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Abstract

Wikipedia.org is the largest online resource for free
information and is maintained by a small number of
volunteer editors. The site contains 4.3 million en-
glish articles; these pages can easily be neglected, be-
coming out of date. Any news-worthy event may re-
quire an update of several pages. To address this is-
sue of stale articles we create a system that reads in a
stream diverse web documents and recommends facts
to be added to specified Wikipedia pages. We devel-
oped a three-stage streaming system that creates mod-
els of Wikipedia pages, filters out irrelevant documents
and extracts facts that are relevant to Wikipedia pages.
The systems is evaluated over a 500M page web corpus
and 139 Wikipedia pages. Our results show a promising
framework for fast fact extraction from arbitrary web
pages for Wikipedia.

Wikipedia.org (WP) is the largest and most popular gen-
eral reference work on the Internet. The website is estimated
to have nearly 365 million readers worldwide. An impor-
tant part of keeping WP usable it to include new and current
content. Presently, there is considerable time lag between the
publication of an event and its citation in WP. The median
time lag for a sample of about 60K web pages cited by WP
articles in the living people category is over a year and the
distribution has a long and heavy tail (Frank et al. 2013).
Such stale entries are the norm in any large reference work
because the number of humans maintaining the reference is
far fewer than the number of entities.

Reducing latency keeps WP relevant and help-
ful to its users. Given an entity page, such as
wiki/Boris Berezovsky (businessman) 1, possible cita-
tions may come from a variety of sources. Notable news
may be derived from newspapers, tweets, blogs and a
variety of different sources include Twitter, Facebook,
Blogs, arxiv, etc. However, the actual citable information
is a small percentage of the total documents that appear on
the web. To help WP editors, a system is needed to parse
through terabytes of documents and select facts that can be
recommended to particular WP pages.
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1http://en.wikipedia.org/wiki/Boris Berezovsky (businessman)

Previous approaches are able to find relevant documents
given a list of WP entities as query nodes (McNamee et al.
2012; Dalton and Dietz 2013; Bonnefoy, Bouvier, and Bel-
lot 2013; Balog and Ramampiaro 2013a; Ji and Grishman
2011) . Entities of three categories person, organization and
facility are considered. This work involves processing large
sets of information to determine which facts may contain
references to a WP entity. This problem becomes increas-
ingly more difficult when we look to extract relevant facts
from each document. Each relevant document must now be
parsed and processed to determine if a sentence or paragraph
is worth being cited.

Discovering facts across the Internet that are relevant and
citable to the WP entities is a non-trivial task. Here we pro-
duce an example sentence from a webpage:

“Boris Berezovsky, who made his fortune
in Russia in the 1990s, passed away March
2013.”

After parsing the sentence, we must first note that there
are two entities named Boris Berezovsky WP; one a busi-
nessman and the other a pianist. Any extraction needs to take
this into account and employ a viable distinguishing policy
(entity resolution). Then, we match the sentence to find a
topic such as DateOfDeath valued at March 2013. Each of
these operations is expensive so an efficient framework is
necessary to execute these operations at web scale.

In this paper, we introduce an efficient fact extraction sys-
tem or given WP entities from a time-ordered document
stream. Fact extraction is defined as follows: match each
sentence to the generic sentence structure of {subject —
verb — adverbial/complement} (Stevens 2008). The first
subject represents the entity (WP entity) and verb is the rela-
tion type (slot) we are interested in (e.g. Table 1). The third
component, adverbial/complement, represents the value of
the associated slot. In our example sentence, the entity of
the sentence is Boris Berezovsky and the slot we extract is
DateOfDeath with a slot value of March 2013. The resulting
extraction containing an entity, slot name and slot value is a
fact.

Our system contains three main components. First, we
pre-process the data and build models representing the WP
query entities. Next, we use the models to filter a large
stream of documents so they only contain candidate cita-
tions. Lastly, we processes sentences from candidate extrac-
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Table 1: The set of possible slot name for each entity type.
Person Facility Organization

Affiliate
AssociateOf
Contact Meet PlaceTime
AwardsWon
DateOfDeath
Titles
FounderOf
EmployeeOf

Affiliate
Contact Meet Entity

Affiliate
TopMembers
FoundedBy

tions and return slot values. Overall, we contribute the fol-
lowing:

• Introduce a method to build models of WP name varia-
tions;

• Built a system to filter a large amount of diverse docu-
ments using a natural language processing rule-based ex-
traction system;

• Extract, infer and filter entity-slot-value triples of infor-
mation to be added to KB.

System
In this section, we introduce the main components of the
system. Our system is built with a pipeline style architec-
ture giving it the advantage to run each section separately
to allow stream processing without blocking the data flow
of components (Figure 1). The three logical components
are divided into sections entitled Model for entity resolution
purposes, Wikipedia Citation to annotate cite-worthy docu-
ments, and Slot Filling to generate the actual slot values.

To discover facts for a single WP entity, the first step is
to extract aliases of the entity. We extract several name vari-
ations from the Wikipedia.org API and from the WP entity
page. Also, if the entity type is person we can change the
order of user names to increase coverage (e.g. ‘Boris Bere-
zovsky’→ ‘Berezovsky, Boris’). Next, we iterate over doc-
uments in the stream and filter out all documents that do
not explicitly contain a string matching the list of entities.
To extract relevant facts we perform pattern matching over
each sentence that matches the entity based on a dictionary
of patterns. If a sentence activates one of the patterns in the
dictionary we emit this sentence as a candidate contribution
for the WP entity. With the candidate set, we infer new facts
from the set and clean up the set by removing the set of val-
ues that violate a list of constraints such as duplicates.

Entity Model
We use the Wikipedia.org API to retrieve aliases. The API
allows us to requests pages that redirect users to an entity
page. For example, if a WP user tries to access the William
Henry Gates entry they are sent to the page for Bill Gates —
we treat such redirects as aliases. To extract more aliases we
parse the HTML source of a WP entity page. Using regular
expressions we extract the bold phrases of the initial para-
graph as aliases. This method provides several inline aliases

Figure 1: System Architecture. Components are logical
groups noted with dotted boxes.

from the wiki page. In WP page for the businesman ‘Boris
Berezovski’ , there is a mention of ‘Boris Abramovich Bere-
zovsky’ given in bold in the wiki page which obtained by
regular expression extraction.

We pass the full set of person entities through rules for
generating alternate name orders. This module produces var-
ious forms of expressing entity names and titles. For exam-
ple, Bill Gates can be written as Gates, Bill. This allows the
system to capture various notation forms of aliases that ap-
pear in text documents.

Wikipedia Citation
The goal of this section is to use the models created to dis-
cover a set of documents that are relevant to the WP en-
tity. As a stream of documents come in we first perform a
string match between the model aliases and document text.
We use this technique as a first filter with confidence because
previous work states non-mentioning documents have a low
chance of being citable in Wikipedia (Frank et al. 2013).
Given our large number of aliases we can be confident that
if an alias does not appear in a document it does not need to
be cited.

Our system streams in documents in the form of chunk
files. Each chunk file contains thousands of documents. This
corpus of documents is processed by a two-layer filter sys-
tem referred to as Document Chunk Filter and Document
Filter. The purpose of these filters is to reduce I/O cost while
generating slot values for various entities. Document Chunk
Filter removes the chunk files that do not contain a mention
of any of the desired entities. Each chunk file may contain
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thousands of documents — each document is expensive to
process. The Document Filter removes documents that do
not contain a mention of an entity. This two-level filter al-
lows us to perform detailed slower processing over a smaller
set of documents. Not all chunk files contain mention of
the entities so filtering out large chunk files early saves on
I/O and processing. Document Chunk Filter discards non-
mentioning chunk files and promotes chunk files as soon as
an entity mention is found. The document filter additionally
notes the sentences that contain entity mentions. This data is
passed to the Slot Filling system.

Slot Filling
Streaming Slot Filling (SSF) extracts fact values from sen-
tences according to a list of patterns. Table 1 lists the slot
relationships that we looks to extract. In Figure 1 we refer to
this task as Slot Filling.

SSF reads documents filtered by the Wikipedia Citation
step and fetches and tags sentences containing WP entities.
All entities are extracted from the document using a natural
language processing tool2. In the next section, we describe
how WP entities are matched against the set of patterns. Fol-
lowing, we discuss our approach to inference over the ex-
tracted facts.

Algorithm 1 Slot Value Extraction Pseudocode
List of entities E = {e0, . . . , e170}
List of patterns P = {p0, . . . , p|P |}
List of documents containing entities S = {s0, . . . , s|S|}

for si ∈ S do
for sentence ∈ si do

for entity ∈ E do
if Contains(sentence, entity) then

for pattern ∈ P suitable for entity do
if Satisfies(sentence, pattern) then

Emit(sentence, pattern)

Rule Engine A pattern is a template of a fact to be ex-
tracted and added to a WP entity. Patterns are used to find
and extract facts from text. A pattern P is represented as a
five-tuple P = 〈p1, p2, p3, p4, p5〉.

The first value, p1 represents the type of entity. These en-
tity types are in the set {FAC,ORG,PER} where FAC repre-
sents a type of facility, ORG represents an organization and
PER represents a person. p2 represents a slot name. A list of
slot names is present in Table 1. The third element p3 is the
pattern content — a string found in the sentence that iden-
tifies a slot name. The extractor looks specifically for pat-
tern content. The pattern evaluator uses a direction (left
or right) found in p4 to explore sentence. The final ele-
ment p5 represents the slot value of a pattern. The type of
slot value may be the entity type labeled by the named en-
tity extractor, a noun phrase (NP) tagged by a part of speech

2Lingpipe (available in the dataset) provides entity tags and in-
document coreference. http://alias-i.com/lingpipe/

Figure 2: Pattern matching for rule evaluation. The slot value
is on the right side of the entity. The pattern context discov-
ered is ‘passed away’ with a value of ‘March 2013’. This
conforms to type II of our pattern categories.

tagger 3 or a phrase described in the pattern list.
Figure 2 contains the example sentence from the intro-

duction labeled by the rule engine. The matching pattern
is 〈PER, DateOfDeath, passed away, right,
NP〉. In the figure, ‘Boris Berezovsky’ matches as an alias
for WP entity wiki/Boris Berezovsky (businessman), Date-
OfDeath is the slot name, ‘passed away’ is the content of the
pattern, direction is ‘Right’ and the actual value of the slot
is ‘March 2013’ which is a Noun Phrase.

There are three types of patterns, each distinguished by
different types of slot values (p5) in the patterns. The match-
ing methods using these three types of patterns are imple-
mented according to the different structures of slot values.

Type I. This pattern type is driven by the entity type. For
example, in pattern 〈PER, FounderOf, founder,
right, ORG〉 the PER tag means the entity we are finding
slot values for is a PER entity; FounderOf means this is
a pattern for FounderOf slot. founder is the word we match
in a sentence - the content of pattern occuring in the sen-
tence; right means that we are going to the right part of
the sentence to match the pattern and find the slot value;
ORG means the slot value should be a ORG entity to the
right of the entity.

Type II. This pattern type, after finding a matching pat-
tern content, looks for a noun phrase (NP) that is repre-
sentative of the slot value. For example, pattern 〈PER,
AwardsWon, awarded, right, NP〉 is looking for a
noun phrase after the awarded that may represent an award.
Titles and awards are not named entity tagged hence the use
of the part of speech tagger to fetch the noun phrases.

Type III. These types of facts are best discovered by
hard coding the slot values. Examples of these include
time phrases: 〈PER, DateOfDeath, died, right,
last night〉. In this pattern, the phrase last night is ex-
actly searched in the text last night to the right of the term
died. The intuition behind this pattern is in news articles that
report events in the past relative to the article. For example,
an article will mention that a person died ‘last night’ instead
of mentioning precise date-time information. Additionally,
part of speech taggers and name entity extractors did not la-
bel these terms such as last night as a DATE entity.

3OpenNLP was used for part of speech tagging.
http://opennlp.apache.org/
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Constraints and Inference
Our data set contains some duplicate webpages, webpage
texts with similar content, and some of the entity tags are
incomplete. This causes some duplicates or highly similar
content in the extracted list. We implement a filter to remove
duplicates or the fact extractions that match patterns that are
general and highly susceptible to be noisy. The data contains
duplicates and incorrect extractions. We define rules to read
ordered sets of facts to sanitize the output. The input is pro-
cessed in time order, in a tuple-at-a-time fashion to allow
rules to discover noisy slots that appears in close proximity.
We define two classes of rules: deduplication and inference
rules.

The output contains many duplicate entries. As we read
the list of extracted slots we create rules to define “dupli-
cate”. Duplicates can be present in a window of rows; we
use a window size of 2 meaning we only be adjacent rows.
Two rows are duplicates if they have the same exact extrac-
tion or if the rows have the same slot name and a similar slot
value or if the extracted sentence for a particular slot types
come from the same sentence.

New slots can be deduced from existing slots by defin-
ing inference rules. For example, two slots for the task are
“FounderOf” and “FoundedBy”. A safe assumption is these
slot names are biconditional logical connectives with the
entities and slot values. Therefore, we can express a rule
“X FounderOf Y ” ↔ “Y FoundedBy X” where X and Y
are single unique entities. Additionally, we found that the
slot names “Contact Meet PlaceTime” could be inferred as
“Contact Meet Entity” if the Entity was a FAC and the ex-
tracted sentence contained an additional ORG/FAC tag. We
also remove erroneous slots that have extractions that are
thousands of characters in length or tool small. Errors of ex-
tracting long sentences can typically be attributed to poor
sentence parsing of web documents. We have some valid
“small” extractions. For example, a comma may separate a
name and a title (e.g. “John, Professor at MIT”). But such
extraction rules can be particularly noisy, so we check to see
if the extracted values have good entity values.

Evaluation
We evaluate the effectiveness of extracting slot values for
139 entities. We look at the baseline coverage for entities
and slot names we present in a 500M page snapshot of the
English web. We estimate the precision and recall of our ex-
tractions over several extracted fact.

Our system was developed on a 32-core server described
in Table 2. Each document is annotated using a name entity
extraction and in document coreference. A bundle of doc-
uments are serialized into chunks and encrypted. The total
size of the data after compression and encryption is 4.5TB 4.
Data is ordered into 11952 date-hour buckets ranged from
2011-10-05-00 (5th of October 2011, 12am) until 2013-02-
13-23 (13th of Feburary 2013, 11pm). The first four months
of data (October 2011 - February 2012) is for training pur-
poses, and we use this portion for rule and pattern creation

4TREC Knowledge base acceleration stream corpus is available
http://aws-publicdatasets.s3.amazonaws.com/trec/kba/index.html

Table 2: Benchmark Server Specifications
Spec Details

Processor 32 core AMD OpteronTM 6272
OS CentOS release 6.4 Final

Software Stack GCC version 4.4.7, Java 1.7.0 25,
Scala 2.9.2, SBT 0.12.3

RAM 64GB
Drives 2x2.7TB disks, 6Gbps, 7200RPM

Table 3: Document Chunks Distribution
Document Type # of Documents
Arxiv 10988
Classified 34887
Forum 77674
Linking 12947
Mainstream News 141936
Memetracker 4137
News 280629
Review 6347
Social 688848
Weblog 740987

and tuning. The data set contains text from several web page
types as listed in Table 3.

We develop 172 extraction patterns covering each slot-
name/entity-type combinations. Out of the 500M documents
and 139 entities we found 158,052 documents containing
query entities, 17,885 unique extracted slot values for 8 dif-
ferent slots. We did not get any results from 31 entities miss-
ing and 4 slots.

In Table 4 we performed two samples of a baseline and
estimate the correctness of the extractions. The first was ad-
dressing the overall performance measures of the system,
e.g. precision and recall. The latter experiment was per-
formed over an enhanced version of the system; we included
the aliases from WP API, the alias generation process, and
some additional patterns. We produced accuracies in range
of 54% and 55%. We classify the errors into two sets, an in-
correct entities and incorrect extractions. We found 15% and
17% incorrect entity names and we identified 27% and 30%
incorrect value extracted across all entities and slot types.
The majority of errors were regarding poor slot value ex-
traction patterns and incomplete aliases.

After enahncing the system via better and more extraction
patterns we provide more detailed statistics, as displayed in
Table 5 and Table 6. Table 5 shows the recall for each slot
name. Entities can have different coverages across the en-
tire web, some were more popular (William H. Gates) or
less well known such as (Stevens Cooperative School). Sim-
ilarly, slot names have various coverages for example Af-
filiate is more probable across the entities when compared
to AwardsWon. The slot name Affiliate has was extracted the
most number of times; AwardsWon contained the next fewest
with 38 instances found. , affiliations of an organization the
following cases have been enumerated (Ellisi 2013):
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Table 4: Sampled accuracy of the results of the extracted
facts.

Correct Incorrect
Entity name

Incorrect
Value

Sampling #1 55% 17% 27%
Sampling #2 54% 15% 31%

An affiliate relationship can be defined in three general
ways (Ellisi 2013):
• A relationship consisting solely of the two groups inter-

acting in a specific event context is not enough evidence
to constitute a religious/political affiliation;

• Former political or religious affiliations are correct re-
sponses for this slot;

• Any relation that is not of parent-child form; a sub-
organization is not an affiliate its parent organization but
rather a Memberof.

Affiliate is a generic slot name; extracting affiliate relation-
ships is difficult because the actual relationship must be de-
termined. Our patterns for this relationship led to noisy re-
sults.

However, less ambiguous slot names (AssociateOf) ob-
tained higher accuracy but we have recall. We developed
patterns that explicitly expressed these relationships but we
did not create enough patterns to express all forms of those
slot names.

Table 6 addresses the relative accuracy measure per slot
value. AssociateOf has the highest accuracy with 63.6% and
Affiliate, Contact Meet PlaceTime and EmployeeOf have
the lowest with lowest of 1%, 1% and 5% accuracy respec-
tively.

Discussion
Table 5 shows the distribution of extracted slot names. The
number of extraction between slot names vary greatly. Some
slots naturally have more results than other slots. For ex-
ample, DateOfDeath and CauseOfDeath have some of the
fewest entities because only a few entities are deceased.
Some patterns use common words as as part of their pat-
terns causing more extractions. For example, Affiliate looks
for common words like and and with as part of the pattern
content. These words are more common than dead, died or
founded in other patterns.

Some of the entities are popular and appear at a greater
frequency in the data set. For example, a ‘Corn Belt Power
Cooperative’ Google search results in 86,800 documents,
where as ‘William H. Gates’ returns 3,880,000 documents.
We observed that more than half of the entities appear in
less than 10 documents in the data set; a large portion have
appeared only once. This magnificient change in coverage
support the viability of our seach and filter schemes.

The system pipeline architecture is an efficient method of
processing the stream of data. Each hour of in the corpus
contains and average of 380 MB of compressed data. It takes
and hour for the system to extract facts from 140 hours worth
of data fom the KBA corpus.

Table 5: Recall Measure: Generic slot names like affiliate
had the most recall, compared to less popular slot names e.g.
DateOfDeath

Slot Name Instances
Found

Entity
Coverage

Affiliate 108598 80
AssociateOf 25278 106
AwardsWon 38 14
Contact Meet Entity 191 8
Contact Meet PlaceTime 5974 109
DateOfDeath 87 14
EmployeeOf 75 16
FoundedBy 326 30
FounderOf 302 29
Titles 26823 118
TopMembers 314 26

Table 6: Accuracy Measure: Accuracy of AffiliateOf was the
best and Affiliate applied poorly due to ambiguity of being
an affiliate of somebody/something

Slot Name Correct Wrong
Entity

Incorrect
Value

Affiliate 1% 95% 5%
AssociateOf 63.6% 9.1% 27.3%
AwardsWon 10% 10% 80%
Contact Meet Entity 21% 42% 37%
Contact Meet PlaceTime 5% 20% 85%
DateOfDeath 29.6% 71% 25%
EmployeeOf 5% 30% 65%
FoundedBy 62% 17% 21%
FounderOf 50% 0% 50%
Titles 55% 0% 45%
TopMembers 33% 17% 50%

Conclusion

In this paper we described an approach to perform fact ex-
traction over one of the largest data sets to date. We generate
aliases for Wikipedia entities using an API and extract some
aliases from Wikipedia pages text itself. We process docu-
ments that mention entities for slot value extraction. Slot val-
ues are determined using pattern matching over tagged enti-
ties in sentences. Finally post processing will filter, cleanup
and infers some new slot values to enhance recall and accu-
racy.

We sampled documents from the training data period to
generate an initial set of patterns and then use these patterns
to generate results. After manually examining the results, we
prune patterns with poor performance and add patterns that
may add to extraction coverage. We use several iterations to
find the best patterns.

We look to continue exploration of streaming extraction
models over this large data set. Our models are simple and
provide a great baseline framework to develop and compare
innovative techniques.
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