
Comparing Data Processing Frameworks for Scalable Clustering
Sharanjit Kaur

Department of Computer Sc
Acharya Narendra Dev College

University of Delhi
Delhi, India

skaur@cs.du.ac.in

Rakhi Saxena
Department of Computer Sc

Deshbandhu College
University of Delhi

Delhi, India
rsaxena@db.du.ac.in

Dhriti Khanna
Department of Computer Sc

Acharya Narendra Dev College
University of Delhi

Delhi, India
dhriti0610@gmail.com

Vasudha Bhatnagar
Department of Computer Sc

South Asian University
Delhi, India

vbhatnagar@cs.sau.ac.in

Abstract

Recent advances in the development of data parallel plat-
forms have provided a significant thrust to the development
of scalable data mining algorithms for analyzing massive data
sets that are now commonplace. Scalable clustering is a com-
mon data mining task that finds consequential applications in
astronomy, biology, social network analysis and commercial
domains. The variety of platforms available for implementa-
tion of algorithmic solutions poses a dilemma of choice for
researchers and practitioners, alike.
This paper presents a case study for comparison of two open
source data parallel frameworks for implementation of a scal-
able clustering algorithm. Ascension of Map-Reduce frame-
work to the top slot in less than a decade is attributed to its
ease of programming, robustness and capability to perform
automatic load balancing. Recently proposed Nephele-PACT
framework is a serious contender, because of its design that
offers optimized execution of complex data flows, prevalent
in Big Data Analytics. Both frameworks use HDFS as the un-
derlying distributed file system, hence the comparison is con-
fined to the execution engines only. Experimentation on real
and synthetic data reveals the better scalability of Nephele-
PACT framework.

Keywords: MapReduce, PACT, Scalable Clustering, HDFS

1 Introduction
Developing scalable algorithms for automated or semiauto-
mated analysis is a compulsive need of the analytics commu-
nity, owing to the rapidly growing number of massive data
sets. Advances in digital sensors, communications and stor-
age are the significant causal factors for the current data del-
uge. Search engine companies like Yahoo, Google, and Mi-
crosoft are encashing on popularity and advertisements by
capturing freely available big data on the web and provid-
ing useful services to masses (Bryant 2011). However, it is
imprudent to process such hugely abundant data on a single
machine.
Copyright © 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Deployment of cluster computing frameworks, which ag-
gregate computational power, main memory and I/O band-
width of shared-nothing commodity machines, has emerged
as the most popular solution (Pavlo et al. 2009; Rajara-
man and Ullman 2012). Google was the earliest propounder
of this technology for carrying out analytics on Big Data.
The endeavor was founded on a solid proposal for a data
parallel programming model and accompanying framework
called MapReduce (MR) (Dean and Ghemawat 2004), de-
signed to execute over Google File System (Ghemawat, Go-
bioff, and Leung 2003). Apache open source response to the
two Google technologies is Hadoop-MR and Hadoop Dis-
tributed File System (HDFS), respectively. The spectacular
rise in popularity of MR framework for data parallel com-
puting on large shared-nothing commodity clusters is at-
tributed to its ease of programming, robustness and ability
to perform automatic load balancing. Programmers with lit-
tle experience in parallel programming and distributed sys-
tems, can quickly develop data parallel programs for exe-
cution on a large cluster using abstract functions Map and
Reduce (Dean and Ghemawat 2004).

MapReduce (MR) has inspired more than a dozen variants
and extensions including Clustera, Hyracks, Spark, Dyrad,
Pregel, MapReduce Merge, SCOPE, Nephele-PACT etc..
Some of these cater to specific needs of applications like
processing of iterations, joins, graphs and streams. Others
are designed to offer significant advancements in processing
of complex data flows. An extensive survey of MR variants
and its extensions for large scale data processing is available
in (Sakr, Liu, and Fayoumi 2013).

Existing data parallel programming platforms can be cat-
egorized into two distinct classes. The first class comprises
the likes of MR, which capture sequential data flows and ex-
ecute them efficiently, and the second class consists of plat-
forms that possess the capability to capture, optimize and
execute complex data flows using additional communication
channels such as sockets, pipes or shared memory. MR, MR-
Merge, etc. fall in the first category, while Dryad, Nephele-
PACT, Hyracks etc. fall in the second category.

Availability of several data parallel platforms bestows the

Proceedings of the Twenty-Seventh International Florida Artificial Intelligence Research Society Conference

339



luxury of choice to practitioners and researchers. Depend-
ing on the distinguishing characteristics of the algorithm, a
practitioner is keen to choose a platform that delivers the
best return on investment. A researcher on the other hand is
interested in developing algorithms that bring out the poten-
tial of the underlying platform to the best possible extent.
A comparative study of data parallel, distributed computing
platforms aids in matching the algorithm and the platform.

In this paper, we compare Hadoop-MR and Nephele-
PACT frameworks, which are open source representatives
of the two categories mentioned earlier. We choose a scal-
able stream clustering algorithm (ExCC algorithm (Bhatna-
gar, Kaur, and Chakravarthy 2013)) as the subject of the
case study, and describe in detail the design distinctions
for the two platforms. The choice is motivated by two rea-
sons. Firstly, clustering is one the most popular descriptive
analytic techniques used for mining voluminous data sets.
Secondly, clustering is representative of many practical data
analytics tasks that require complex cascades of MR jobs
rather than simple two step data parallel processing of MR.
We decided to use ExCC algorithm because of its incremen-
tal nature and its capability to deliver recent, exclusive and
complete clustering. Additionally, the algorithm possesses
the ability to cluster data with mixed (numerical and cate-
gorical) attributes, commonly analyzed in several real life
applications.

ExCC uses a grid structure as synopsis to summarize the
data stream. Implemented as in-core trie, the grid discretizes
data space into hyper-cuboidal regions called cells. Each of
these cells can be processed independent of each other in
parallel. The algorithm is perfectly suited for data paral-
lelism, and is therefore an apt choice for implementation on
a data parallel distributed computing environment.

Though this study uses a grid-based clustering algo-
rithm as a vehicle for comparison, the insights gained
highlight significant distinctions between the two frame-
works and can be useful for selecting the better one for
design/implementation of scalable clustering algorithms in
general. Section 2 describes related work. Section 3 de-
scribes the design and implementation of the algorithm,
bringing out distinctions that arise due to differences in two
frameworks. The performance comparison of the two frame-
works is given in Section 4 and conclusion in Section 5.

2 Related Work
In this section, we begin with a brief description of the
Hadoop-MapReduce and Nephele-PACT frameworks, fol-
lowed by a description of the ExCC algorithm.

2.1 Hadoop-MapReduce Framework
Hadoop-MapReduce is a data centric distributed framework
that expresses simple computations as MapReduce jobs
(Dean and Ghemawat 2004). The framework splits input
data into small chunks, which are processed in parallel, on
different compute nodes, by invoking Map tasks to execute
user-defined functions. Subsequently, the framework initi-
ates a Sort and Shuffle phase to channelize data to parallely
executing Reduce tasks for aggregation. Thus, the frame-

Features MapReduce Nephele-PACT
Data Flow Supported Sequential Complex (DAG)
Basic Primitives Map, Reduce Map, Reduce, Match

Cogroup, Cross
Support for Multiple inputs No Yes
Identity Mappers/Reducers Often Required Optional
Global counters Available Not Available
Distributed Cache Available Not Available
Custom partitioning/Sorting Possible Not Possibble
Execution Strategy Fixed Optimized
Fault Tolerance Fully Suppported Experimental Stage

Table 1: Feature-wise comparison of Mapreduce and
Nephele-PACT frameworks (DAG:Directed Acyclic Graph)

work permits a sequential data flow with the Map phase
feeding the Reduce phase.

2.2 Nephele-PACT Framework
The Nephele-PACT Framework offers Parallelization Con-
tracts (PACTs), which are generalizations of Map and Re-
duce primitives of the MR framework. The framework is
motivated by the need to handle complex data flows in a
cluster environment (Alexandrov, A. et al. 2010; Battré, D. et
al. 2010). Novel dual input primitives like Co-group, Cross
and Match contracts are available to the programmer to ne-
gotiate complex data analytic tasks.

Unlike the fixed execution strategy in MR, the PACT com-
piler generates multiple execution plans and selects the op-
timal one. The execution plans are evaluated and stored as
directed acyclic graphs (DAG). The vertices of the DAG are
instances of PACTs and the edges denote data transportation
mechanism (file/network/in-memory channel) between the
PACTs. The selected DAG is executed by the Nephele exe-
cution engine in parallel on multiple nodes. Table 1 contrasts
the differences between MapReduce and PACT frameworks.

2.3 ExCC: A Stream Clustering algorithm
The ExCC (Exclusive and Complete Clustering) algorithm
is designed to generate a recent, exclusive and complete
clustering scheme from potentially infinite data streams
(Bhatnagar, Kaur, and Chakravarthy 2013). It uses an in-
core grid data structure as synopsis, which is implemented as
an in-core trie structure. Based on user-specified granularity,
the grid discretizes bounded data space into hyper-cuboidal
regions called cells. Each cell has a unique signature de-
pending upon its location in the data space and maintains
summarized statistics like number of data points, and logi-
cal time-stamps of first and last data points received in the
corresponding data region.

The algorithm has two components that execute in se-
quence. The first component localizes the incoming points
to the appropriate cell by discretizing it and extracting its
signature. The cell statistics are updated appropriately with
each incoming point in order to maintain up-to-date synop-
sis. Periodically, non-recent cells are pruned away from the
grid so that old data do not over-shadow current structures
and the grid does not outgrow the memory. Time stamps pre-
served in the cells are used for judging recency,

340



The second component performs clustering after identi-
fying dense cells in the grid. Density of a cell (number of
points in the region) is used as the evidence of structure sub-
sistence in data. Density threshold is computed dynamically
as a function of average number of points in the grid and data
dimensionality. Subsequently, recent dense cells in the grid
are coalesced using connected component analysis to dis-
cover clusters. In the final stage, only significant clusters are
reported. Interested reader may refer to the details in (Bhat-
nagar, Kaur, and Chakravarthy 2013)

3 Data Parallel Clustering Algorithm
In this section, we describe the MR-design for the proposed
scalable algorithm, followed by a detailed description of the
implementational differences that arise due to the underlying
differences in the Hadoop-MR and Nephele-PACT frame-
works.

3.1 Data Parallel design of ExCC
The data parallel version of ExCC is an incremental algo-
rithm, which can handle potentially infinite data in batches
(increments).

Figure 1 show the blue print of the algorithm with im-
plementational differences in the two models. Jobs 1 and
2 accomplish the tasks of the first component of ExCC,
and Jobs 3 and 4 accomplish the tasks of the second com-
ponent. Interestingly, the proposed design precludes the
need of maintaining in-memory trie structure for synop-
sis. Instead, the synopsis is stored as 〈Key, V alue〉 pairs
of 〈cell -signature|cell -statistics〉. Storing synopsis on file
system imparts true scalability to the algorithm.

The algorithm takes the current increment, previous syn-
opsis and necessary parameters (data grid granularity and
dimension details) as input. The functionality of each job is
described below.

i. JOB 1: Cell signature generation: This job takes the input
as time stamped incremental data set, where each record
is a 〈timestamp|datavalue〉 pair. Each data value is dis-
cretized in parallel to localize it in a cell. At each com-
pute node, cells with same signatures are combined (ag-
gregated) and the cell statistics are updated. The output of
this job is a sequence of 〈cell -signature|cell -statistics〉
pairs stored in file, representing the synopsis for the cur-
rent data increment.

ii. JOB 2: Synopsis maintenance: This job merges previous
synopsis with current synopsis and enforces data recency
by updating cells with same signature in parallel. Recent
cells are identified using the time-stamps from aggregated
statistics of cells. The output is the updated synopsis as
〈Key, V alue〉 pairs, similar to that of JOB 1. The updated
synopsis is used for processing the future data increment
and also as input to JOB 4.

iii. JOB 3: Preparation for partitioning: The objective of this
job is to prepare for partitioning the synopsis by assessing
the degree of parallelism for accomplishing clustering in
the next job. Updated synopsis from JOB 2 is the input to
this job. For a selected dimension, cell signature value in

that dimension of all the cells are emitted in parallel, with
dimension number as the key. Unique values are sorted
and stringified and passed to the next JOB.

iv. JOB 4: Significant clusters Generation : The string re-
ceived from JOB 3 is examined to figure out the number
of partitions that can be clustered in parallel (See example
below). Synopsis from JOB 2 is the input for this job too.
In the Map phase, each cell in the synopsis is assigned to a
partition by emitting the partition number as key and cell
signature as value. All cells with same partition number
are thus collected at the same compute node for the Re-
duce phase where Connected Component Analysis (CCA)
is applied for clustering the received cells. CCA performs
clustering by selecting an arbitrarily dense cell and pro-
gressively coalescing dense cells that are adjacent to it or
any of the (cluster) member cells (Agrawal et al. 1998).
We clarify the tasks carried out by JOBs 3 and 4 in the
following example.

Example 1 Consider an updated synopsis with 5 cells
[0,2,2] [1,2,3] [3,3,1] [0,3,1] [4,3,1]. Suppose dimension
1 is fixed for ascertaining degree of parallelism. JOB 3
emits values (0, 1, 3, 0, 4) and sorting unique values re-
sults into (0,1,3,4). JOB 4 finds that the sorted string has
two contiguous value substrings viz. (0,1) and (3,4). Thus
all cells with 0 or 1 on first dimension are placed in one
partition and cells with values 3 or 4 are placed in the sec-
ond partition. Thus, two preliminary partitions are iden-
tified as {[0,2,2] [0,3,1] [1,2,3]} and {[3,3,1] [4,3,1]}
respectively, each of which is clustered in parallel.

3.2 Implementational Distinctions
In this section, we highlight the implementational distinc-
tions that arise due to the underlying differences in Hadoop-
MR and Nephele-PACT platforms. For the sake of clarity,
we refer MR version as ExCC-MR and PACT version as
ExCC-P. Dashed blocks in Figure 1 reveal the implemen-
tational differences of two versions.

i. JOB 1: The job needs program parameters to be avail-
able at each node before the processing of current data
increment. MR provides the distributed cache feature for
broadcasting read-only meta data, wherein the cached
data is copied to all nodes before launching a job. How-
ever, initial experimentation with distributed cache in
ExCC-MR revealed the overheads involved for distribut-
ing program parameters in this manner. PACT does not
provide distributed cache facility. Instead, use of Cross
contract is recommended by the Nephele-PACT design-
ers. Again, initial experimentation found this approach
inefficient for the job. The Cross contract was able to gen-
erate the signature value of only a single dimension at a
time, a subsequent Reduce contract was required to com-
pose the complete cell signature on all dimensions.
However, both platforms offer provision for passing small
data to the compute nodes as 〈Key, V alue〉 pairs via the
Job Configuration object. Hence program parameters are
encoded as a string that is passed to all MAP tasks using
this mechanism in both frameworks.

341



Figure 1: Four jobs identified for ExCC for distributed computing and its implementation in MapReduce and PACT

ExCC-MR uses a combiner for local aggregation of syn-
opsis on each node. Since the job does not require any re-
duce functionality, ExCC-MR sets the number of reducers
to 0. Lack of a Reducer in this job implied that ExCC-P
could not aggregate synopsis locally since PACT provides
the option of using a combiner only via a reduce task.
Hadoop, which supports pure MR programming model
writes output in the HDFS. Consequently the current syn-
opsis is written on the disk, requiring increased disk space
and network bandwidth. The Nephele-PACT model is ca-
pable of supporting complex data flows through the use of
network channels. ExCC-P uses this facility and pipelines
the current synopsis to the next job saving on the I/O over-
head (Section 4).

ii. JOB 2: This job entails merging the previous synopsis
with the current synopsis. ExCC-MR employs an identity
mapper to forward the two synopses residing on HDFS
to the reducers. This causes a surge in the use of network
bandwidth. Pipelining of the current synopsis directly to
the Co-Group contract through the network channel by
the map contract in ExCC-P precludes the need for iden-
tity mappers and optimizes resource usage. Accordingly,
ExCC-P receives the current synopsis through the net-
work channel and the previous synopsis from HDFS.
The reducers in ExCC-MR aggregate cell statistics, de-
termine recency and output only the recent cells. Similar
actions are performed by Co-Group contract in ExCC-P,
which hands over the output to FileDataSinkContract for
storing the updated synopsis.
Global counters provided by MapReduce framework per-
mit aggregation across all maps and reducers to produce
a grand total at the end of the job. This facility comes
handy in ExCC-MR to count total cells and data points
in the updated synopsis. These counters are used to deter-
mine density threshold in JOB 4. Since PACT lacks this
facility, determination of these counts is deferred to JOB
3 in ExCC-P. This does not cause any overhead in ExCC-
P in this particular algorithm, but may cause overheads or
lead to complex designs of some analytics tasks.

iii. JOB 3: Implementation of this job is similar in both
frameworks, except for two distinctions. First, Co-Group
contract in ExCC-P delivers the updated synopsis to this
job through network channel instead of disk, thereby sav-
ing data transfer over network. Secondly, ExCC-P has to
additionally count the cells and data points, which ExCC-
MR had accomplished in the previous job.
The output of JOB 3 is passed to JOB 4 as 〈Key, V alue〉
pair in the Job Configuration object by ExCC-MR and is
broadcast through the network channel by ExCC-P.

iv. JOB 4: This is the core clustering job. ExCC-MR reads
the input from disk using a map task, while ExCC-P re-
ceives updated synopsis pipelined through the network
from JOB 2 into a Cross contract. The map task in ExCC-
MR and the Cross Contract in ExCC-P divides the cell
pool into disjoint partitions. Both implementations derive
the partition number from the sorted list of distinct granu-
larity values of the pre-fixed dimension (See Example 1),
received as memory input from JOB 3. The reducers in
both implementations, retain the dense cells, apply CCA
for clustering and report only significant clusters.

In summary, the major point of distinction is the use of
network channel for passing data between contracts. As re-
vealed in experiments, this leads to substantial saving in ex-
ecution time because of dramatically reduced I/O. Absence
of a distributed cache in the PACT programming model
can be surmounted by passing data to distributed tasks via
〈Key, V alue〉 pairs in the Job Configuration. However, the
absence of Counters for global aggregation in PACT forces
collection of all values to be aggregated into a single reducer.
This would be a bottleneck when large number of values are
to be aggregated and could cause the program to fail if the
values would not fit into the memory of a single compute
node.

As most analytics task involve complex data flows, which
are unnatural to be modeled as two step sequential MR jobs,
Nephele-PACT offers a framework for elegant design. Cur-
rently however, lack of fault tolerance is a serious limitation

342



(a) Total runtime (in seconds) with in-
creasing dataset size

(b) Average CPU utilization and average
CPU waiting time with increasing degree
of parallelization

(c) Average network bandwidth us-
age with increasing degree of paral-
lelization

Figure 2: Performance Comparison of ExCC-MR on Hadoop-MR and ExCC-P on Nephele-PACT

of Nephele1.

4 Experiment Evaluation
We experimented on a 6-node Intel Xeon(R) machine cluster
with Ubuntu Linux (version 13.04, kernel 3.8.0-30-generic)
as operating system. Each node had E3-1240V2 @ 3.40GHz
X 8 processors, 15.6GB of RAM, and available storage of
476GB. The test cluster consisted of a total of 48 cores and
1.06 TB storage. All machines were connected through reg-
ular 1 GBit/s Ethernet links.

Sun JVM version 1.7.0 was installed to run stable Hadoop
version 0.20.2 and Stratosphere version 1.2. Default block
size of HDFS (64 MB) was used to distribute data, with
default replication factor. Ganglia (University of California,
Berkeley 2006) was used to monitor real-time usage of re-
sources of the cluster. The goal of the experiments was to
compare performance of Hadoop MapReduce and Nephele
PACT for the designed algorithm. In particular, we wanted
to answer following two questions:

i. How do execution times scale with data size for the two
frameworks?

ii. How do CPU utilization, waiting time and network band-
width vary with varying degrees of parallelization in the
two platforms?
Dataset description: We performed experiments to com-

pare resource usage and run time scalability of ExCC-MR
versus ExCC-P using one public dataset and four synthetic
datasets described in Table 2. KDD dataset, with 34 numeric
and 7 categorical dimensions (UCI KDD Archive 1999), is
a well known labeled data that has been extensively used in
evaluation of stream clustering experiments. Synthetic data
sets of different sizes, with 6 numeric and 4 categorical di-
mensions, were generated using a customized data genera-

1http://www.stratosphere.eu/faq

tor. Each of the synthertic data set consisted of six clusters
in hyper-rectangular data space. The generated points were
randomized and a time stamp was assigned to each point to
simulate incremental data.

S.No. Dataset Size (GB) Instances (106)
1 KDD-99 Cup 0.7 4.8
2 syn-8GB 8 160
3 syn-12GB 12 240
4 syn-16GB 16 320
5 syn-20GB 20 400

Table 2: Description of datasets; syn-n: Synthetic data set

Scalability of the platforms: We observed from Fig-
ure 2(a) that run time of ExCC-MR exceeds that of ExCC-P
on all dataset. Nephele is advantaged by the pipelining sup-
port for communicating data between PACTs, while Hadoop
is constrained to communicate data between jobs through
HDFS. Massive disk I/O by Hadoop retards the overall ex-
ecution speed of the application. With increasing data size
and consequent disk I/O, the increase in timings is steeper
for ExCC-MR than for ExCC-P, indicating better scalability
of Nephele-PACT to Hadoop-MR.

Comparison of resource usage We studied the impact of
degree of parallelism (DoP) on the performance of Hadoop-
MR and Nephele-PACT using synthetic dataset syn-12GB
by measuring averages of CPU utilization, CPU waiting
time and network bandwidth. Each experiment was carried
out three times to average out the influence of routine system
activities on measurements.

CPU Usage: Figure 2(b) shows average CPU utiliza-
tion (%) (solid lines) and average CPU waiting time (%)
(dot lines) with DoP varying from 18 to 42. For lower val-
ues, ExCC-P shows higher CPU utilization than ExCC-MR.
With increasing DoP, utilization falls for Nephele and in-

343



creases for MR. After DoP=36 the graph shows a dip for
both frameworks because of the data size. For DoP=42, ex-
cess availability of resources leads to lower CPU utilization
for both frameworks. We conjecture that the point of dip
will depend on the data size. On the other hand, lower CPU
waiting time of ExCC-P compared to ExCC-MR is due to
Hadoop’s constraint of writing data on HDFS before ship-
ping to subsequent jobs. Waiting time for ExCC-MR are
consistently higher than ExCC-P because of the routine file
writing by Hadoop after each Map and Reduce. PACT passes
data through network channel and hence CPU waiting time
is negligible.

Network bandwidth usage: It is observed from Figure 2(c)
that Nephele-PACT consumes lower bandwidth as compared
to Hadoop-MR. This is despite the fact that Nephele uses
network channel to ship data between different contracts in
the DAG. Hadoop utilizes excessive network for writing as
well as reading data from HDFS. The reason for the dip in
the network usage at DoP=36, is that with increased par-
allelism data locality improves and read/writes happen on
the local compute node with increased frequency for both
frameworks. Naturally, PACT benefits more from this phe-
nomenon, as it was already performing minimal read/write
on disk.

Incremental Processing: Observations for processing of
incremental data in batches vindicated our earlier conclu-
sion regarding resource usage. Figure 3 shows CPU utiliza-
tion and wait time for ExCC-MR and ExCC-P, while pro-
cessing syn-20GB data set in incremental mode (batches of
sizes 12+4+4). Arrows in the figure are marked to reveal the
beginning and end of each batch. Arrows A through D are
for ExCC-MR and arrows E through H are for ExCC-P. The
graph clearly reveals the differences in the two platforms,
while showing striking similarity to Figure 2 (b). Similar ob-
servations for network bandwidth were observed and hence
have not been shown in interest of brevity.

Figure 3: CPU utilization and waiting time for three batches
of (12, 4, 4) GB for ExCC-MR (A - D) and ExCC-P (E - H);

5 Conclusion
Hadoop MapReduce and Nephele-PACT are two open
source frameworks for data parallel computations, in ad-
dition to many other properitary solutions. In this paper,

we document our experiences while designing and testing
a scalable, incremental clustering algorithm for two frame-
works. We describe the algorithm and its detailed implemen-
tation, highlighting the differences that arise because of the
differences in two frameworks. As both frameworks oper-
ate on HDFS, experiments capture performance differences
because of the frameworks.

We conclude that Nephele-PACT has better scalability
than Hadoop-MR, due to use of multiple communication
channels. Consequently, it makes better use of system re-
sources. However, robustness of Hadoop-MR can not be ig-
nore due to its excellent fault-tolerant nature. During the
course of experiments, we never had to restart ExCC-MR,
while ExCC-P required occasional intervention.

References
Agrawal, R.; Gehrke, J.; Gunopolos, D.; and Raghavan, P.
1998. Automatic Subspace Clustering of High Dimensional
Data for Data Mining Application. In Proceedings of the
ACM SIGMOD.
Alexandrov, A. et al. 2010. Massively Parallel Data Analysis
with PACTs on Nephele. Proceedings of the VLDB Endow-
ment 3(2):1625–1628.
Battré, D. et al. 2010. Nephele/PACTs: A Programming
Model and Execution Framework for Web-Scale Analytical
Processing. In Proceedings of ACM Symposium on CC, 119–
130.
Bhatnagar, V.; Kaur, S.; and Chakravarthy, S. 2013. Clus-
tering Data Streams using Grid-based Synopsis. Knowledge
and Information System.
Bryant, R. E. 2011. Data-Intensive Scalable Computing
for Scientific Applications. Computing in Science and En-
gineering 13(6):25–33.
Dean, J., and Ghemawat, S. 2004. Mapreduce: Simplified
data processing on large clusters. In Proceedings of the 6th
Symposium on OSDI, 137–150.
Ghemawat, S.; Gobioff, H.; and Leung, S.-T. 2003. The
google file system. In Proceedings of the 19th ACM Sympo-
sium on OSP, 29–43. ACM.
Pavlo, A.; Paulson, E.; Rasin, A.; Abadi, D. J.; DeWitt, D. J.;
Madden, S.; and Stonebraker, M. 2009. A Comparison of
Approaches to Large-scale Data Analysis. In Proceedings
of ACM SIGMOD, 165–178.
Rajaraman, A., and Ullman, J. D., eds. 2012. Mining of
Massive Datasets. Cambridge University Press.
Sakr, S.; Liu, A.; and Fayoumi, A. G. 2013. The Family
of MapReduce and Large Scale Data Processing Systems.
CoRR abs/1302.2966.
UCI KDD Archive. 1999. KDD CUP 99 Intrusion Data.
http://kdd.ics.uci.edu//databases/kddcup99.
University of California, Berkeley. 2006. Ganglia: High Per-
formance Monitoring Tool. http://ganglia.sourceforge.net.

344




