic approaches to reasoning. Most other Tweety
projects deal with specific approaches to knowledge repre-
sentation. In the next section, we have a closer look on the
individual libraries.

Each Tweety library is organized as a Maven' project
(Maven is a tool for organizing dependencies between
projects, building, and deploying). Most libraries can be
used right away as they only have dependencies to other
Tweety libraries. Some libraries provide bridges to third-
party libraries such as numerical optimization solvers which
are not automatically found by Maven and have to be in-
stalled beforehand. However, all necessary third-party li-

"http://maven.apache.org

529

braries can be installed by executing a single install file lo-
cated within the Tweety distribution.

In order to use and develop with Tweety we recommend
using the Eclipse IDE? and its Maven plugin®. As all Tweety
libraries are organized as Maven projects they can all be
easily imported and used for other projects within Eclipse.
Furthermore, pre-compiled JARS for every library can be
downloaded from the Tweety homepage* and directly used
in other projects. A third way of using the functionalities
of Tweety is by using its Command Line Interface which is
currently under development.

Currently, Tweety contains 161 Java packages which
themselves contain 794 Java classes in overall 87421 lines
of code. The average cyclomatic complexity number per
method (CCN) [McCabe, 1976] is 2.87. This means, that ev-
ery method roughly contains two to three if-else statements
thus reducing complexity on a method-basis and emphasiz-
ing the modular nature of Tweety. Furthermore, the aver-
age code-to-comment ratio in Tweety is 2.13, meaning that
for roughly every two lines of code one line of comment is
given.

3 Libraries

In the following we give a detailed description of the cur-
rently available libraries within Tweety. An overview of
these libraries is given in Table 1 which provides both the
name of a library and its Java root package name. Further-
more, the final column lists references to original literature
and the implemented reasoning mechanisms and solvers.
There, a dagger (1) indicates that a the particular reasoning
mechanism has been directly implemented from the original
literature, a double dagger (1) means that a wrapper for the
existing original implementation is provided, and an asterisk
(*) refers to related literature.

General Libraries

The General libraries of Tweety provide basic functionali-
ties and utility classes for all other Tweety classes.

Tweety Core The Tweety Core library contains abstract
classes and interfaces for various knowledge representation
concepts. Among the most important ones are

Formula A formula of a representation formalism.
BeliefBase Some structure containing beliefs.

BeliefSet A set of beliefs, i.e., a set of formulas,
it is the most commonly used class derived from
BeliefBase. Please note that we follow the Java
guideline for naming a class containing a set of be-
liefs a belief set (it contains a finite unordered set of
elements), opposed to the naming convention in be-
lief dynamics where a belief set is usually deductively
closed. In terms of belief dynamics research the class
BeliefSet actually represents a belief base.

Signature The signature of a representation formalism.
Zhttp://www.eclipse.org

3http://maven.apache.org/eclipse-plugin.html
*http://www.mthimm.de/projects/tweety/

[Library [Project root package Notes

General Libraries

Tweety Core net.sf.tweety

Command Line Interface n.s.t.cli

Plugin n.s.t.plugin *JSPF*

Math n.s.t.math flpsolve®, 1OpenOpt’,
TApache simplex?, $Choco®,
tGradient descent

Graphs n.s.t.graphs

Logic Libraries

Logic Commons n.s.t.logics.commons 1[Grant and Hunter, 2006],
t[Hunter and Konieczny, 2006]

Propositional Logic n.s.t.logics.pl Satdj’

First-Order Logic n.s.t.logics.fol *[Brachman and Levesque, 2004]

Conditional Logic n.s.t.logics.cl T[Pearl, 19901, T[Kern-Isberner, 2001]

Relational Conditional Logic n.s.t.logics.rcl t[Kern-Isberner and Thimm, 2012]

Probabilistic Conditional Logic n.s.t.logics.pcl t[Rodder, 20001, T[Thimm, 2013b],
+[Potyka, 2014]

Relational Prob. Conditional Logic n.s.t.logics.rpcl t[Kern-Isberner and Thimm, 2010]

Markov Logic n.s.t.logics.ml t[Richardson and Domingos, 2006]
tAlchemy®

Epistemic Logic n.s.t.logics.el “[Fagin et al., 1995]

Description Logic n.s.t.logics.dl *[Baader et al., 2003]

Logic Translators n.s.t.logics.translators

Logic Programming Libraries

Answer Set Programming n.s.t.lp.asp 1Clingo”, DLV’

Dynamics in Answer Set Programming | n.s.t.lp.asp.beliefdynamics | {[Kriimpelmann and Kern-Isberner, 2012]

Nested Logic Programming n.s.t.lp.nlp *[Lifschitz, Tang, and Turner, 1999]

Argumentation Libraries

Abstract Argumentation n.s.t.arg.dung 1[Dung, 1995],
t[Baroni, Caminada, and Giacomin, 2011]

Deductive Argumentation n.s.t.arg.deductive t[Besnard and Hunter, 2001],
t[Besnard and Hunter, 2006]

Structured Argumentation Frameworks | n.s.t.arg.saf T[Thimm and Garcia, 2010]

Defeasible Logic Programming n.s.t.arg.delp t[Garcia and Simari, 2004],
1[Stolzenburg et al., 2003]

Logic Programming Argumentation n.s.t.arg.lp T[Schweimeier and Schroeder, 2003]

Probabilistic Argumentation n.s.t.arg.prob T[Thimm, 2012]

Agent Libraries

Agents n.s.t.agents *TWeiss, 2013]

Dialogues n.s.t.agents.dialogues T[Thimm and Garcia, 2010],
t[Rienstra, Thimm, and Oren, 2013]

Other Libraries

Action and Change n.s.t.action 1[Gelfond and Lifschitz, 1998]

Belief Dynamics n.s.t.beliefdynamics t[Hansson, 20011, {[Fermé and Hansson, 1999],
t[Kriimpelmann et al., 2011]

Machine Learning n.s.t.machinelearning {LIBSVM/

Preferences n.s.t.preferences *[Walsh, 20071, {[Thimm, 2013al

Table 1: Overview on the Tweety libraries (the prefix n. s . t stands for net .sf.tweety)

“https://code.google.com/p/jspt/

Phttp://psolve.sourceforge.net
“http://openopt.org
“http://commons.apache.org/math
http://www.emn.fr/z-info/choco-solver/
http://www.satd].org
$http://alchemy.cs.washington.edu
"http://potassco.sourceforge.net
"http://www.dlvsystem.com

Jhttp://www.csie.ntu.edu.tw/~cjlin/libsvm/

530

Interpretation An interpretation that evaluates the
truth of formulas.

Reasoner Implements a specific reasoning strategy to an-
swer queries for a representation formalism.

Parser, Writer For reading/writing formulas and belief
sets.

Most other Tweety libraries provide specific implemen-
tations of the above abstract classes and interfaces for
their specific representation formalisms. For example,
the library Propositional Logic implements Formula
by PropositionalFormula (which is recursively de-
fined using conjunction, disjunction, and negation) and
InterpretationbyPossibleWorld. Inthis way, the
classical approach to formally define a logical language via
syntax and semantics has a one-to-one correspondence with
its implementation in Tweety.

Besides the above mentioned abstract classes and inter-
faces, Tweety Core provides abstract implementations of
several other knowledge representation concepts and several
utility classes for working with sets, subsets, vectors, and
general rules.

Plugin The Plugin library provides classes for implement-
ing Tweety plugins that can be used by, e. g., the Command
Line Interface. This library makes use of the Java Simple
Plugin Framework (JSPF)>. Using these classes one can en-
capsulate the functionalities of a specific knowledge repre-
sentation formalism and expose them in the same way to
user interfaces. The most important class is the abstract class
AbstractTweetyPlugin which is the basis for devel-
oping plugins. Please note that the Plugin library is currently
in an experimental phase.

Command Line Interface All Tweety libraries can be
accessed programmatically in Java through their API
(Application Programming Interface). However, for non-
programmers this way of utilizing the libraries is not very
convenient. Using the Plugin library the Command Line In-
terface library provides a general command line interface for
many Tweety libraries. Every library can expose its func-
tionality through a Tweety plugin that can be plugged into
the command line interface and accessed in a uniform way.
Please note that the Command Line Interface library is cur-
rently in an experimental phase.

Math Many algorithms for knowledge representation
and reasoning are based on mathematical methods such
as optimization techniques. The Math library encap-
sulates those mathematical methods and exposes them
through simple interfaces to other libraries for realiz-
ing these algorithms. At the core, the Math library con-
tains classes for representing mathematical terms (such as
Constant, Variable, Product, Logarithm) and
statements (such as Equation). Using these constructs
one can represent, e.g., constraint satisfaction problems
(ConstraintSatisfactionProblem) and optimiza-
tion problems (OptimizationProblem). Through the

>https://code.google.com/p/jspf/

531

Solver interface the Math library provides bridges to
several third-party solvers such as the ApacheCommons
Simplex-algorithm6, the OpenOpt solvers’, or Choco®.

Graphs The Graphs library contains a simple graph im-
plementation with utility functions as it can be used, e. g., to
represent abstract argumentation frameworks (see Abstract
Argumentation library).

Logic Libraries

The Tweety Logic libraries (located under the package
net.sf.tweety.logics) provide implementations for
various knowledge representation formalisms based on clas-
sical logics (propositional logic and first-order logic) and
non-classical logics such as conditional logic, probabilistic
logics, epistemic logics, or description logic. Each library
follows a strict approach in defining the formalism by im-
plementing the abstract classes and interfaces Formula,
BeliefBase, Interpretation,... from the Tweety
Core library. Each library contains a sub-package syntax
which contains the elements to construct formulas of the for-
malism and a sub-package semant ics which contains el-
ements for realizing the semantics of the formalism. Besides
these two common sub-packages many libraries also contain
parsers for reading formulas from file and reasoner that im-
plement a specific reasoning approach.

Logic Commons The Logic Commons library contains
abstract classes and interfaces which further refine the gen-
eral Formula interface from the Tweety Core library.
Among these refinements are several concepts that are
shared among a great number of knowledge representation
formalism such as Predicate, Variable or Atom.

Propositional Logic The Propositional Logic library pro-
vides an implementation of classical propositional logic.
Propositional formulas can be constructed using, e.g.,
classes Conjunction or Disjunction and proposi-
tional formulas can be put into a knowledge base of type
P1BeliefSet. Currently, the Propositional Logic library
supports two different reasoners. The first is a simple brute
force approach that directly follows the definition of classi-
cal entailment, i.e., in order to prove a given propositional
formula wrt. a given set of propositional formulas all pos-
sible worlds are enumerated and tested. Obviously, this rea-
soner only works for small examples but is useful when one
is interested in all models of a knowledge base. The second
supported reasoner incorporates the Sat4j reasoner’. Other
SAT-solvers can be added in a straightforward way.

First-Order Logic This library contains an implementa-
tion of first-order logic as a knowledge representation for-
malism. Both the Propositional Logic library and the First-
Order Logic library are used by many other libraries of
knowledge representation formalisms.

Shttp://commons.apache.org/math
"http://openopt.org
8http://www.emn.fr/z-info/choco-solver/
*http://www.satd].org

Conditional Logic The Conditional Logic library extends
the Propositional Logic library by conditionals, i.e., non-
classical rules of the form (B | A) (“A usually implies
B”), cf. [Nute and Cross, 2002]. In the literature, several
different semantics and reasoning approaches for condi-
tional logics have been proposed and this library can be
used to easily compare their reasoning behavior. Currently,
the Conditional Logic library implements interpretations in
the form of ranking functions [Spohn, 1988] and condi-
tional structures [Kern-Isberner, 2001], and provides rea-
soner based on z-ranking [Goldszmidt and Pearl, 1996] and
c-representations [Kern-Isberner, 2001].

Relational Conditional Logic Similar to the Conditional
Logic library the Relational Conditional Logic extends the
First-Order Logic libraries with relational conditionals (i. e.
conditionals that may contain first-order formulas), cf. [Del-
grande, 1998; Kern-Isberner and Thimm, 2012]. Currently,
this library contains an implementation of the relational
c-representation reasoning approach of [Kern-Isberner and
Thimm, 2012].

Probabilistic Conditional Logic This library further ex-
tends the Conditional Logic library by extending condition-
als to probabilistic conditionals of the form (B | A)[p] (“A
usually implies B with probability p™), cf. [Rodder, 2000].
Besides a naive implementation of probabilistic reasoning
based on the principle of maximum entropy [Paris, 1994]
this library also contains several classes for analyzing and
repairing inconsistent sets of probabilistic conditionals, cf.
[Thimm, 2011; 2013b]. We will discuss this package in more
detail in Section 4.

Relational Probabilistic Conditional Logic By combin-
ing both the Relational Conditional Logic and Probabilis-
tic Conditional Logic libraries the Relational Probabilistic
Conditional Logic library introduces relational conditionals
with probabilities, cf. [Kern-Isberner and Thimm, 2010]. It
implements both the averaging and aggregating semantics
from [Kern-Isberner and Thimm, 2010] and also allows for
lifted inference as proposed in [Thimm, 2011].

Markov Logic This library builds on the First-Order
Logic library to implement Markov Logic, an extension of
first-order logic with weights to allow for probabilistic rea-
soning, cf. [Richardson and Domingos, 2006]. It provides
several propriety sampling-based reasoner and a bridge to
the Alchemy reasoner'".

Epistemic Logic This library extends the Propositional
Logic library with modal operators for epistemic logic and
its semantics with accessibility relations and Kripke models.
Please note that the Epistemic Logic library is currently in an
experimental phase.

Description Logic The Description Logic library provides
a general description logic implementation [Baader et al.,
2003] based on the First-Order Logic library. Please note
that the Description Logic library is currently in an experi-
mental phase.

"%http://alchemy.cs.washington.edu

532

Logic Translators This library provides the abstract class
Translator that provides basic functionalities to imple-
ment translators between different knowledge representation
formalisms. Currently, the Logic Translators library con-
tains translators between first-order logic and answer set
programming, between nested logic programming and an-
swer set programming, and between propositional logic and
first-order logic.

Logic Programming Libraries

The Logic Programming libraries (located under the pack-
age net.sf.tweety.lp) provide implementations of
knowledge representation formalisms based on logic pro-
gramming.

Answer Set Programming The Answer Set Programming
library provides classes for representing extended logic pro-
grams [Gelfond and Leone, 2002]. Answer set programs
are logic programs of the foom A <« Bi,..., B, with
first-order literals A, By, ..., B;, where the body literals
Bi,..., B, may also have a default negation not. This li-
brary provides bridges to several established solvers such as
DLV!', DLV Complex'?, and Clingo'?.

Dynamics in Answer Set Programming This library ex-
tends the Answer Set Programming library by introducing
revision and update approaches. The library contains imple-
mentations of the approaches introduced in [Kriimpelmann
and Kern-Isberner, 2012; Delgrande, Schaub, and Tompits,
2007] and also revision approaches based on argumentation.

Nested Logic Programming This library contains an im-
plementation of nested logic programs which allow for com-
plex first-order formulas to appear in logic programming
rules [Lifschitz, Tang, and Turner, 1999].

Argumentation Libraries

The argumentation libraries (located under the package
net.sf.tweety.arqg) are one of the most mature li-
braries of Tweety and contain a wide variety of implemen-
tations of different approaches to computational argumenta-
tion.

Abstract Argumentation This library implements ab-
stract argumentation as proposed in [Dung, 1995]. An ab-
stract argumentation framework is a directed graph (A, Att)
where A is interpreted as a set of arguments and an edge
(A, A’) € Att is an attack of A on A’. The library provides
implementations of the mostly used semantics and their cor-
responding reasoner, both in terms of extensions (an exten-
sion is a set of arguments that is regarded as accepted by
a semantics) and labelings (a labeling is a function with
a three-valued truth assignment to each argument). Several
utility classes for generating random argumentation frame-
works complement this library.

http://www.dlvsystem.com
Phttps://www.mat.unical.it/dlv-complex
Bhttp://potassco.sourceforge.net

Deductive Argumentation The Deductive Argumenta-
tion library provides an implementation of the approach pro-
posed in [Besnard and Hunter, 2001]. In deductive argumen-
tation, an argument is composed of a set of propositional for-
mulas that derive the claim of the argument. Attack between
arguments is derived from classical unsatisfiability.

Structured Argumentation Frameworks This library
implements the approach of structured argumentation
frameworks as proposed in [Thimm and Garcia, 2010]. In
structured argumentation frameworks arguments are com-
posed of subarguments and a conclusion.

Defeasible Logic Programming This library provides an
implementation of Defeasible Logic Programming (DeLP)
[Garcia and Simari, 2004]. In DeLP knowledge bases con-
tain strict and defeasible rules and facts, similar to knowl-
edge representation formalisms for logic programming. De-
feasible rules can be collected in arguments and compared
by generalized specificity [Stolzenburg et al., 2003].

Logic Programming Argumentation This library pro-
vides an implementation of the argumentation approach of
[Schweimeier and Schroeder, 2003] which is also based on
logic programming techniques.

Probabilistic Argumentation The Probabilistic Argu-
mentation library extends the Abstract Argumentation li-
brary with non-classical semantics based on probabilistic as-
sessments [Thimm, 2012].

Agent Libraries
The agent libraries (located under the package
net.sf.tweety.agents) provide a framework

for analyzing and simulating interactions between agents.

Agents This general library contains an abstract formal-
ization of agents and multi-agent systems. Classes such
as Agent, Environment, MultiAgentSystem, and
Protocol can be used to set up and simulate a sys-
tem of agents within an environment. This library has
a specific focus on the simulation aspect and provides
classes such as MultiAgentSystemGenerator and
GameSimulator that allow the automatic generation of
test scenarios and their evaluation.

Dialogues The library Dialogues extends the Agents li-
brary with the capability of simulating dialogues between
agents, as they are investigated in the context of argumen-
tation in multi-agent systems [Karunatillake et al., 2009]. It
also provides an implementation of agents with an opponent
model as proposed in [Rienstra, Thimm, and Oren, 2013].
We will discuss this package in more detail in Section 4.

Other Libraries

The above discussed libraries constitute the core of Tweety
by providing implementations of several knowledge repre-
sentation formalisms. This collection is complemented by
some further libraries that relate either to topics that do not
strictly belong to the field of knowledge representation (such
as the Machine Learning library) or can be applied across

533

several different knowledge representation formalisms (such
as the Belief Dynamics library).

Action and Change The Action and Change library im-
plements several action languages and their dynamics from
[Gelfond and Lifschitz, 1998].

Belief Dynamics This library provides a general im-
plementation for various approaches to belief (base)
revision and update [Hansson, 2001]. It provides interfaces
and several implementations of many concepts used in
belief dynamics such as BaseRevisionOperator,
BaseContractionOperator, IncisionFunc-
tion, and LeviBaseRevisionOperator. Those
classes are defined in such a general way that they can be
used not only to implement belief dynamics for proposi-
tional logic but also for other knowledge representation
formalisms implementing the corresponding Tweety inter-
faces. This library contains also specific revision approaches
such as selective revision [Fermé and Hansson, 1999] and
argumentative selective revision [Kriimpelmann et al.,
2011].

Machine Learning The Machine Learning library pro-
vides several abstract concepts that can be used in a machine
learning context such as Observation, Classifier,
and CrossValidator. It contains also an implementa-
tion of support vector machines utilizing LIBSVM'*.

Preferences This library contains classes for represent-
ing preference orders and approaches for aggregating them
[Walsh, 2007]. It also contains an implementation of
the dynamic preference aggregation approach proposed in
[Thimm, 2013al.

4 Case Studies and Evaluation

In this section we discuss two case studies that make use
of Tweety as a platform for experimentation and empirical
evaluation. The first case study is on inconsistency handling
for probabilistic logics [Thimm, 2011; 2013b] while the sec-
ond study is on strategic argumentation in multi-agent sys-
tems [Thimm and Garcia, 2010; Rienstra, Thimm, and Oren,
2013].

Inconsistency Handling for Probabilistic Logics

In order to motivate the work described in this section we
give a brief introduction into probabilistic conditional logic
and its inconsistency measures, cf. [Thimm, 2011; 2013b].
For propositional formulas ¢, 1) and a real-value p € [0, 1]
we call (¢ | 1) [p| a probabilistic conditional. A probabilistic
conditional (¢ |)[p] represents a specific form of defeasi-
ble rule and has the intuitive meaning “if 1) is true then ¢ is
true with probability p”. A (probabilistic conditional) know!-
edge base K is a set of probabilistic conditionals. Semantics
are given to probabilistic conditionals by probability func-
tions P : Q — [0,1] with Q being the set of interpreta-
tions (possible worlds) of the underlying propositional logic
(We assume that the set of propositions is finite and so is the

“http://www.csie.ntu.edu.tw/~cjlin/libsvm/

set of possible worlds). A probability function P satisfies
a conditional (¢ |v)[p] if and only if P(¢ A) = pP(v)
(the probability of a formula is defined to be the sum of
the probabilities of all possible worlds satisfying it). Note
that this follows the definition of conditional probability
(P(¢ | ¥) = P(¢ A ¢)/P()) = p) as long as P(1)) # 0. In
order to avoid a case differentiation for P (1)) = 0 we use the
above definition, cf. [Paris, 1994]. A probability function P
satisfies a knowledge base /C if and only if it satisfies all its
probabilistic conditionals. A knowledge base is consistent if
such a probability function exists.

Example 1 Consider K = {(f|)[0.9],(b|p)[1],
(f1p)[0.01]} with the intuitive meaning that birds (b)
usually (with probability 0.9) fly (f), that penguins (p) are
always birds, and that penguins usually do not fly (only with
probability 0.01). The knowledge base K is consistent as a
probability function satisfying it can easily be constructed,
¢f- [Thimm, 2013b]. Note that, e.g., the knowledge base
K = {(z|y)[0.9], (y| T)[0.9], (x| T)[0.2]} is inconsistent
(T is a logical tautology): considering just the conditionals
(2 |y)[0.9] and (y | T)[0.9] we obtain that x has to be at the
least probability 0.81 which is inconsistent with stating that
x has probability 0.2.

In order to deal with inconsistent knowledge bases the
work [Thimm, 2013b] proposes inconsistency measures as
a tool for analyzing inconsistencies. An inconsistency mea-
sure is a function Z that takes a knowledge base X and
computes an inconsistency value Z(K) € [0, 00) with the
intuitive meaning that a larger value indicates a more se-
vere inconsistency (and Z(K) = 0 means that /C is consis-
tent). See [Thimm, 2013b] for more details, some rationality
postulates on inconsistency measurement, and specific ap-
proaches.

The inconsistency measurement framework for prob-
abilistic logics has been implemented in the Prob-
abilistic Conditional Logic library of Tweety (sub-
package net .sf.tweety.logics.pcl.analysis).
However, as inconsistency measurement is a broader topic
that can also be used in other knowledge representation
formalisms such as classical logics [Grant and Hunter,
20061, the concept inconsistency measure is already im-
plemented in the Logic Commons library (sub-package
net.sf.tweety.logics.commons.analysis) as
a very general interface (only a simplified version is shown):

public interface InconsistencyMeasure
<T extends BeliefBase> {
public Double inconsistencyMeasure

(T beliefBase);
}

The interface above is parametrized by the specific
type of belief base using Java Generics. All types
of belief bases used within Tweety, such as propo-

sitional belief sets (P1lBeliefSet) or probabilis-
tic conditional knowledge bases (PclBeliefSet),
are derived from BeliefBase. The package

net.sf.tweety.logics.commons.analysis
provides several generally applicable implementations of

534

the above interface such as (only a simplified version is
shown):

public class MilnconsistencyMeasure
<S extends Formula,T extends BeliefSet<S>>
implements InconsistencyMeasure <I> {

private BeliefSetConsistencyTester <S,T>
consTester;

public MilnconsistencyMeasure (
BeliefSetConsistencyTester <S,T>
consTester){

this.consTester = consTester;

}

@Override
public Double inconsistencyMeasure
(T beliefSet) {
return new Double(this.consTester.
minimallnconsistentSubsets (
beliefSet).size());

}
}

The above measure is an implementation of the MI-
inconsistency measure [Grant and Hunter, 2006] and is
applicable for all kinds of logics that provide an imple-
mentation of an BeliefSetConsistencyTester.

This measure takes the number of minimal incon-
sistent subsets of a knowledge as an assessment
of its inconsistency. Another example, particularly

for the case of probabilistic conditional logic, is the
DistanceMinimizationInconsistencyMeasure
that makes use of the Math library. This measure assesses
the grade of inconsistency by measuring how much the
probabilities of the conditionals have to be modified in
order to obtain a consistent knowledge base, cf. [Thimm,
2013b]. This problem is solved by optimization techniques
that can be found in the Math library.

For probabilistic conditional logic, determining whether
a knowledge base is inconsistent and assessing its incon-
sistency value is not easily done by hand. Using the imple-
mentations of various inconsistency measures in Tweety, we
were able to compute and compare inconsistency values for
various knowledge bases, cf. [Thimm, 2011]. Furthermore,
as the interfaces and abstract classes provided by Tweety are
very general and force the programmer to work as abstract as
possible, even the implementation of such specific concepts
such as inconsistency measures yield very generally appli-
cable classes that are easily adapted to other approaches.

Strategic Argumentation

Our second case study is about strategic argumentation
in multi-agent systems. In the works [Thimm and Garcia,
2010; Rienstra, Thimm, and Oren, 2013] we investigated
systems of agents that are engaged in dialogues and aim at
resolving contradiction by exchange of arguments. We give
a brief introduction into the topic now, but simplify the for-
malization for the sake of readability.

We consider two agents PRO (proponent) and OPP (op-
ponent) engaged in a dialogue about a specific argument A

(we use the terminology of abstract argumentation frame-
works as mentioned earlier). The proponent has the goal
to establish that A is acceptable and the opponent has the
goal to establish that A is not acceptable. Both agents have
only access to a subset of all available arguments and are, in
general, ignorant or uncertain about the arguments the other
agent has access to. Both agents take turn in forwarding a set
of arguments. In [Rienstra, Thimm, and Oren, 2013] several
different belief states with opponent models were proposed
and discussed that help an agent to act strategically in these
kinds of dialogues. The first type 7} of belief state is a tuple
(B, E) where B is the set of arguments a particular agent
(either PRO or OPP) has access to, and E is the opponent
model which is itself a belief state of type T3 '". This type
of belief state therefore models what an agent thinks another
agent beliefs, etc.. The second 75 and third 75 types of be-
lief state extend the first type by introducing uncertainty on
the set of arguments believed by the other agent and uncer-
tainty about the arguments themselves. The second type of
belief state Ty is a tuple (B, P) where B is again the set of
arguments a particular agent has access to and P is a proba-
bility distribution over some set { K7, ..., K, } where each
K; (1 = 1,...,n) is again a belief state of type 75. For
a formalization of the belief state of type T5 see [Rienstra,
Thimm, and Oren, 2013]. In [Rienstra, Thimm, and Oren,
2013] it has been analytically shown that the expressiveness
of the three models is increasing from 77 to T5. However, in
order to understand the differences between the three mod-
els examples have to be created and computed with different
belief states. In the setting of strategic argumentation, this
is a hard task to do by hand. In a system with at least two
agents where both agents are equipped with a non-trivial be-
lief state that changes with every action, running through a
complete example by hand is a tedious task.

The complete setting of [Rienstra, Thimm, and Oren,
2013] has been implemented in the Dialogues library which
makes heavy use of the general agent classes from the
Agents library and, of course, the knowledge representa-
tion formalism from the Abstract Argumentation library. The
central class of the implementation is the ArguingAgent
class (we only show an excerpt):

public class ArguingAgent extends Agent {
private BeliefState beliefState;
private AgentFaction faction;

@Override
public Executable next(Collection <?
extends Perceivable> percepts) {
// [env = the environment object]
this.beliefState .update(env.
getDialogueTrace ());

return this.beliefState .move(env);

}

}

The central attributes of an arguing agent are its belief
state and its faction, e. g., either PRO or OPP. The method

5Note that this model has originally been proposed in [Oren and
Norman, 2010]

next (...) (derived from the super-class Agent) deter-
mines the agent’s behavior on receiving some perception
from the environment and returns some action (of type
Executable). Here, the agent first updates its belief
state with the current dialogue trace (a sequence of sets of
arguments advanced so far) and then returns its own move
(a set of arguments). The three different belief state types
have been implemented in the classes T1BeliefState,
T2BeliefState, and T3BeliefState. Arguing
agents are organized in a GroundedGameSystem which
is of type MultiAgent System<ArguingAgent> and
models an argumentation dialogue (“grounded” refers to the
grounded semantics used for this type of game). On top of
this implementation of the actual dialogue system a simula-
tion framework was implemented that allows the (random)
generation of the above multi-agent systems and measures
the performance of the individual agents over a series of
runs. The central class for the simulation framework is
the GroundedGameGenerator which implements the
interface MultiAgentSystemGenerator and is able
to generate (random) multi-agent systems of arguing agents.

In [Rienstra, Thimm, and Oren, 2013], for evaluating per-
formance we generated a random abstract argumentation
theory with 10 arguments, ensuring that the argument un-
der consideration is in its grounded extension, i.e., under
perfect information the proponent should win the dialogue.
However, from these 10 arguments only 50 % are known by
the proponent but 90 % by the opponent. We used a propo-
nent without opponent model and generated an belief state
of type T3 for the opponent. From this 73 belief state we de-
rived T and T3 belief states by ignoring the added expres-
sivity. For each belief state we simulated a dialogue against
the same opponent and counted the number of wins. We re-
peated the experiment 5000 times, Figure 1 shows our re-
sults, cf. [Rienstra, Thimm, and Oren, 2013]. There, it can
be seen that increasing the complexity of the belief state
yields better overall performance (thus confirming the ana-
Iytical evaluation). However, this empirical evaluation sheds
also more light on the importance of the added expressivity
for strategic argumentation. While 75 is significantly better
that 71, the difference between 75 and 7% is nearly marginal.
These kinds of nuances are very difficult to discover when
considering only analytical evaluation.

S Summary and Future Work

In this paper we presented Tweety, a comprehensive collec-
tion of Java libraries for logical aspects of artificial intelli-
gence and knowledge representation. We gave an overview
on the technical aspects and provided details on its individ-
ual packages. Finally, we presented two case studies that
make use of Tweety as a framework for experimentation and
empirical evaluation.

Tweety is an open source project'®!7 and can therefore be
used and extended by everyone. In particular, instantiating
the abstract Tweety classes for a particular formalism is sim-

1http://www.mthimm.de/projects/tweety/
"The source code of Tweety is hosted at SourceForge: http:/
tweety.svn.sourceforge.net.

30 | N
® 200 ¢ |
2 ¢ 20.82
= 18.2

o ® 1

10.98
T T T
Tl T2 T3
Type of belief state

Figure 1: Average performance of T, T5, and T3 belief state
models after 5000 simulation runs (with Binomial propor-
tion confidence intervals)

ple. Although Tweety is implemented in a object-oriented
programming language it follows a strict declarative formal
way to define concepts from theoretical knowledge repre-
sentation research. Tweety is available under the GNU Gen-
eral Public License version 3.0. In order to contribute to the
main Tweety repository contact the author.

To the best of our knowledge, Tweety is the first attempt to
provide a general-purpose framework for a broad variety of
knowledge representation formalisms. However, there exist
also more specialized frameworks for specific approaches or
areas, such as the OWLAPI'® for working with OWL ontolo-
gies, KReator'? for relational probabilistic knowledge repre-
sentation, or bcontractor?” for belief dynamics.

Current and future work on Tweety is mainly concerned
with extending the general infrastructure and improving us-
ability. In particular, current work is about implementation
of the plugin architecture for all libraries, a command line
interface, and a web front-end. The ultimate goal there is to
have several standardized user interfaces that are apt to work
with any kind of knowledge representation mechanism and
thus remove the burden of designing and implementing user
interfaces from the researcher.

Acknowledgments

Tweety is being collaboratively developed by several con-
tributors. Thanks go to Sebastian Homann, Tim Janus,
Patrick Kriimpelmann, Nico Potyka, Tjitze Rienstra, Ste-
fan Tittel, Thomas Vengels, and Bastian Wolf. The research
reported here was partially supported by the FP7 project
SocialSensor (EC contract number 287975).

References

Antoniou, G., and van Harmelen, F. 2004. A Semantic Web
Primer. Cambridge, MA, USA: MIT Press.

Bhttp://owlapi.sourceforge.net
Yhttp://kreator-ide.sourceforge.net
Phttps://code.google.com/p/bcontractor/

536

Baader, F.; Calvanese, D.; McGuinness, D. L.; Nardi, D.;
and Patel-Schneider, P. F., eds. 2003. The Description Logic
Handbook: Theory, Implementation, and Applications. New
York, NY, USA: Cambridge University Press.

Baroni, P.; Caminada, M.; and Giacomin, M. 2011. An
introduction to argumentation semantics. The Knowledge
Engineering Review 26(4):365—410.

Besnard, P., and Hunter, A. 2001. A logic-based theory of
deductive arguments. Artificial Intelligence 128(1-2):203—
235.

Besnard, P., and Hunter, A. 2006. Knowledgebase compi-
lation for efficient logical argumentation. In Proceedings of
the 10th International Conference on Knowledge Represen-
tation (KR’06), 123-133. AAAI Press.

Brachman, R. J., and Levesque, H. J. 2004. Knowledge Rep-
resentation and Reasoning. The Morgan Kaufmann Series
in Artificial Intelligence. Morgan Kaufmann Publishers.

Delgrande, J. P.; Schaub, T.; and Tompits, H. 2007. A
preference-based framework for updating logic programs. In
Proceedings of the Ninth International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR’07).

Delgrande, J. P. 1998. On first-order conditional logics.
Artificial Intelligence 105(1-2):105-137.

Dung, P. M. 1995. On the Acceptability of Arguments and
its Fundamental Role in Nonmonotonic Reasoning, Logic
Programming and n-Person Games. Artificial Intelligence
77(2):321-358.

Fagin, R.; Halpern, J.; Moses, Y.; and Vardi, M. Y. 1995.
Reasoning about Knowledge. MIT Press.

Fermé, E., and Hansson, S. O. 1999. Seclective revision.

Studia Logica 63(3):331-342.

Garcia, A., and Simari, G. R. 2004. Defeasible logic pro-
gramming: An argumentative approach. Theory and Prac-
tice of Logic Programming 4(1-2):95-138.

Gelfond, M., and Leone, N. 2002. Logic programming and
knowledge representation - the a-prolog perspective. Artifi-
cial Intelligence 138(1-2):3-38.

Gelfond, M., and Lifschitz, V. 1998. Action languages.
Electronic Transactions on Al 2:193-210.

Goldszmidt, M., and Pearl, J. 1996. Qualitative probabilities
for default reasoning, belief revision, and causal modeling.
Artificial Intelligence 84:57-112.

Grant, J., and Hunter, A. 2006. Measuring inconsistency in
knowledgebases. Journal of Intelligent Information Systems
27:159-184.

Hansson, S. O. 2001. A Textbook of Belief Dynamics. Nor-
well, MA, USA: Kluwer Academic Publishers.

Hunter, A., and Konieczny, S. 2006. Shapley inconsistency
values. In Proceedings of the 10th International Conference
on Knowledge Representation (KR’06), 249-259. AAAI
Press.

Karunatillake, N. C.; Jennings, N. R.; Rahwan, I.; and
McBurney, P. 2009. Dialogue games that agents play within
a society. Artificial Intelligence 173(9-10):935-981.

Kern-Isberner, G., and Thimm, M. 2010. Novel semanti-
cal approaches to relational probabilistic conditionals. In
Lin, F; Sattler, U.; and Truszczynski, M., eds., Proceedings
of the Twelfth International Conference on the Principles
of Knowledge Representation and Reasoning (KR’10), 382—
392. AAAI Press.

Kern-Isberner, G., and Thimm, M. 2012. A ranking seman-
tics for first-order conditionals. In Proceedings of the 20th
European Conference on Artificial Intelligence (ECAI’12).

Kern-Isberner, G. 2001. Conditionals in Nonmonotonic
Reasoning and Belief Revision. Number 2087 in Lecture
Notes in Computer Science. Springer-Verlag.

Kriimpelmann, P., and Kern-Isberner, G. 2012. Belief base
change operations for answer set programming. In Cerro,
L. F; Herzig, A.; and Mengin, J., eds., Proceedings of the
13th European conference on Logics in Artificial Intelli-
gence (JELIA’12), 294-306. Springer.

Kriimpelmann, P.; Thimm, M.; Falappa, M. A.; Garcia, A.J.;
Kern-Isberner, G.; and Simari, G. R. 2011. Selective revi-
sion by deductive argumentation. In Modgil, S.; Oren, N.;
and Toni, F., eds., Theory and Applications of Formal Argu-
mentation, Proceedings of the First International Workshop
(TAFA’11, revised selected papers), volume 7132 of Lecture
Notes in Artificial Intelligence, 147—-162. Springer.

Lifschitz, V.; Tang, L. R.; and Turner, H. 1999. Nested
expressions in logic programs. Annals of Mathematics and
Artificial Intelligence 25:369-389.

McCabe, T. J. 1976. A complexity measure. IEEE Transac-
tions on Software Engineering 308-320.

Nute, D., and Cross, C. 2002. Conditional logic. In Gab-
bay, D., and Guenther, F., eds., Handbook of Philosophical
Logic, volume 4. Kluwer Academic Publishers, second edi-
tion edition. 1-98.

Oren, N., and Norman, T. J. 2010. Arguing using opponent
models. In Proceedings of the 6th international conference
on Argumentation in Multi-Agent Systems, ArgMAS’09,
160-174. Berlin, Heidelberg: Springer-Verlag.

Paris, J. B. 1994. The Uncertain Reasoner’s Companion —
A Mathematical Perspective. Cambridge University Press.

Pearl, J. 1990. System Z: a natural ordering of defaults with
tractable applications to default reasoning. In Proceedings
of the 3rd conference on Theoretical aspects of reasoning
about knowledge (TARK’90), 121-135. Morgan Kaufmann
Publishers.

Potyka, N. 2014. Linear programs for measuring incon-
sistency in probabilistic logics. In Proceedings of the 14th
International Conference on Principles of Knowledge Rep-
resentation and Reasoning (KR’ 14).

Richardson, M., and Domingos, P. 2006. Markov logic net-
works. Machine Learning 62(1-2):107-136.

Rienstra, T.; Thimm, M.; and Oren, N. 2013. Opponent
models with uncertainty for strategic argumentation. In Pro-
ceedings of the 23rd International Joint Conference on Arti-
ficial Intelligence (IJCAI’13).

Rodder, W. 2000. Conditional logic and the principle of
entropy. Artificial Intelligence 117:83-106.

537

Schweimeier, R., and Schroeder, M. 2003. A parame-
terised hierarchy of argumentation semantics for extended
logic programming and its application to the well-founded
semantics. Theory and Practice of Logic Programming 5(1—
2):207-242.

Spohn, W. 1988. Ordinal conditional functions: a dynamic
theory of epistemic states. In Harper, W., and Skyrms, B.,
eds., Causation in Decision, Belief Change, and Statistics,
volume 2. Kluwer Academic Publishers. 105-134.

Stolzenburg, F.; Garcia, A.; Chesnevar, C. I.; and Simari,
G. R. 2003. Computing generalized specificity. Journal
of Non-Classical Logics 13(1):87-113.

Thimm, M., and Garcia, A. J. 2010. Classification and
Strategical Issues of Argumentation Games on Structured
Argumentation Frameworks. In van der Hoek, W.; Kaminka,
G. A.; Lespérance, Y.; Luck, M.; and Sen, S., eds., Pro-
ceedings of the Ninth International Joint Conference on
Autonomous Agents and Multi-Agent Systems 2010 (AA-
MAS’10).

Thimm, M., and Kern-Isberner, G. 2008. A distributed argu-
mentation framework using defeasible logic programming.
In Besnard, P.; Doutre, S.; and Hunter, A., eds., Proceed-
ings of the 2nd International Conference on Computational
Models of Argument (COMMA’08), number 172 in Frontiers
in Artificial Intelligence and Applications, 381-392. 10S
Press.

Thimm, M. 2011. Probabilistic Reasoning with Incomplete
and Inconsistent Beliefs, volume 331 of Dissertations in Ar-
tificial Intelligence. 10S Press.

Thimm, M. 2012. A probabilistic semantics for abstract
argumentation. In Proceedings of the 20th European Con-
ference on Artificial Intelligence (ECAI’12).

Thimm, M. 2013a. Dynamic preference aggregation under
preference changes. In Proceedings of the Fourth Workshop
on Dynamics of Knowledge and Belief (DKB’13).

Thimm, M. 2013b. Inconsistency measures for probabilistic
logics. Artificial Intelligence 197:1-24.

Walsh, T. 2007. Representing and reasoning with prefer-
ences. AI Magazine 28(4):59-70.

Weiss, G., ed. 2013. Multiagent Systems: A Modern Ap-

proach to Distributed Artificial Intelligence. Cambridge,
MA, USA: MIT Press, second edition.

