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Abstract

Semantic networks are a popular way of simulating human
memory in ACT-R-like cognitive architectures. However, ex-
isting implementations fall short in their ability to efficiently
work with very large networks required for full-scale simu-
lations of human memories. In this paper, we present Sem-
MemDB, an in-database realization of semantic networks and
spreading activation. We describe a relational representation
for semantic networks and an efficient SQL-based spreading
activation algorithm. We provide a simple interface for users
to invoke retrieval queries. The key benefits of our approach
are: (1) Databases have mature query engines and optimizers
that generate efficient query plans for memory activation and
retrieval; (2) Databases can provide massive storage capac-
ity to potentially support human-scale memories; (3) Spread-
ing activation is implemented in SQL, a widely-used query
language for big data analytics. We evaluate SemMemDB in
a comprehensive experimental study using DBPedia, a web-
scale ontology constructed from the Wikipedia corpus. The
results show that our system runs over 500 times faster than
previous works.

Introduction
This paper introduces SemMemDB, a module for efficient
in-database computation of spreading activation over se-
mantic networks. Semantic networks are broadly applica-
ble to associative information retrieval tasks (Crestani 1997),
though we are principally motivated by the popularity of
semantic networks and spreading activation to simulate as-
pects of human memory in cognitive architectures, specifi-
cally ACT-R (Anderson et al. 2004; Anderson 2007). Insofar
as cognitive architectures aim toward codification of unified
theories of cognition and full-scale simulation of artificial
humans, they must ultimately support human-scale memo-
ries, which at present they do not. We are also motivated
by the desire for a scalable, standalone, cognitive model of
human memory free from the architectural and theoretical
commitments of a complete cognitive architecture.

Our position is that human-scale associative memory can
be best achieved by leveraging the extensive investments
and continuing advancements in structured databases and
big data systems. For example, relational databases already
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provide effective means to manage and query massive struc-
tured data and their commonly supported operations, such as
grouping and aggregation, are sufficient and well-suited for
efficient implementation of spreading activation. To defend
this position, we design a relational data model for semantic
networks and an efficient SQL-based, in-database implemen-
tation of network activation (i.e., SemMemDB).

The main benefits of SemMemDB and our in-database
approach are: 1) Exploits query optimizer and execution
engines that dynamically generate efficient execution plans
for activation and retrieval queries, which is far better than
manually implementing a particular fixed algorithm. 2) Uses
database technology for both storage and computation, thus
avoiding the complexity and communication overhead in-
curred by employing separate modules for storage versus
computation. 3) Implements spreading activation in SQL,
a widely-used query language for big data which is sup-
ported by various analytics frameworks, including tradi-
tional databases (e.g., PostgreSQL), massive parallel pro-
cessing (MPP) databases (e.g., Greenplum (EMC 2010)), the
MapReduce stack (e.g., Hive), etc.

In summary, this paper makes the following contributions:
• A relational model for semantic networks and an efficient,

scalable SQL-based spreading activation algorithm.
• A comprehensive evaluation using DBPedia showing or-

ders of magnitude speed-up over previous works.
In the remainder of this paper: (i) we provide prelimi-

naries explaining semantic networks and activation; (ii) we
discuss related work regarding semantic networks and AC-
T-R’s associative memory system; (iii) we describe the im-
plementation of SemMemDB; (iv) we evaluate SemMemDB
using DBPedia (Auer et al. 2007), a web-scale ontology con-
structed from the Wikipedia corpus. Our experiment results
show several orders of magnitude of improvement in exe-
cution time in comparison to results reported in the related
work.

Preliminaries
Semantic memory refers to the subcomponent of human
memory that is responsible for the acquisition, representa-
tion, and processing of conceptual information (Saumier and
Chertkow 2002). Various representation models for seman-
tic memory have been proposed; in this paper, we use the
semantic network model (Sowa 2006). A semantic network
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Figure 1: (a) Semantic network fragment showing the relationships between scientists and their interests. Each node represents a
DBPedia entity; each directed edge represents a relationship between the entities. (b) Database table N that stores the network
depicted in (a). Each row (i, p, j) represents a directed edge between (i, j) with predicate p. We use abbreviations here for
illustration (e.g., “FB” for “Francis Bacon”). (c) History table H recording the presentation history for each node. Zero means
creation time. (d) and (f) are two example queries; (e) and (g) are the results of (d) and (f), respectively, ranked by activation
scores. The precise definitions of N , H , Q tables are given in the Using SemMemDB Section.

consists of a set of nodes representing entities and a set of
directed edges representing relationships between the enti-
ties. Figure 1(a) shows an example semantic network. It is
constructed from a small fragment of DBPedia, an ontology
extracted from Wikipedia. In this example, we show several
scientists and their research topics. The edges in this net-
work indicate how the scientists influence each other and
their main interests.

Processing in a semantic network takes the form of spread-
ing activation (Collins and Loftus 1975). Given a set of
source (query) nodes Q with weights, the spreading activa-
tion algorithm retrieves the top-K most relevant nodes to Q.
For example, to retrieve the most relevant nodes to “Fran-
cis Bacon,” we set Q={(Francis Bacon, 1.0)} as shown in
Figure 1(d). The algorithm returns {Aristotle, Plato, Cicero,
John Locke} ranked by their activation scores as shown in
Figure 1(e). These activation scores measure relevance to the
query node(s) and are explained shortly. Figure 1(f) shows
another example query, a second iteration of the previous
query formed by merging the original query with its result.
Figure 1(g) shows the result of this second iteration.

As shown in the above examples, the spreading activation
algorithm assigns an activation score to each result node

measuring its relevance to the query nodes in Q. The acti-
vation score Ai of a node i is related to the node’s history
and its associations with other nodes. It is defined as

Ai = Bi + Si. (1)

The Bi and Si terms are base-level activation and spread-
ing activation, respectively. The base-level activation term
reflects recency and frequency of use while the spreading
activation term reflects relevance to the current context or
query. Formally, the base-level activation Bi is defined as

Bi = ln

(
n∑

k=1

t−dk

)
, (2)

where tk is the time since the kth presentation of the node
and d is a constant rate of activation decay. (In the ACT-
R community, d = 0.5 is typical.) In the case of DBPedia
for example, tk values might be derived from the retrieval
times of Wikipedia pages. The resultant Bi value predicts
the need to retrieve node i based on its presentation history.
The spreading activation Si is defined as

Si =
∑
j∈Q

WjSji. (3)
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Wj is the weight of source (query) node j; if weights are
not specified in a query then a default value of 1/n is used,
where n is the total number of source nodes. Sji is the
strength of association from node j to node i. It is set to
Sji = S − ln(fanji), where S is a constant parameter and

fanji =
1 + outedgesj

edgesji
.

The values of outedgesj and edgesji are the number of
edges from node j and the number of edges from node j
to node i, respectively.

Equations (2) and (3) are easily implemented using the na-
tive grouping and aggregation operations supported by rela-
tional database systems. Thus, in only a few lines of SQL we
are able to implement the relatively complex task of spread-
ing activation. Moreover, database systems are able to gen-
erate very efficient query plans based on the table statistics,
query optimization, etc. Thus, we believe it is better to rely
on the databases to dynamically select the most efficient al-
gorithm rather than to manually develop a fixed one as is
done in previous works.

Related Work
Unsurprisingly, ACT-R’s (Anderson, Matessa, and Lebiere
1997) original Lisp-based implementation of spreading acti-
vation in semantic networks does not scale to large associa-
tive memories. Researchers have thus investigated various
ways to augment ACT-R’s memory subsystem to achieve
scalability. These investigations include outsourcing the stor-
age of associative memories to database management sys-
tems (Douglass, Ball, and Rodgers 2009) and concurrently
computing activations using Erlang (Douglass and Myers
2010). We observe that in (Douglass, Ball, and Rodgers
2009), databases are used only as a storage medium; acti-
vation computations are performed serially outside of the
database, which is unnecessarily inefficient and incurs the
significant communication overhead of data transfer in and
out of the database. In SemMemDB, we try to leverage the
full computational power of databases by performing all ac-
tivation calculations within the database itself, using a SQL-
based implementation of the spreading activation algorithm.

Semantic network spreading activation has also been
explored using Hadoop and the MapReduce paradigm
(Lorenzo, Gayo, and Rodrı́guez 2013). However,
MapReduce-based solutions are batch oriented and not
generally appropriate for dealing with ad hoc queries. In
terms of simulating an agent’s memory (our principle
motivating use-case), queries against the semantic network
are ad hoc and real-time, which are the types of queries
better managed by relational database systems.

Using SemMemDB
We refer to Figure 1 to illustrate how users are expected to
interact with the SemMemDB module. Specifically, a user
defines a query table Q, a network table N , and a history
table H . Having done so, activation and retrieval of the top-
K nodes is initiated by a simple SQL query:

SELECT * FROM activate()
ORDER BY A DESC LIMIT K;

The activate function is a database stored procedure.
Its parameters are implicitly Q,N,H , so it is to be under-
stood as activate(Q,N,H). The ORDER BY and LIMIT
components are optional; they instruct the database to rank
nodes by their activation scores and to return only the top-K
results. The result is a table of at most K activated nodes
with, and ranked by, their activation scores.

Tables Q, N , H are defined by the following:
• Table Q contains a tuple (i, w) for each query node i with

numeric weight w.
• Table N contains a tuple (i, p, j) for each directed edge

from node i to node j with predicate p.
• Table H contains a tuple (i, t) for every node i presented

at numeric time t. A node was ‘presented’ if it was created,
queried, or a query result at time t (users may choose other
criteria). The specific measure of time (e.g., time-stamp,
logical time) is defined by the user. H is typically updated
(automatically) when a query is returned by insertion of
the query and result nodes with the current time.

Tables Q, N , and H are allowed to be views defined as
queries over other tables, so long as they conform to the de-
scribed schema. This allows users to specify more complex
data models and queries using the same syntax.
Example. For the semantic network shown in Figure 1(a),
the corresponding network table N is shown in Figure 1(b).
Figure 1(c) shows one possible history table H; node cre-
ation time is assumed to be 0. Figures 1(d) and 1(f) corre-
spond to the queries for {“Francis Bacon”}, and {“Francis
Bacon”, “Aristotle”, “Plato”, “Cicero”, “John Locke”},
respectively, with the weights listed in the w columns. Fi-
nally, Figures 1(e) and 1(g) show the results of those queries.

Base-Level Activation Calculation
The base-level activation Bi defined by (2) corresponds to
a grouping and summation operation. Assuming the current
time is T , the following SQL query computes the base-level
activations of all nodes:

SELECT i, log(SUM(power(T-t,-d))) AS b
FROM H
GROUP BY i;

In Figure 1, “Aristotle” was presented most recently at time
6, next “Plato” at time 3, while “Cicero” and “John Locke”
have not presented. In response to Q1, “Aristotle” is judged
most relevant to “Francis Bacon” (see Figure 1(e)) despite
the fact that all of these nodes have the same number of
edges (viz., 1) connecting them to “Francis Bacon.” This is
because of the differences between their base-level activa-
tions.

Spreading Activation Calculation
The spreading activation Si defined by (3) is decomposed
into two components, Wj , which is query dependent, and
Sji, which is network dependent but query independent.
Since Sji is query independent, an effective way to speed
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Listing 1: Activation Procedure
1 CREATE OR REPLACE FUNCTION activate()
2 RETURNS TABLE(node INT, s DOUBLE

PRECISION) AS $$
3 BEGIN
4 RETURN QUERY
5 WITH Spreading AS (
6 SELECT Assoc.j AS i,

SUM(Q.w*Assoc.l) AS s
7 FROM Q NATURAL JOIN Assoc
8 GROUP BY Assoc.j
9 ), Base AS (

10 SELECT H.i AS i,
log(SUM(power(T-t,-d))) as b

11 FROM H NATURAL JOIN Spreading
12 GROUP BY H.i
13 )
14 SELECT Base.i AS i, Base.b+Spreading.s

AS A
15 FROM Base NATURAL JOIN Spreading;
16 END;
17 $$ LANGUAGE plpgsql;

up calculation is to precompute Sji values in materialized
views. These views store precomputed results in intermedi-
ate tables so that they are available during query execution.
First, we compute the number of edges from each node i:

CREATE MATERIALIZED VIEW OutEdges AS
SELECT i, COUNT(*) AS l FROM N
GROUP BY i;

Then, we compute the actual Sij values:

CREATE MATERIALIZED VIEW Assoc AS
SELECT i, j, S-ln((1+OutEdges.l)/COUNT(*))

AS l
FROM N NATURAL JOIN OutEdges
GROUP BY (i, j, OutEdges.l);

Though a fair amount of computation happens here, we em-
phasize that it is done once, thereafter the resultant values
are used by all queries against the semantic network.

Given the above definition of Assoc and a query Q, we
compute the spreading activation Si as follows:

SELECT j AS i, SUM(Q.w*Assoc.l) AS s
FROM Q NATURAL JOIN Assoc
GROUP BY j;

Activation Score Calculation
The complete SQL procedure for computing activation
scores is given in Listing 1. In the activate() procedure,
we start by computing the Si terms in the WITH Spreading
AS clause. The result of this subquery (Spreading) is often
small so that history look-up can be optimized by joining H
and Spreading in Line 11. In this way, only the relevant
portion of history is retrieved. The final activation scores Ai

are computed by joining Base and Spreading and adding
up the corresponding Bi and Hi terms in Lines 14-15.

Evaluation
In this section, we evaluate the performance of SemMemDB
using PostgreSQL 9.2, an open-source database manage-
ment system. We run all the experiments on a two-core ma-
chine with 8GB RAM running Ubuntu Linux 12.04.

Data Set
We use the English DBPedia1 ontology as the data set for
evaluation. The DBPedia ontology contains entities, object
properties, and data properties. Entities and object proper-
ties correspond to nodes and edges in the semantic network.
Data properties only associate with single nodes, so they do
not affect spreading activation and hereafter are ignored. We
generate a pseudo-history for every node in the semantic net-
work based on the assumption that ‘past retrievals’ follow a
Poisson process, where the rate parameter of a node is deter-
mined by the number incoming edges.2 The statistics of our
DBPedia semantic network data set are listed in Table 1.

# nodes (entities) 3,933,174
# edges (object properties) 13,842,295
# histories (pseudo-data) 7,869,462

Table 1: DBPedia data set statistics.

For comparison, Table 2 lists the statistics of the Moby
Thesaurus II data set, which Douglass and Myers (2010)
used to evaluate their semantic network implementation.

# nodes (root words) 30,260
# edges (synonyms) 2,520,264

Table 2: Moby Thesaurus II data set statistics.

Performance Overview
In the first experiment, we run three queries against the en-
tire DBPedia semantic network data set. The initial queries
are listed in Table 3(a) where each contains three nodes. For
each, we execute three iterations where the query for each it-
eration is based on the result of the previous iteration starting
with the initial query. We measure the execution time by ex-
ecuting each iteration ten times and taking the average. The
execution times and result sizes are listed in Table 3(b). Note
that the history table is not modified during experiments.

All the queries complete within tens of milliseconds. We
informally compare this result to those in (Douglass and My-
ers 2010). Douglass and Myers evaluate their semantic net-
work implementation using the Moby Thesaurus II data set,
which is only a tenth of the size of the DBPedia data set (see
Table 2). Their average execution time is 10.9 seconds. This
is more than 500 times slower than SemMemDB using for
comparison Q1, Iter. 2 at 22.02 ms, which has a larger fan
than any query used in (Douglass and Myers 2010). Though

1http://wiki.dbpedia.org/Downloads39
2We assume that nodes with greater connectivity are retrieved

more often, but this choice is arbitrary.

21



Query Q1 Q2 Q3Node i

1 Aristotle United States Google
2 Plato Canada Apple
3 John Locke Japan Facebook

(a)

Query Iter. 1 Iter. 2 iter. 3

Q1
time/ms 5.16 22.02 63.22
result size 125 890 3981

Q2
time/ms 1.77 5.69 14.60
result size 23 121 477

Q3
time/ms 2.58 6.15 13.61
result size 36 132 381

(b)

Table 3: (a) Experiment 1 initial queries. (b) Avg. execution times and result sizes for queries by iteration.

Proportion 20% 25% 33% 50% 100%

# nodes 2,607,952 2,846,850 3,130,706 2,012,183 3,933,174
# edges 2,768,119 3,463,240 4,616,433 6,035,162 13,842,295
# histories 1,988,400 2,345,531 2,903,576 3,906,121 7,869,462
time/ms 35.05 38.47 42.52 45.02 57.63

Table 4: Experiment 2 semantic network sizes and avg. execution times for single iteration queries of 1000 nodes.

informal, this result illustrates the performance benefits of-
fered by the in-database architecture of SemMemDB.

Effect of Semantic Network Sizes
In the second experiment, we evaluate the scalability of Sem-
MemDB by executing queries against semantic networks of
increasing size. These semantic networks are produced by
using 20%, 25%, 33%, 50%, and 100% of the DBPedia data
set. Query size is fixed at 1000 nodes and queries are gen-
erated by taking random subsets of DBPedia entities. The
execution times and network sizes are listed in Table 4.

It is perhaps a surprising yet highly desirable result that
execution time grows more slowly than network size. This
scalability is due to the high selectivity of the join queries.
Since the query size is much smaller than the network size,
the database is able to efficiently select query-relevant tuples
using indexes on the join columns (see Figure 2(b), left plan).
As a result, execution time is not much affected by the total
size of the semantic network, only the retrieved sub-network
and the index size matter.

Effect of Query Sizes
In the third experiment, we evaluate the scalability of Sem-
MemDB with respect to query size. We execute queries rang-
ing in size from 1 to 104 nodes against the entire DBPedia se-
mantic network data set. The queries are generated by taking
random subsets of DBPedia entities. The execution times,
query sizes, and result sizes are listed in Table 5.

The results indicate that execution time scales linearly
with query size when query size is small (≤ 103). Under
these conditions, join selectivity is high and indexing accel-
erates query-relevant tuple retrieval. This effect is illustrated
in the query plans shown in Figure 2(b) for the sample query
in Figure 2(a). When the query size is small, the index scan
on Assoc only retrieves a small number of nodes, hence an

Query Size 1 10 102 103 104

time/ms 1.33 2.45 11.27 57.63 2922.51
result size 4 30 321 2428 19,007

Table 5: Experiment 3 avg. execution times and result sizes
for single iteration queries of varying sizes.

index nested loop is chosen by the database query planner.
When the query size is large (e.g., 104), a large portion of the
Assoc needs to be accessed (the index is not of much help),
so the database chooses a hash join for better performance.
This dynamic selection of the ‘best’ algorithm exemplifies
why we feel it is better to rely on the database to efficiently
plan and execute activation queries rather than to manually
implement a fixed algorithm.

Conclusion
In this paper, we introduced SemMemDB, a module for
efficient in-database computation of spreading activation
over semantic networks. We presented its relational data
model and its scalable spreading activation algorithm. Sem-
MemDB is applicable in many areas including cognitive ar-
chitectures and information retrieval, however our presenta-
tion was tailored to those seeking a scalable, standalone cog-
nitive model of human memory. We evaluated SemMemDB
on the English DBPedia data set, a web-scale ontology con-
structed from the Wikipedia corpus. The experiment results
show more than 500 times performance improvement over
previous implementations of ad hoc spreading activation re-
trieval queries over semantic networks. What we have re-
ported here is an early stage development toward a scalable
simulation of human memory. Planned future work includes
the use of MPP databases and support for more complex
queries and models as described in (Bothell 2007).
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SELECT j AS i,
SUM(Q.w*Assoc.l) AS A

FROM Q NATURAL JOIN Assoc
GROUP BY j;

(a)

(b)

 Index scan
   Assoc
(12,872,122)

Seq scan
    Q
  (100)

Index nested loop
  Assoc.i = Q.i
        (332)
    

HashAggregate
       (287)

  Seq scan
    Assoc
(12,872,122)

Seq scan
    Q
(100,000)

     Hash join
  Assoc.i = Q.i
      (327,064)

HashAggregate
    (130,981)

Figure 2: (a) Sample query. (b) Query plans for (a) given that Q is small (left) or large (right). Numbers in parentheses indicate
table sizes. Italics indicate differences between the two plans.
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