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Abstract

Ideal portfolio creation has been the focus of consider-
able machine learning research in the domain of finance.
In this paper, the development of a two-stage platform
for generating stable stock-based portfolios is explored.
The first stage involves clustering of stocks based on
time-weighted correlations, using a modified version of
the K-Means++ algorithm. This clustering helps in the
quantification of portfolio diversification at a later stage.
In the second step, a genetic paradigm is employed to
optimize the returns of the portfolio in such a way as to
ensure its diversification at the same time. This leads to
the formation of a portfolio that shows a high and sta-
ble Markowitz ratio of returns/risk. The experimental
results support the central hypothesis, and hint at possi-
ble commercial applications.

1 Introduction
The problem of optimal portfolio construction is one of
the oldest in modern financial theory. Though a portfo-
lio in its real sense may consist of various securities such
as stocks, bonds and savings accounts, this paper only fo-
cuses on the most volatile of the lot - stocks. The first ma-
jor step towards mathematical portfolio optimization was
taken by Markowitz in his mean-variance portfolio theory
(Markowitz 1952). In this paper, I base the notion of a port-
folio’s fitness mainly on Markowitz’s theory, with influences
from some ideas developed after his work.

The two major factors usually linked to a portfolio’s fit-
ness are the expected returns and associated risk. The ex-
pected returns measure the profits that a portfolio is ex-
pected to yield in a given time period. The risk, on the other
hand, is a quantitative indicator of how volatile a portfolio is.
Though returns are the obvious motivation behind construct-
ing a portfolio, risk plays a major role in the confidence an
investor is likely to have in it. Investors are usually more
likely to prefer a stable portfolio with lesser returns than a
very volatile one with high results. Hence, I maintain the fo-
cus of this paper on the creation of stable, low-risk portfolio
that ensures decent returns with minimal volatility.

Reduction of risk is strongly associated with portfolio
diversification. Mathematically, this corresponds to invest-
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ment in securities (stocks, in this case) which show low cor-
relations in their time series. This would ensure that nega-
tive trends in the prices of one stock would likely be made
up for by positive trends in that of another - unless the mar-
ket itself is crashing. To ensure that stocks with high cor-
relations do not make up the entire portfolio, they are usu-
ally clustered in such a way that intra-cluster correlations
are high, while inter-cluster correlations are low. This way,
the investor can guard himself against under-diversification.
Correlation-based clustering is performed in the first of the
two stages of the proposed framework, to help measure a
portfolio’s diversification in the second stage. Since the clus-
ters are formed such that inter-cluster correlations are low,
the portfolio is guaranteed to be diversified if it contains
stocks from various clusters.

To optimize the overall output with respect to returns as
well as risk, we employ a genetic approach. Genetic Algo-
rithms are stochastic optimization/search techniques based
on the principles of evolution and natural selection. How-
ever, while most search algorithms attempt to search for an
object of some sort, genetic algorithms search for optimal
solutions in the solution space. GAs (Genetic Algorithms)
start off with an initial pool of randomly generated candi-
date solutions, and then attempt to build fitter and fitter gen-
erations based on a pre-defined fitness function and the ge-
netic operators of selection, crossover and mutation. Their
strength lies in their ability to deal with non-continuous or
non-smooth objective functions effectively - essentially the
kind of objective involved with portfolio optimization.

I employ a GA to construct an optimized portfolio from
the available range of stocks. Focus is maintained on ensur-
ing that strongly correlated stocks don’t make up the entire
output, while at the same time improving the expected re-
turns. The experimentation conducted by me using stocks
from the Dow Jones Industrial Average 1 (DJI) index shows
promising results consolidating my belief in the effective-
ness of the proposed two-stage approach.

The rest of the paper is divided as follows- Section 2
talks about related work in this domain; Section 3 describes
the portfolio generation framework developed; Section 4
presents some experimental evidence supporting the hypoth-
esis and Section 5 draws conclusions and presents points

1https://www.djindexes.com
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of discussion regarding future work and possible improve-
ments to the work.

2 Related Work
The importance of incorporating correlations in portfolio
optimization was first stressed by Markowitz in the Capi-
tal Asset Pricing Model (Markowitz 1959). Correlation fac-
tors also play a vital role in the usage of more recent tech-
niques in finance, such as the Arbitrage Pricing Theory
(John Campbell 1997) and Value at Risk (Paul Embrechts
1999). Most of the work on diversification using correlations
attempts to classify or cluster strongly correlated stocks to-
gether, so as to simplify the process of constructing the
’right’ portfolio. There are a variety of ways researchers de-
fine a good or optimal portfolio in literature. While some
focus on high returns, others focus on diversification - the
definition used depends on the objective behind construct-
ing the portfolio.

Covariance is another statistical measure of the strength
of relationships between stock price trends. This factor has
been exploited in studies that try to calculate how under-
diversified portfolios are on an average, such as (William
N. Goetzmann 2008). Correlation can be thought of as a
normalized form of covariance, that does not depend on the
magnitudes of prices themselves. It has also been used to
cluster stocks via graph-based clustering techniques to ex-
plain relationships between stocks of different sectors and
markets (Rosén 2006). Usually, it is found that stocks of
companies belonging to same industry sector and/or market
do show strong correlations in their time series. However, it
is not uncommon for stocks that are seemingly unrelated to
show very similar trends in their time series

Genetic algorithms as a tool of optimization have started
receiving considerable attention in the field of finance, in
recent years (T. Vallée 2003). (Yang 2006) was one of the
first works to suggest their application to generation of effi-
cient and robust portfolios. The fitness function usually used
to measure the ’fitness’ of a portfolio is the Markowitz re-
turn/risk ratio (Chi-Ming Lin 2007) (Pankaj Sinha 2013).
(Pankaj Sinha 2013) also advocates usage of a higher mu-
tation rate (0.4) than the one usually used with genetic al-
gorithms ( 0.01). This may stem from the need to explore
unseen regions in the solution space in an attempt to arrive
at the global optimum for the objective function.

(Rosén 2006) follows a promising two-step approach, like
this paper, in an attempt to optimize stock portfolios. They
first use the K-Means method to classify actions of a portfo-
lio into classes so that their expected returns and VaR (Value
at Risk) values are close to each other. Then, a dynamic opti-
mization algorithm called Min-VaRMaxVaL is used to build
a portfolio that has the highest average returns and lowest
average VaR, as obtained by the classification.

3 Portfolio Generation Framework
An ideal portfolio, as described in financial theory, has two
important characteristics- i) high returns and ii) low risk.
In this section, we describe a two-stage portfolio genera-
tion procedure that ensures optimization of both the afore-

mentioned factors. Correlation-based clustering is first per-
formed on the available range of stocks to group the strongly
correlated ones together. This helps in quantifying the diver-
sification of candidate portfolios at a later stage. A genetic
algorithm is then run in the second stage of the framework,
with the aim of optimizing the output portfolio’s fitness. The
fitness function is defined in such a way so as to encompass
sufficient returns as well as diversification, to reduce associ-
ated risk. The inputs to the algorithm involve the time series
data for the list of stocks to be processed (usually 2 to 3
years worth) and the number of slots available in the target
portfolio.

3.1 Correlation-based stock clustering
This section outlines the methodology followed for stock
clustering based on time series correlations.

Time-weighted correlation The most common measure
of correlation is the Pearson coefficient ρ, which ranges from
-1 to 1 (-1 if negatively correlated, 1 if positively correlated,
and 0 for no correlation at all). The formula for ρ of two time
series X and Y can be defined as

ρ(X,Y ) =
cov(X,Y )

σXσY
(1)

where cov(X,Y ) denotes the covariance of X and Y , and
σX denotes the standard deviation of X .

Usually, the Pearson coefficient as obtained by applying
(1) over two time series is used to denote the relationship
between their trends. However, it is observed that the corre-
lation between stock price trends usually changes over time-
two stocks that show a strong correlation today may not have
such a significant relationship sometime in the future. This
may be attributed to ’global’ changes that affect one stock
differently than the other, or company-specific changes that
affect only one particular stock. Therefore, this paper defines
the concept of time-weighted correlation, which puts more
emphasis on recent/current trends, as compared to older
ones. The time-weighted Pearson correlation coefficient, ρt,
for two stock series can be given by-

ρt(X,Y ) = (
1− r

1− rN
)
N∑
i=0

ri−1 (x−i − µX)(y−i − µY )

σXσY
(2)

where σX and x−i denote standard deviation and the ith lat-
est observation in X respectively; N is the total number of
observations in the time series; and r is the decay constant,
equal to a real number less than 1. r signifies the weigh-
tage given to the relationship between any two simultaneous
observations in X and Y , as a function of their age with
respect to the latest observations in the time series. In my
implementation, I define r = 0.998 since this value gives
the best results (determined experimentally).
ρt, like ρ, varies from -1 to 1. The only difference is that

ρt gives more importance to the movements shown by newer
data, as compared to older observations. This unique defini-
tion of ’correlation’ enables one to draw a more accurate pic-
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ture of the expected relationship between two stocks in the
future under consideration. Moreover, with this definition,
its not necessary that two companies of the same industry
will show a high ρt value.

Modified K-Means++ clustering For the clustering step,
the time series vectors , viz. the vectors containing historical
Adjusted Closing prices of concerned stocks, are first nor-
malized by standard deviation. This enables the algorithm
to focus on the movements shown by individual stocks, and
define ’correlation centroids’ based on the relationships be-
tween them, in the Expectation-Maximization iterations.

K-Means++, as described by David Arthur and Sergei
Vassilvitskii is a popular enhancement over the traditional
K-Means clustering algorithm (David Arthur 2007). This
technique suggests a unique way to generate the initial cen-
troids for traditional K-Means, in an effort to avoid reach-
ing local optima and quickening the process of convergence.
Once the initial centroids are generated, the usual K-Means
way of clustering is followed. The distance measure nor-
mally used for clustering by this technique is the Euclidean
distance. However, since we aim to cluster stocks according
to time-weighted correlations between their time-series, we
use a distance measure as defined by (1− ρt(X,Y )), where
ρt is obtained from (2). The number of clusters, as input to
the algorithm, is set to be equal to the number of portfolio
slots as defined by the user.

The K-Means++ algorithm for correlation clustering, with
k clusters, can be shown in steps as-
• A data point is chosen at random and added to C, the set

of initial centroids.
• For each data point x, compute Dmin(x) given by

Dmin(x) = argminc ε C(1− ρt(tc, tx)) (3)
where tx denotes the normalized time series of data point
(stock) x.

• Choose a data point randomly from the set, with each
point x being assigned a weightage in the selection, pro-
portional to Dmin(x).

• Repeat steps II and III until k centroids have been chosen.
• Proceed with standard K-Means using the aforementioned

distance measure
The algorithm described above ensures that intra-cluster

correlations are maximized, while inter-cluster correlations
are minimized.

3.2 Genetic Algorithm
Every run of the genetic algorithm is begun with a pool of
randomly generated portfolio ’chromosomes’. Each portfo-
lio is composed of n (stocknamei, wi) pairs, where n is
the cardinality of the output portfolio, as specified by the
user. Each pair defines a constituent ’gene’ of the candidate
chromosome. stocknamei and wi denote the stock name
and portfolio weight of the ith gene respectively. The ini-
tial weights wi are chosen randomly, ensuring that their sum
equals 1. Smoothing may be done to avoid the possibility of
any stock being assigned a value of wi that is too low to be

stockname weight
CSE 0.076
DLTR 0.214
SNDK 0.259
EQT 0.056
IDTI 0.099
AGX 0.151
TST 0.109
GBCI 0.036

Table 1: Portfolio example

realistically possible. Using such a description, a randomly
generated portfolio ’chromosome’ can be shown as in Table
I.

The fitness function f(P ) used to determine the health of
a portfolio is given by the product of its expected returns
(E[ReturnsP ]), with its Shannon entropy (H(P )) with re-
spect to the stock clusters generated in the first stage of the
framework. Thus,

f(P ) = E[ReturnsP ] ∗H(P ) (4)
where the H(P ) is defined as

H(P ) =

Nc∑
i=1

−Pi log Pi (5)

where Nc is the number of clusters generated in the first
stage of the framework, and Pi is the sum of the weights
of all stocks in the portfolio that belong to cluster i.

The expected portfolio returns value E[ReturnsP ] is de-
fined as

E[ReturnsP ] =
n∑
j=1

wj E[Returnsj ] (6)

where E[Returnsj ] denotes the expected returns from the
jth stock.

At each iteration, pairs of candidates are chosen for mat-
ing n/2 times (with repetition allowed) to make up the pop-
ulation for the next iteration. Each pair of parents yields two
child portfolio chromosomes. However, instead of basing
the selection solely on the fitness function, we use sigma
scaling over the original fitness values. This promotes suffi-
cient exploration of the solution state before convergence to
an optimum. The sigma-scaled fitness function is given by

fss(P ) =
f(P )− µf

σf
(7)

where µf denotes the mean of the fitnesses of the population
candidates, while σf denotes their standard deviation.

This modified fitness score ensures that the algorithm
doesn’t converge directly towards the ’apparent’ best solu-
tion right at the beginning of the procedure. Instead, while
the variance shown by the fitness values is high, it explores
the solution space, and gradually converges to an optimum
result as the variance starts reducing. This avoids the prob-
lem of convergence to a local optimum.
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Cluster 1 CWCO BCO SNDK ATK MGLN BCPC PCTI FBNC ARLP ANGO WIT
Cluster 2 HELE AGX EWBC LANC BMY MDU GRMN KOG ATMI
Cluster 3 MSI ATW NEU DIS APOG AMG CSE CPA WLK SHW VASC CF ASCMA UNF ECOL BKH ITC ALGT
Cluster 4 ADBE DRQ FISI IPAR IDTI CMCO HBAN HLS FFIN KEY FLO
Cluster 5 AAPL ESP MOFG CA GBCI VRSN SSW
Cluster 6 EQT AMZN
Cluster 7 INTC SHPG EGAS DLTR
Cluster 8 EXLP DVN TST RTI ORCL GTE AI DWA ICGE ROST

Table 2: Stock clusters formed

C1 C2 C3 C4 C5 C6 C7 C8
C1 0.587 -0.147 -0.212 0.097 -0.406 -0.097 0.09 0.328
C2 -0.147 0.635 0.484 0.262 0.472 -0.110 0.100 -0.342
C3 -0.212 0.484 0.740 0.414 0.576 0.261 -0.337 -0.218
C4 0.097 0.262 0.414 0.636 0.413 -0.011 -0.292 0.231
C5 -0.406 0.472 0.576 0.413 0.770 0.074 -0.234 -0.178
C6 -0.097 -0.112 0.261 -0.011 0.074 0.758 -0.331 -0.005
C7 0.091 0.100 -0.337 -0.292 -0.234 -0.331 0.638 -0.129
C8 0.328 -0.342 -0.218 0.231 -0.178 -0.005 -0.129 0.564

Table 3: Average ρt values between stocks from pairs of clusters

For crossovers, the algorithm randomly redistributes the
(stocknamei, wi) pairs found in the two parents, ensuring
that two pairs with the same stockname value don’t end up
in the same child. The weights in each of the children are
then normalized to make sure that their sum equals one. A
mutation on a child chromosome is performed by choosing a
(stocknamei, wi) at random, and changing the stockname
to an arbitrary value from the available range.

Since we want a greater exploration of the solution space,
we choose a rather high mutation rate of 0.2 and a crossover
rate of 0.7. Elitism for one candidate portfolio is imple-
mented, wherein the best candidate from every generation
is carried forward to the next. This ensures that the ’best’
portfolio, if created in a generation before the last one, is
carried forward till the end. The algorithm is made to run un-
til a user-decided I number of consecutive generations dont
yield the same maximum fitness value (which would mean
that the best solution hasn’t shown an improvement since I
iterations).

Once the genetic algorithm finishes its run, the best
portfolio is chosen from the last generation of candidate
portfolios based on the fitness score.

Thus, we get a portfolio that is sufficiently diversified
(optimal entropy with respect to correlation-based clusters)
and has a good return/risk ratio (Genetic optimization of
fitness score).

4 Experiments and Results
The effectiveness of the proposed clustering approach is
demonstrated using 72 of the top stocks as listed on
MSN Money2 during November 2013. The experimenta-
tion was conducted using Python-based code, with historic

2http://money.msn.com/

quotes (Adjusted Closing price) of two years (January 2011
January 2013) obtained from Yahoo! Finance3 using the
ystockquote4 library. It was ensured that the stocks were ob-
tained from various sectors including Capital Goods, Tech-
nology, Public Utilities, etc. The number of clusters was set
to 7. As expected, the clusters didn’t consist of stocks homo-
geneous with respect to industry (Table 2).

Table 3 shows the average time-weighted correlation be-
tween stocks taken from each cluster-cluster pair. It can be
seen that for each cluster, its ρt value with respect to itself
is the highest, while inter-cluster values are generally low.
It was found that the average ρt between stocks of the same
cluster was 0.667, while that between stocks of two differ-
ent clusters was 0.027. With respect to the stock prices of
two months following the training data, it was found that
ρt among stocks of the same clusters was still quite high
at 0.543, while that between stocks of different clusters had
risen to 0.201, though still substantially lower than the intra-
cluster value.

We then move on to the genetic algorithm implementa-
tion, to construct an optimal portfolio. As expected, the port-
folio as output by the genetic algorithm is different after ev-
ery run keeping the stock clusters same. Table 4 shows a
portfolio constructed using the aforementioned stocks from
MSN Money. It’s corresponding returns and risk after 2
months post January 2013 are shown in the table. Figure 1
shows the highest fitness value in the population as a func-
tion of the progressing generations. As a standard, I con-
structed a portfolio having equal weightages with respect to
all stocks under consideration, and included it’s relevant val-
ues in Table 4. It is clear that the portfolio generated by the
proposed framework shows a much higher returns/risk ratio

3http://finance.yahoo.com
4https://pypi.python.org/pypi/ystockquote
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stockname weight
CSE 0.134
SNDK 0.331
AI 0.060
ATMI 0.087
AGX 0.191
TST 0.125
BMY 0.073
Two−month returns 13.36%
Two−month risk 1.49
Returns/Risk ratio 8.966

stockname weight

Equal
Weights
To
All
Stocks

Two−month returns 5.19%
Two−month risk 3.22
Returns/Risk ratio 1.612

Table 4: Comparison of portfolios

stockname weight
AXE 0.124
GS 0.204
INTC 0.075
CSCO 0.110
GE 0.138
T 0.096
V 0.253
One−month returns 11.75%
One−month risk 7.215
One−month Returns/Risk ratio 1.628
Two−month returns 3.15%
Two−month risk 6.93
Two−month Returns/Risk ratio 0.45

Table 5: Portfolio example

(Percent Returns/Risk), compared to the standard portfolio.
This can be claimed to be true for various time periods and
cardinalities, after extensive experimentation.

To further illustrate the effectiveness of the framework,
I constructed portfolios using the stocks from the DJI in-
dex, one of the most reputed market indexes in the world.
Table 5 shows an example of such a portfolio. The training
was done on historical data from the period August 2011 to
August 2013. As seen in the table, the returns from the con-
structed portfolios for the one-month and two-month periods
following August 2013 beat the corresponding DJI returns
(9.6%, -7.7%). I performed 50 runs of the framework, keep-
ing the stock clusters same. The mean and standard deviation
shown by the returns from the constructed portfolios for a
one-month period are 10.62% and 0.007% respectively. As
for the portfolio risk, the mean and standard deviation shown
by the values from the output portfolios for a one-month pe-
riod are 7.346 and 0.8 respectively. During the same period,
the risk shown by the DJI was 2.68. Though the risk por-
trayed by the framework output doesn’t beat the DJI index,
it is apparent that it is still quite stable to market fluctuations,
and thus yields positive returns even when the index yields
negative ones.

The experimental results as shown in this section conclu-
sively prove that the proposed framework is largely success-

Figure 1: Highest fitness over progressing generations

ful in generating stable portfolios from given sets of stocks,
provided that the appropriate training data is available.

5 Conclusions and Future Work
This paper details a stochastic yet sound framework for op-
timal stock portfolio construction. The results, as demon-
strated in Section 4, are promising enough to suggest the
effectiveness of the outlined methodology. The strength of
the idea lies in the usage of a genetic algorithm to optimize
returns as well as quantified diversification. Similar to bi-
ological evolution, the evolutionary technique used in this
paper ensures that only those portfolios that are ’fit’ enough
to tackle the trends shown by historical data make it to the
last generation. It should be noted that the focus of this
work is to create a stable portfolio, rather than just a prof-
itable one- in essence, the kind of portfolio an investor is
likely to trust. The concept of time-weighted correlations, at
the heart of the framework, gives a powerful notion of the
expectedtrends among stock prices. Considering the ran-
dom walk theory, which states that stock prices tend to take
unpredictable paths, the experimental results portray the po-
tential of ρt as an indicator of future trends.

Furthermore, each of the two stages in the described algo-
rithm has its own strengths and can be used for other related
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tasks. For example, correlation clustering can be used for
stock classification, while the genetic algorithm can be used
for optimizing the weights over a fixed set of securities. The
only necessary change would involve modifying the muta-
tion technique to mutate a random gene’s weightage field
instead of the stockname. The presented framework can also
be applied to portfolio generation utilizing other kinds of se-
curities, provided the required data is available. Moreover,
for a commercial application of my work, transaction costs
would also need to be accounted for. These could be factored
into the fitness score used for the selection operator as a part
of the GA.

There are various ways in which the outlined framework
could be further improved. For starters, the algorithm cur-
rently requires the user to input the number of target slots
in the output portfolio. This requirement could be discarded
by applying intelligent clustering methodologies like divi-
sive clustering with an appropriate stopping criterion. As a
result, the optimal number of clusters could be learnt and
the same could be used as the cardinality for the output.
Future work in this direction would also involve exploring
dynamic extensions to the methodology. Since one portfo-
lio cannot be perennially profitable, incremental transactions
could be suggested to the user at regular intervals. How-
ever, since a GA is largely stochastic, the portfolio gener-
ated at any run may be substantially different in terms of
its constituent stocks, with respect to any prior run. If these
’suggestions’ are followed, the transaction costs would over-
shoot any profits made. This can be countered by biasing the
GA process to certain stocks and weights by modifying the
genetic operators of selection, crossover and mutation. An-
other way to do this would be to model transactions as chro-
mosomes, and optimize the fitness of the resultant portfolio
using another GA framework. In any case, the usefulness of
my approach for one-time portfolio generation is apparent
and should be explored for further possibilities.
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