Streaming Fact Extraction for Wikipedia Entities at Web-Scale

Morteza Shahriari Nia*, Christian Grant*, Yang Peng*, Daisy Zhe Wang
Data Science Research Lab
University of Florida
Gainesville, Florida 32611

Milenko Petrovic
Institute for Human and Machine Cognition
15 SE Osceola Ave
Ocala, Florida 34471

Abstract

Wikipedia.org is the largest online resource for free information and is maintained by a small number of volunteer editors. The site contains 4.3 million English articles; these pages can easily be neglected, becoming out of date. Any news-worthy event may require an update of several pages. To address this issue of stale articles, we create a system that reads in a stream of diverse web documents and recommends facts to be added to specified Wikipedia pages. We developed a three-stage streaming system that creates models of Wikipedia pages, filters out irrelevant documents and extracts facts that are relevant to Wikipedia pages. The systems are evaluated over a 500M page web corpus and 139 Wikipedia pages. Our results show a promising framework for fast fact extraction from arbitrary web pages for Wikipedia.

Wikipedia.org (WP) is the largest and most popular general reference work on the Internet. The website is estimated to have nearly 365 million readers worldwide. An important part of keeping WP useful is to include new and current content. Presently, there is considerable time lag between the publication of an event and its citation in WP. The median time lag for a sample of about 60K web pages cited by WP is nearly 365 million readers worldwide. An important part of keeping WP useful is to include new and current content. Presently, there is considerable time lag between the publication of an event and its citation in WP. The median time lag for a sample of about 60K web pages cited by WP articles in the living people category is over a year and the distribution has a long and heavy tail (Frank et al. 2013).

Discovering facts across the Internet that are relevant and citable to the WP entities is a non-trivial task. Here we produce an example sentence from a webpage:

“Boris Berezovsky, who made his fortune in Russia in the 1990s, passed away March 2013.”

After parsing the sentence, we must first note that there are two entities named Boris Berezovski WP; one a businessman and the other a pianist. Any extraction needs to take this into account and employ a viable distinguishing policy (entity resolution). Then, we match the sentence to find a topic such as DateOfDeath valued at March 2013. Each of these operations is expensive so an efficient framework is necessary to execute these operations at web-scale.

In this paper, we introduce an efficient fact extraction system or given WP entities from a time-ordered document stream. Fact extraction is defined as follows: match each sentence to the generic sentence structure of {subject — verb — adverbial/complement} (Stevens 2008). The first subject represents the entity (WP entity) and verb is the relation type (slot) we are interested in (e.g. Table 1). The third component, adverbial/complement, represents the value of the associated slot. In our example sentence, the entity of the sentence is Boris Berezovsky and the slot we extract is DateOfDeath with a slot value of March 2013. The resulting extraction containing an entity, slot name and slot value is a fact.

Our system contains three main components. First, we pre-process the data and build models representing the WP query entities. Next, we use the models to filter a large stream of documents so they only contain candidate citations. Lastly, we processes sentences from candidate extrac-
Table 1: The set of possible slot name for each entity type.

<table>
<thead>
<tr>
<th>Person</th>
<th>Facility</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Affiliate</td>
<td>Affiliate</td>
<td>Affiliate</td>
</tr>
<tr>
<td>AssociateOf</td>
<td>Meet</td>
<td>TopMembers</td>
</tr>
<tr>
<td>Contact</td>
<td>Meet_Entity</td>
<td>FoundedBy</td>
</tr>
<tr>
<td>PlaceTime</td>
<td>AwardsWon</td>
<td></td>
</tr>
<tr>
<td>DateOfDeath</td>
<td>Titles</td>
<td></td>
</tr>
<tr>
<td>Titles</td>
<td>FounderOf</td>
<td></td>
</tr>
<tr>
<td>EmployeeOf</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In this section, we introduce the main components of the system. Our system is built with a pipeline style architecture giving it the advantage to run each section separately to allow stream processing without blocking the data flow of components (Figure 1). The three logical components are divided into sections entitled **Model** for entity resolution purposes, **Wikipedia Citation** to annotate cite-worthy documents, and **Slot Filling** to generate the actual slot values.

To discover facts for a single WP entity, the first step is to extract aliases of the entity. We extract several name variations from the Wikipedia.org API and from the WP entity page. Also, if the entity type is *person* we can change the order of user names to increase coverage (e.g. ‘Boris Berezovsky’ → ‘Berezovsky, Boris’). Next, we iterate over documents in the stream and filter out all documents that do not explicitly contain a string matching the list of entities. To extract relevant facts we perform pattern matching over each sentence that matches the entity based on a dictionary of patterns. If a sentence activates one of the patterns in the dictionary we emit this sentence as a candidate contribution for the WP entity. With the candidate set, we infer new facts from the set and clean up the set by removing the set of values that violate a list of constraints such as duplicates.

Entity Model

We use the Wikipedia.org API to retrieve aliases. The API allows us to requests pages that redirect users to an entity page. For example, if a WP user tries to access the *William Henry Gates* entry they are sent to the page for Bill Gates — we treat such redirects as aliases. To extract more aliases we parse the HTML source of a WP entity page. Using regular expressions we extract the bold phrases of the initial paragraph as aliases. This method provides several inline aliases from the wiki page. In WP page for the businessman ‘Boris Berezovski’, there is a mention of ‘Boris Abramovich Berezovsky’ given in bold in the wiki page which obtained by regular expression extraction.

We pass the full set of *person* entities through rules for generating alternate name orders. This module produces various forms of expressing entity names and titles. For example, *Bill Gates* can be written as *Gates, Bill*. This allows the system to capture various notation forms of aliases that appear in text documents.

Wikipedia Citation

The goal of this section is to use the models created to discover a set of documents that are relevant to the WP entity. As a stream of documents come in we first perform a string match between the model aliases and document text. We use this technique as a first filter with confidence because previous work states non-mentioning documents have a low chance of being citable in Wikipedia (Frank et al. 2013). Given our large number of aliases we can be confident that if an alias does not appear in a document it does not need to be cited.

Our system streams in documents in the form of chunk files. Each chunk file contains thousands of documents. This corpus of documents is processed by a two-layer filter system referred to as **Document Chunk Filter** and **Document Filter**. The purpose of these filters is to reduce I/O cost while generating slot values for various entities. Document Chunk Filter removes the chunk files that do not contain a mention of any of the desired entities. Each chunk file may contain
Slot Filling

Streaming Slot Filling (SSF) extracts fact values from sentences according to a list of patterns. Table 1 lists the slot relationships that we look to extract. In Figure 1 we refer to this task as Slot Filling.

SSF reads documents filtered by the Wikipedia Citation step and fetches and tags sentences containing WP entities. All entities are extracted from the document using a natural language processing tool\(^2\). In the next section, we describe how WP entities are matched against the set of patterns. Following, we discuss our approach to inference over the extracted facts.

Algorithm 1 Slot Value Extraction Pseudocode

\[
\begin{align*}
\text{List of entities} & \quad E = \{e_0, \ldots, e_{170}\} \\
\text{List of patterns} & \quad P = \{p_0, \ldots, p_{|P|}\} \\
\text{List of documents containing entities} & \quad S = \{s_0, \ldots, s_{|S|}\} \\

\text{for } si \in S \text{ do} \\
\quad \text{for } sentence \in si \text{ do} \\
\quad \quad \text{if } Contains(sentence, entity) \text{ then} \\
\quad \quad \quad \text{for } pattern \in P \text{ suitable for entity do} \\
\quad \quad \quad \quad \text{if } Satisfies(sentence, pattern) \text{ then} \\
\quad \quad \quad \quad \quad \text{Emit}(sentence, pattern)
\end{align*}
\]

Rule Engine A pattern is a template of a fact to be extracted and added to a WP entity. Patterns are used to find and extract facts from text. A pattern \(P\) is represented as a five-tuple \(P = \{p_1, p_2, p_3, p_4, p_5\}\).

The first value, \(p_1\) represents the type of entity. These entity types are in the set \{FAC, ORG, PER\} where FAC represents a type of facility, ORG represents an organization and PER represents a person. \(p_2\) represents a slot name. A list of slot names is present in Table 1. The third element \(p_3\) is the pattern content — a string found in the sentence that identifies a slot name. The extractor looks specifically for pattern content. The pattern evaluator uses a direction (left or right) found in \(p_4\) to explore sentence. The final element \(p_5\) represents the slot value of a pattern. The type of slot value may be the entity type labeled by the named entity extractor, a noun phrase (NP) tagged by a part of speech tagger\(^3\) or a phrase described in the pattern list.

Figure 2 contains the example sentence from the introduction labeled by the rule engine. The matching pattern is \(\langle\text{PER, DateOfDeath, passed away, right, NP}\rangle\). In the figure, ‘Boris Berezovsky’ matches as an alias for WP entity wiki/Boris_Berezovsky_(businessman), DateOfDeath is the slot name, ‘passed away’ is the content of the pattern, direction is ‘Right’ and the actual value of the slot is ‘March 2013’ which is a Noun Phrase.

There are three types of patterns, each distinguished by different types of slot values \((p_5)\) in the patterns. The matching methods using these three types of patterns are implemented according to the different structures of slot values.

Type I. This pattern type is driven by the entity type. For example, in pattern \(\langle\text{PER, FounderOf, founder, right, ORG}\rangle\) the PER tag means the entity we are finding slot values for is a PER entity; FounderOf means this is a pattern for FounderOf slot. founder is the word we match in a sentence - the content of pattern occurring in the sentence; right means that we are going to the right part of the sentence to match the pattern and find the slot value; ORG means the slot value should be a ORG entity to the right of the entity.

Type II. This pattern type, after finding a matching pattern content, looks for a noun phrase (NP) that is representative of the slot value. For example, pattern \(\langle\text{PER, AwardsWon, awarded, right, NP}\rangle\) is looking for a noun phrase after the awarded that may represent an award. Titles and awards are not named entity tagged hence the use of the part of speech tagger to fetch the noun phrases.

Type III. These types of facts are best discovered by hard coding the slot values. Examples of these include time phrases: \(\langle\text{PER, DateOfDeath, died, right, last night}\rangle\). In this pattern, the phrase last night is exactly searched in the text last night to the right of the term died. The intuition behind this pattern is in news articles that report events in the past relative to the article. For example, an article will mention that a person died ‘last night’ instead of mentioning precise date-time information. Additionally, part of speech taggers and name entity extractors did not label these terms such as last night as a DATE entity.

\(^2\)Lingpipe (available in the dataset) provides entity tags and document coreference. http://alias-i.com/lingpipe/

\(^3\)OpenNLP was used for part of speech tagging. http://opennlp.apache.org/
Constraints and Inference

Our data set contains some duplicate webpages, webpage texts with similar content, and some of the entity tags are incomplete. This causes some duplicates or highly similar content in the extracted list. We implement a filter to remove duplicates or the fact extractions that match patterns that are general and highly susceptible to be noisy. The data contains duplicates and incorrect extractions. We define rules to read ordered sets of facts to sanitize the output. The input is processed in time order, in a tuple-at-a-time fashion to allow rules to discover noisy slots that appears in close proximity. We define two classes of rules: deduplication and inference rules.

The output contains many duplicate entries. As we read the list of extracted slots we create rules to define “duplicate”. Duplicates can be present in a window of rows; we use a window size of 2 meaning we only be adjacent rows. Two rows are duplicates if they have the same exact extraction or if the rows have the same slot name and a similar slot value or if the extracted sentence for a particular slot types come from the same sentence.

New slots can be deduced from existing slots by defining inference rules. For example, two slots for the task are “FounderOf” and “FoundedBy”. A safe assumption is these slot names are biconditional logical connectives with the entities and slot values. Therefore, we can express a rule “X FounderOf Y" ↔ “Y FoundedBy X” where X and Y are single unique entities. Additionally, we found that the slot names “Contact_Meet_PlaceTime” could be inferred as “Contact_Meet_Entity” if the Entity was a FAC and the extracted sentence contained an additional ORG/FAC tag. We also remove erroneous slots that have extractions that are thousands of characters in length or tool small. Errors of extracting long sentences can typically be attributed to poor sentence parsing of web documents. We have some valid “small” extractions. For example, a comma may separate a name and a title (e.g. “John, Professor at MIT”). But such extraction rules can be particularly noisy, so we check to see if the extracted values have good entity values.

Evaluation

We evaluate the effectiveness of extracting slot values for 139 entities. We look at the baseline coverage for entities and slot names we present in a 500M page snapshot of the English web. We estimate the precision and recall of our extractions over several extracted fact.

Our system was developed on a 32-core server described in Table 2. Each document is annotated using a name entity extraction and in document coreference. A bundle of documents are serialized into chunks and encrypted. The total size of the data after compression and encryption is 4.5TB.

Data is ordered into 11952 date-hour buckets ranged from 2011-10-05-00 (5th of October 2011, 12am) until 2013-02-13-23 (13th of February 2013, 11pm). The first four months of data (October 2011 - February 2012) is for training purposes, and we use this portion for rule and pattern creation and tuning. The data set contains text from several web page types as listed in Table 3.

We develop 172 extraction patterns covering each slotname-entity-type combinations. Out of the 500M documents and 139 entities we found 158,052 documents containing query entities, 17,885 unique extracted slot values for 8 different slots. We did not get any results from 31 entities missing and 4 slots.

In Table 4 we performed two samples of a baseline and estimate the correctness of the extractions. The first was addressing the overall performance measures of the system, e.g. precision and recall. The latter experiment was performed over an enhanced version of the system; we included the aliases from WP API, the alias generation process, and some additional patterns. We produced accuracies in range of 54% and 55%. We classify the errors into two sets, an incorrect entities and incorrect extractions. We found 15% and 17% incorrect entity names and we identified 27% and 30% incorrect value extracted across all entities and slot types. The majority of errors were regarding poor slot value extraction patterns and incomplete aliases.

After enhancing the system via better and more extraction patterns we provide more detailed statistics, as displayed in Table 5 and Table 6. Table 5 shows the recall for each slot name. Entities can have different coverages across the entire web, some were more popular (William H. Gates) or less well known such as (Stevens Cooperative School). Similarly, slot names have various coverages for example Affiliate is more probable across the entities when compared to AwardsWon. The slot name Affiliate has was extracted the most number of times; AwardsWon contained the next fewest with 38 instances found. Affiliations of an organization the following cases have been enumerated (Ellisi 2013):

Table 2: Benchmark Server Specifications

<table>
<thead>
<tr>
<th>Spec</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processor</td>
<td>32 core AMD OpteronTM 6272</td>
</tr>
<tr>
<td>OS</td>
<td>CentOS release 6.4 Final</td>
</tr>
<tr>
<td>Software Stack</td>
<td>GCC version 4.4.7, Java 1.7.0.25,</td>
</tr>
<tr>
<td></td>
<td>Scala 2.9.2, SBT 0.12.3</td>
</tr>
<tr>
<td>RAM</td>
<td>64GB</td>
</tr>
<tr>
<td>Drives</td>
<td>2x2.7TB disks, 6Gbps, 7200RPM</td>
</tr>
</tbody>
</table>

Table 3: Document Chunks Distribution

<table>
<thead>
<tr>
<th>Document Type</th>
<th># of Documents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arxiv</td>
<td>10988</td>
</tr>
<tr>
<td>Classified</td>
<td>34887</td>
</tr>
<tr>
<td>Forum</td>
<td>77674</td>
</tr>
<tr>
<td>Linking</td>
<td>12947</td>
</tr>
<tr>
<td>Mainstream News</td>
<td>141936</td>
</tr>
<tr>
<td>Memetracker</td>
<td>4137</td>
</tr>
<tr>
<td>News</td>
<td>280629</td>
</tr>
<tr>
<td>Review</td>
<td>6347</td>
</tr>
<tr>
<td>Social</td>
<td>688848</td>
</tr>
<tr>
<td>Weblog</td>
<td>740987</td>
</tr>
</tbody>
</table>

An affiliate relationship can be defined in three general ways (Ellisi 2013):

- A relationship consisting solely of the two groups interacting in a specific event context is not enough evidence to constitute a religious/political affiliation;
- Former political or religious affiliations are correct responses for this slot;
- Any relation that is not of parent-child form; a suborganization is not an affiliate its parent organization but rather a Memberof.

Affiliate is a generic slot name; extracting affiliate relationships is difficult because the actual relationship must be determined. Our patterns for this relationship led to noisy results.

However, less ambiguous slot names (AssociateOf) obtained higher accuracy but we have recall. We developed patterns that explicitly expressed these relationships but we did not create enough patterns to express all forms of those slot names.

Table 6 addresses the relative accuracy measure per slot value. AssociateOf has the highest accuracy with 63.6% and Affiliate, Contact_Meet_Entity and EmployeeOf have the lowest with lowest of 1%, 1% and 5% accuracy respectively.

Discussion

Table 5 shows the distribution of extracted slot names. The number of extraction between slot names vary greatly. Some slots naturally have more results than other slots. For example, DateOfDeath and CauseOfDeath have some of the fewest entities because only a few entities are deceased. Some patterns use common words as part of the pattern causing more extractions. For example, Affiliate looks for common words like and and with as part of the pattern content. These words are more common than dead, died or founded in other patterns.

Some of the entities are popular and appear at a greater frequency in the data set. For example, ‘Corn Belt Power Cooperative’ Google search results in 86,800 documents, where as ‘William H. Gates’ returns 3,880,000 documents. We observed that more than half of the entities appear in less than 10 documents in the data set; a large portion have appeared only once. This magnificent change in coverage supports the viability of our seach and filter schemes.

The system pipeline architecture is an efficient method of processing the stream of data. Each hour of in the corpus contains and average of 380 MB of compressed data. It takes and hour for the system to extract facts from 140 hours worth of data from the KBA corpus.

Conclusion

In this paper we described an approach to perform fact extraction over one of the largest data sets to date. We generate aliases for Wikipedia entities using an API and extract some aliases from Wikipedia pages text itself. We process documents that mention entities for slot value extraction. Slot values are determined using pattern matching over tagged entities in sentences. Finally post processing will filter, cleanup and infers some new slot values to enhance recall and accuracy.

We sampled documents from the training data period to generate an initial set of patterns and then use these patterns to generate results. After manually examining the results, we prune patterns with poor performance and add patterns that may add to extraction coverage. We use several iterations to find the best patterns.

We look to continue exploration of streaming extraction models over this large data set. Our models are simple and provide a great baseline framework to develop and compare innovative techniques.
Acknowledgements

We would like to thank John Frank and NIST for providing the data set. Christian Grant is funded by a National Science Foundation Graduate Research Fellowship under Grant No. DGE-0802270. This work has also been supported in part by DARPA under FA8750-12-2-0348-2 (DEFT/CUBISM).

References

Balog, K., and Ramampiaro, H. 2013b. Cumulative citation recommendation: Classification vs. ranking.

