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Abstract

We introduce dynamic causal calculus, a nonmonotonic for-
malism that can be viewed as a direct logical counterpart of
the action description language C+ from (Giunchiglia et al.
2004). We formulate a nonmonotonic semantics of the asso-
ciated causal language, and compare this semantics with the
indirect, two-stage semantics for C+, given in (Giunchiglia et
al. 2004). It will be shown, in particular, that the suggested se-
mantics allows us to alleviate syntactic distinctions between
propositional atoms, maintained by C+, as well as type re-
strictions imposed on its causal laws. We will describe also
a logical formalism of dynamic causal inference that consti-
tutes a complete description of the logic that is adequate for
this dynamic calculus.

Introduction
Unlike general descriptions of temporal dynamics in tem-
poral logics and related logical formalisms, action theories
in AI have to deal primarily with two quite specific rea-
soning tasks, namely the prediction task (what are the re-
sults of a given sequence of actions from an initial state)
and the planning task (what sequence of actions could lead
from an initial state to a target goal state). These reason-
ing tasks immediately lead to a triple of famous problems,
known as the frame, ramification and qualification problems
(see (Shanahan 1997)). It was realized quite early that clas-
sical logic and its temporal/dynamic extensions, taken by
themselves, encounter difficulties in resolving these prob-
lems. More precisely, it has become clear that these prob-
lems have an essentially nonmonotonic character, so their
proper solution requires augmenting purely logical, mono-
tonic reasoning with an appropriate mechanism for making
nonmonotonic conclusions1.

In recent years a dominant approach to solving these prob-
lems has been based, in one form or another, on what can be
broadly termed causal reasoning. Given a set of action and
(causal) rules describing the domain, the causal approach
employs a distinction between facts that hold in a situation
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1Even the well-known “monotonic” solution to the frame prob-
lem, described in (Reiter 1991), can be seen as a result of compil-
ing this nonmonotonic information into the successor state equiva-
lences.

versus facts that are caused (or explained) by other facts and
the rules. In this context, the corresponding causal closure
assumption (see. e.g., (Reiter 2001)) can be viewed as a par-
ticular form of an old philosophical principle of universal
causation, which amounts to the requirement that all facts
that hold in a situation should be either caused by other
occurrent facts, or else preserve their truth-values in time
(due to the accompanying inertia assumption). A direct
incorporation of such causal assertions into the language
of the situation calculus has been proposed in (Lin 1995;
1996), and has been shown to provide a natural account of
both the frame and ramification problems. Subsequently, a
general formal framework for this kind of causal reasoning,
called a causal calculus, has been suggested in (McCain and
Turner 1997).

An elaborate implementation of the above causal prin-
ciples in reasoning about actions has been given in
(Giunchiglia et al. 2004). The formalism of (Giunchiglia
et al. 2004), however, is a multi-sorted and multi-layered
representation framework. As its top layer, it employs a
causal action description language C+ that provides high-
level descriptions of action domains in terms of three kinds
of propositional atoms (actions, simple fluents and statically
determined fluents) and three different kinds of causal laws
(static laws, action dynamic laws and fluent dynamic laws).
Domain descriptions in this language are then instantiated
by assigning temporal stamps to propositions, and incorpo-
rating the resulting descriptions into an atemporal causal cal-
culus of (McCain and Turner 1997). The models of the re-
sulting causal theories are viewed then as intended models
of the source, higher-level action descriptions.

In this study2 we will attempt to single out and ‘stream-
line’ the logical framework behind the language C+. To this
end, we will introduce a dynamic generalization of the orig-
inal causal calculus, which will be formulated, ultimately, in
terms of a single basic kind of dynamic causal rules. This
dynamic calculus will provide a direct and uniform logical
description for the language C+. In addition, we will de-
scribe also a logical (monotonic) system of dynamic causal
inference that will constitute a concise logical framework for
causal reasoning in dynamic domains.

2Preliminary version of this paper has appeared in (Bochman
2013).
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The plan of the paper is as follows. After an overview
of the original (atemporal) causal calculus and its use in the
framework of (Giunchiglia et al. 2004), we will introduce a
dynamic causal calculus as a direct reformulation of the ac-
tion description language C+. We will describe a modified
nonmonotonic semantic for this dynamic causal language
that is based on a comprehensive principle of universal cau-
sation, and show that this modification allows us, in particu-
lar, to alleviate most of the syntactic restrictions imposed in
C+ on the form of its causal rules, as well as syntactic dis-
tinctions between the propositions of the language. Finally,
we will describe a logical formalism of dynamic causal in-
ference that constitutes an underlying logic for causal rea-
soning in action domains.

The Causal Calculus
Throughout this study, we will assume that our basic lan-
guage is a classical propositional language with the usual
connectives and constants {∧,∨,¬,→, t, f}. � and Th will
stand, respectively, for the classical entailment and the asso-
ciated logical closure operator. In what follows, we will also
identify propositional interpretations (‘worlds’) with the sets
of propositional formulas that hold in them.

A causal rule is a rule of the formA⇒B, whereA andB
are classical propositions. We will informally interpret such
rules as saying plainly ”A causes B”.3

By a causal theory we will mean an arbitrary set of causal
rules. For a set u of propositions and a causal theory ∆,
we will denote by ∆(u) the set of all propositions that are
caused by u in ∆, that is,

∆(u) = {B | A⇒B ∈ ∆, for some A ∈ u}

Then the nonmonotonic semantics of a causal theory can
be defined as follows.

Definition 1. A world (= propositional interpretation) α is
an exact model of a causal theory ∆ if it is a unique model
of ∆(α). The set of exact models forms a nonmonotonic
semantics of ∆.

The above semantics of causal theories coincides, in ef-
fect, with the semantics for such theories, described in (Mc-
Cain and Turner 1997) and (Giunchiglia et al. 2004). It can
also be verified that exact models of a causal theory are pre-
cisely the worlds that satisfy the following condition:

α = Th(∆(α)).

Accordingly, exact worlds are not only closed with re-
spect to the causal rules, but also such that any proposition
that holds in them is caused (that is, explained) ultimately
by other propositions.

An overview of the Language C+
The underlying propositional language of the action descrip-
tion language C+, introduced in (Giunchiglia et al. 2004), is

3(Giunchiglia et al. 2004) adopted a more cautious informal
reading of such rules, namely ”If A holds, then B is caused”.

somewhat more general than the standard classical proposi-
tional language in that it is based on a multi-valued proposi-
tional signature that consists of a set of constants, along with
a functionDom assigning every constant c a nonempty finite
set Dom(c) of values. Propositional atoms in this signature
are expressions of the form c = v, where c is a constant,
while v is one of its possible values. Still, propositional for-
mulas in this language are defined as usual combinations of
atoms with the help of the ordinary classical connectives.
Moreover, Boolean constants are defined in this setting as a
special kind of constants whose domain is the set {f , t} of
truth values.

An action description in C+ is defined as a set of causal
laws. There are, however, three kinds of causal laws in C+,
and the differences between them are based, ultimately, on
a distinction between three kinds of constants, and thereby
three kinds of atoms, stipulated by the theory. First, propo-
sitional atoms are partitioned into action atoms and fluent
atoms, while the latter are further partitioned into simple and
statically determined fluents. A fluent formula is defined as
a formula such that all constants occurring in it are fluent
constants, whereas an action formula is a formula that con-
tains at least one action constant and no fluent constants.

Granted the above syntactic distinctions among proposi-
tional atoms, the following three kinds of causal laws are
defined in C+:

• Static laws are expressions of the form

caused F if G,

where F and G are fluent formulas;
• Action dynamic laws are expressions of the form

caused F if G,

where F is an action formula and G is a formula;
• Fluent dynamic laws are expressions of the form

caused F if G after H,

where F is a fluent formula that does not contain statically
determined constants, G is a fluent formula, and H is an
arbitrary formula.

Static laws are used in C+ to talk about causal dependen-
cies between fluents in the same state, while action dynamic
laws are purported to express causal dependencies between
concurrently executed actions. In accordance with their very
name, statically determined fluent constants are allowed in
the heads of static laws, but not in the heads of dynamic
laws. As we will see in what follows, the necessity of in-
troducing a separate syntactic sort of statically determined
fluents stems from a particular definition of a state of a tran-
sition system, which has been used in interpreting action de-
scriptions in C+.

The language C+ employs also a number of abbreviations
and names for special kinds of causal laws. Two such abbre-
viations play an especially important role in the descriptions
of action domains that serve to illustrate the general theory.
If c is a simple fluent constant, then

inertial c
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stands for the fluent dynamic laws
caused c = v if c = v after c = v

for all v ∈ Dom(c). These laws provide an encoding of the
inertia assumption for (simple) fluent atoms. Similarly, if c
is an action constant, the expression

exogenous c

stands for the action dynamic laws
caused c = v if c = v

for all v ∈ Dom(c). These laws make action atoms ex-
ogenous in an action domain, which exempt them, in effect,
from explanation.

Interpretations and models of action descriptions in C+
are defined indirectly by translating them into plain causal
theories. To begin with, for every natural number m, an ac-
tion description D is transformed into an atemporal causal
theory Dm as follows. First, ‘time stamps’ i: for i ∈
{0, . . . ,m} are inserted in front of every occurrence of ev-
ery atom in propositional formulas. Then each static law is
translated into the following set of causal rules, for every
i ≤ m:

i : A⇒ i : B,

where i : F is the result of inserting i: in front of every
occurrence of every atom in a formula F . Similarly, any
action dynamic law is translated into a set of causal rules of
the same form, but only for i < m.

Finally, any fluent dynamic law is translated into the fol-
lowing set of causal rules:

(i : C) ∧ (i+ 1 : A)⇒ i+ 1 : B,

for every i < m.
As a concluding step, in order to deal with the initial

states, the following causal rules are added to the resulting
causal theory:

0 : l⇒ 0 : l

for every simple fluent atom l. These rules make simple flu-
ent atoms exogenous (self-explained) in the initial state. As
a result, we obtain an ordinary causal theory, and the exact
models of this theory are considered to be the models of the
original action description in C+. Such models can be vi-
sualized as histories of length m of the source dynamic do-
main. More precisely, these are histories in which the initial
state is ‘self-explainable’, but every subsequent state is al-
ready causally explained by the preceding state and actions
taken in it.

(Giunchiglia et al. 2004) contains also a more general se-
mantic construction, according to which an action descrip-
tion D in C+ describes, in effect, a transition model (i.e., a
set of states with a set of transitions among them) in which
states are the models of the ‘smallest’ (static) causal theory
D0 (which is a theory Dm for m = 0)4, while transitions
correspond precisely to the models of the minimal dynamic
causal theory D1 (that is, a theory Dm for m = 1). It has
been shown in (Giunchiglia et al. 2004, Proposition 8) that,
for any m > 0, models of a causal theory Dm are exactly
histories (paths) of length m in this transition model.

4Note that, by the definition of the translation, D0 includes no
dynamic laws, and only ‘0-stamped’ static causal laws.

On statically determined fluents
The above construction of a canonical transition model for
an action description implicitly relied on the property (stated
as Proposition 7 in (Giunchiglia et al. 2004)) that for any
transition 〈s, e, t〉 in the above sense (that is, for any model
of D1), both s and t are states (models of D0). As has been
observed in the paper, the validity of this property depends
essentially on the fact that the heads of fluent dynamic laws
were not allowed to contain statically determined fluent con-
stants, which explained the very need for a syntactic (type)
separation between simple and statically determined fluent
constants in the framework of the general theory described
in (Giunchiglia et al. 2004).

It should be noted, however, that, taken by itself, the dis-
tinction between simple and statically determined fluents is
not as clear-cut as it may seem. Consider, for example, a
fluent predicate Safe (for a baby), discussed first in (Myers
and Smith 1988). As was observed in (Giunchiglia and Lif-
schitz 1995), there might be different kinds of safety in this
sense. An object in question may be a heavy hammer, so it
is safe for a baby only if it is far from the reach, say on a
table. This is a clear example of a statically determined flu-
ent. But the object may be a doll, in which case its safety is
clearly an ordinary, simple inertial fluent. Furthermore, we
can easily imagine an action like Isolate that wrap up a po-
tentially non-safe hammer with a material that makes it fully
safe for a baby. On an account of (Giunchiglia et al. 2004)
this would require, however, a syntactic shift for this fluent
from statically determined to simple one.

The distinction between simple and statically determined
fluents is only a very special case of a broader distinction
between inertial and non-inertial fluents. Such distinctions
between fluents play an important role in reasoning about
actions and change in AI, so they should not be obliterated,
or neglected. Still, they need not be defined as syntactic
distinctions between types of fluents. Rather, they could be
viewed as a by-product of the actual ways these fluents are
described, or defined, in (causal) rules. Thus, we can still
maintain that a particular fluent is statically determined in a
given action description if it happens to appear only in heads
of its static rules. But this characterization could change, for
example, with an addition of new dynamic rules which in-
volve this fluent in their heads. Such a ‘dynamic’ character-
ization would be unfeasible, however, in the framework of
(Giunchiglia et al. 2004) because statically determined flu-
ents play an essential role in the definition of the very notion
of a state of a transition model that determines, in turn, the
semantics of C+. Accordingly, in order to make the lan-
guage of C+ syntactically uniform, we should change also
its semantic description. This will be done in the next sec-
tion where we will describe an alternative semantics for the
dynamic causal calculus that will provide a logical represen-
tation for the action descriptions in C+.

As a final note here, we should mention that there are
also other, perhaps even more serious, problems with the
representation of statically determined fluents in C+. Thus,
many fluents of this kind are naturally defined using recur-
sive (Prolog-like) rules. It turns out, however, that such
definitions are not expressible in C+, though they are nat-
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urally expressible in an alternative action description lan-
guage, namely the language B (see (Gelfond and Lifschitz
1998)). As a matter of fact, representation of such recur-
sively determined fluents creates similar difficulties also for
the dynamic causal calculus, described in this study, since
the latter closely follows the general semantic framework of
C+5.

Dynamic Causal Calculus
In this section we are going to describe a dynamic causal
calculus that is intended to provide a direct logical reformu-
lation of the action description language C+ and its seman-
tics. As a first step, we will use a more convenient, ‘logic-
oriented’ notation, namely, we will rewrite a dynamic law
caused B if A after C as a causal rule of the form

C.A⇒B.

We will call such rules dynamic causal rules. Moreover,
extending our previous re-interpretation of atemporal causal
rules, we will assign a more ‘active’ informal reading to such
rules, namely “After C, A causes B”. By the intended in-
terpretation, a rule C.A⇒B describes a dynamic transition
from a state that satisfies proposition C to a subsequent state
in which B is caused by A.
Remark. As a matter of fact, the above dynamic causal rules
are somewhat ambiguous from a syntactic point of view. On
a more abstract level, such a rule can be viewed simply as
an instantiation of a primitive ternary propositional operator.
There are, however, at least two other, more articulated pos-
sibilities6. Thus, a dynamic causal rule C.A⇒B could be
viewed as a plain causal rule A⇒B that is conditioned by
a preceding context C. In fact, this ‘parsing’ agrees with the
informal reading of such rules, given above. Furthermore,
we will see that this understanding of dynamic causal rules
as conditional static rules provides a natural justification for
the postulates of the associated dynamic causal inference
that will be given below. Still, a different parsing possibility
consists in viewing such rules as binary causal rules, though
with complex premises consisting of pairs of propositions
(C,A). Again, we will see later that this reading can also be
given a formal support, due to a possible translation of such
rules as propositions of the form (C ◦ A) → B in arrow
logic.

As a second step in our reformulation, we will uni-
formly view both static and action dynamic laws of the form
caused B if A as plain (static) causal rules A⇒B. More-
over, in the version of the dynamic causal calculus that we
will present in this study, we will make one further step and
identify such rules with a special kind of dynamic rules of

5Recently, (Lee, Lifschitz, and Yang 2013) have suggested a
generalization of the language C+, called a language BC, that in-
corporates expressive capabilities of the language B. Instead of a
causal interpretation, however, the authors have provided only for-
mal translations of this language directly into the framework of
logic programming.

6Compare with a similar compositional analysis of general and
relevant conditionals, discussed in (Beall et al. 2012).

the form t.A⇒B, where t is the truth constant. In other
words, we will adopt the following definition:

A⇒B ≡df t.A⇒B.

According to this definition, static causal rules are pre-
cisely rules that are valid after any legitimate transition. The
consequences and variations created by this identification
will be discussed below.

The above reduction of static causal rules to a special kind
of dynamic rules makes the dynamic causal rules the only
kind of rules of the dynamic calculus. In accordance with
this, a dynamic causal theory will be defined below simply
as a set of dynamic causal rules.

Now we are going to provide a direct description of the
nonmonotonic semantics of dynamic causal theories. The
guiding principle behind this nonmonotonic semantics will
be a thorough enforcement of the principle of universal cau-
sation, according to which every state of a dynamic model
should be explained (i.e., caused) by a preceding state and
the causal rules of the domain.

Given a dynamic causal theory ∆ and worlds α, β, we
will denote by ∆(α.β) the set

{C | A.B⇒C ∈ ∆ for some A ∈ α,B ∈ β.}

For any given state β, the set ∆(α.β) is precisely the set
of propositions in β that are caused due to a transition from
α.
Definition 2.(i) A pair (α, β) of worlds will be called an

exact transition with respect to a dynamic causal theory
∆ if β is the unique model of ∆(α.β), that is

β = Th(∆(α.β)).

(ii) An exact transition model of a dynamic causal theory ∆
is a set of worlds I such that, for any β ∈ I there is α ∈ I
such that (α, β) is a an exact transition wrt ∆.
An exact transition is a transition between two states in

which the resulting state is fully explained (caused), given
the preceding state and the causal laws of the domain. It
is important to note that if (α, β) is an exact transition,
then the output world β is always closed with respect to the
static causal rules (for our definition of the latter), namely
if A⇒B (that is, t.A⇒B) belongs to ∆ and A ∈ β, then
B ∈ β. Note now that any world of an exact transition
model is also an output of some exact transition. Accord-
ingly, we immediately obtain the following
Lemma 1. Any world of an exact transition model of a dy-
namic causal theory ∆ is closed with respect to the static
causal rules of ∆.

It can be easily verified that the union of two exact transi-
tion models is also an exact transition model. Consequently,
if a dynamic causal theory has at least one exact transition
model, it has a unique maximal such model. We will call
the latter the canonical exact transition model of a dynamic
causal theory.

In the next section we are going to compare the above
dynamic causal calculus with the theory presented in
(Giunchiglia et al. 2004).
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Comparisons with C+

In accordance with the reformulation procedure sketched in
the preceding section, any action description in the action
description language C+ can be immediately transformed
into a dynamic causal theory in our sense. Despite the ob-
vious similarities, however, this reformulation reveals also
some basic differences between the two formalisms. To
begin with, the language of the above dynamic causal cal-
culus is thoroughly uniform in that it does not presuppose
any a priori, syntactic distinctions between its propositional
atoms, and it employs only a single form of causal rules,
instead of three kinds of causal laws used in C+. On the
other hand, the above notion of an exact transition model is
somewhat different, and apparently more restricted, than the
corresponding notion of a model for C+. In what follows we
will discuss these differences in more details.

Fluents versus Actions

Many action theories in AI, as well as some general dy-
namic formalisms, maintain rigid semantic and syntactic
distinctions between fluent propositions that describe partic-
ular states or situations and actions that describe transitions
between states. Thus, the situation calculus (Reiter 2001)
treats actions essentially as modifiers, or functions on situ-
ations. Similarly, Propositional Dynamic Logic (see (Harel,
Kozen, and Tiuryn 2000)) interprets actions as binary rela-
tions on states.

However, in contrast to the above formalisms, it can be
immediately observed that there are no inherent syntactic
differences between fluent and action atoms in C+; both
kinds are translated as (temporally indexed) propositional
atoms in the underlying causal calculus. Of course, there
are still important differences between these two kinds of
propositions: (simple) fluents are governed by the inertia
principle, while action atoms are normally treated in C+ as
exogenous (see above). However, these distinctions are se-
mantical, and they can be secured by incorporating causal
rules that characterize, respectively, inertia and exogeneity
for these atoms directly into the corresponding action de-
scriptions. Once we add such rules to the action descrip-
tions, there is no need to maintain a syntactic distinction
between fluents and actions in C+, and there is no need to
maintain a separate category of action dynamic laws in ad-
dition to static laws.

Remark. The treatment of actions in C+ makes the latter
much similar to temporal formalisms for analyzing gen-
eral computation processes, such as Linear Temporal Logic
(LTL). In the latter, computational processes are represented
as plain temporal sequences of states (which are character-
ized by fluent propositions), and they do not use explicit
action descriptions. Still, actions are usually encoded in
these formalisms by using associated ‘action fluents’ that
appropriately constrain such temporal sequences (see, e.g.,
(Calvanese, De Giacomo, and Vardi 2002; De Giacomo and
Vardi 2013)).

State Constraints and the Principle of Universal
Causation
An exact transition model of a dynamic causal theory was
defined above as a set of states in which every state is caused
as a result of some exact transition. As a result, any state of
such a model will be closed with respect to the static laws on
our reformulation of the latter. Moreover, it can be verified
that any such state will be a state in the sense of (Giunchiglia
et al. 2004). Consequently, we will obtain that any exact
model in our sense will correspond to a model (transition
system) in the sense of (Giunchiglia et al. 2004):

Theorem 2. If ∆ is an action description in C+ and ∆C its
corresponding dynamic causal theory, then any exact tran-
sition model of ∆C is a transition model of ∆.

Still, our semantics for dynamic causal theories is more
restrictive, since it requires that any state of the model, in-
cluding the initial state, should be an output of some transi-
tion, whereas (Giunchiglia et al. 2004) adopted more relaxed
requirements on initial states. As we have seen earlier, the
construction of a causal theory for a given action descrip-
tion in C+ necessarily involves an addition of causal rules
that make simple fluents exogenous (self-explainable) in the
initial state. As a result, the framework (Giunchiglia et al.
2004) exempts to some extent initial states from the need of
explanation, though it still requires that such states should be
closed with respect to the static laws (which are completely
separated from dynamic ones) and, moreover, that any stat-
ically determined fluent literal that holds in an initial state
should still be explained (caused) by the static laws.
Remark. As a matter of fact, our definition of an exact tran-
sition almost coincides with the corresponding definition of
a causally explained transition, given in (Giunchiglia and
Lifschitz 1998) for a more restricted action description lan-
guage C, a predecessor of C+7. In fact, the only difference
between the two definitions is that (Giunchiglia and Lifs-
chitz 1998) required further that both the initial and result-
ing states of such a transition should be closed with respect
to the static causal laws. On our construction, this additional
requirement is accounted for, respectively, as a by-product
of our definition of static causal rules on the one hand (for
the resulting states), and an exact transition model on the
other hand (for the initial states).

In order to make a proper assessment of the above discrep-
ancy, we should distinguish two aspects of the difference,
conceptual and practical one. On the conceptual side, we
believe that an ultimate reason for imposing even the above
minimal restrictions on initial states in C+ stems from a
broader requirement that such states should be somehow ac-
cessible in accordance with the laws of the domain. In other
words, any state of a dynamic system should be consistently
viewed as a result of some legitimate transition (including
possible ‘loops’ in this state). Speaking more generally, we
contend that static laws and constraints should be viewed as
constraints that are effective after every legitimate transition,
and vice versa, any constraint that happens to hold after any

7I am grateful to Vladimir Lifschitz for pointing this out (per-
sonal correspondence).
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possible transition should be considered as a static law of the
domain.

The suggested semantics of exact transition models al-
lows us to treat static causal rules as a special case of gen-
eral dynamic causal rules. In addition, it allows us to re-
move the syntactic distinction between simple and statically
determined fluents. Furthermore, the principle of universal
causation, used as a conceptual basis of this semantics, im-
plies also some important consequences concerning general
principles of reasoning in dynamic domains.

Generally speaking, the principle of universal causa-
tion provides logical foundations for abductive reasoning,
namely for backward reasoning from effects to their causes
(see (Bochman 2007)). This kind of reasoning constitutes
an essential part of our commonsense reasoning, especially
in reasoning about actions and change, and it occupies also
an important part of reasoning in current action theories in
AI. For example, the well-known regression method ((Re-
iter 2001)) can be viewed as a systematic implementation of
abductive reasoning in the situation calculus.

Due to its causal foundations, abductive inference is also
an essential, though implicit, part of the representation
framework of C+; this is because every state of a transition
model for an action description, except the initial one, is ex-
plained as an output of some causal transition. The associ-
ated abductive explanation may sanction, in particular, some
further static constraints for such states, constraints that arise
as a by-product of the fact that the state in question is a re-
sult of a particular action with some further effects. By the
same token, however, the initial states in C+ are exempted
from the abductive explanation of this kind, which, at least
in some regular domains, may lead to a loss of important
information about these states.

Persistent Action Domains
In case we don’t accept the above understanding of static
laws, we should maintain two separate kinds of state con-
straints, dynamic and purely static ones, as is actually done
in (Giunchiglia et al. 2004)), as well as in many other ac-
tion formalisms. This separation would allow us to include
a broader class of transition models as admissible models
for action descriptions, namely models that involve (initial)
states that need not be a result of some transition, though
they still satisfy the static laws of the domain. Moreover, we
can easily construct some artificial, though logically consis-
tent, action domains for which such a distinction would be
necessary, namely action domains in which there are distin-
guished initial states that lack some property that holds for
any state that results from a transition. Still, to find ‘real-
life’ examples of such domains is really difficult (beyond
the famous ‘Big Bang’ exception in Physics). This naturally
brings us to the practical side of the difference between the
two formalisms, namely to the question whether, and if so,
how much we miss in restricting the semantics of action de-
scriptions to exact transition models in our sense.

It turns out that for a fairly broad class of action descrip-
tions in the language C+ (including all the examples given in
(Giunchiglia et al. 2004)), we can guarantee in advance that
any transition model of C+ that satisfies a given action de-

scription can be extended to an exact transition model in our
sense. For such action descriptions, our dynamic causal cal-
culus provides the same answers to the queries as the origi-
nal theory of (Giunchiglia et al. 2004)). In what follows, we
will illustrate this correspondence for a broad class of what
we will call persistent action domains.

Informally speaking, a persistent action domain is a dy-
namic domain that does not involve involuntary, ‘natural’
actions that lead to unavoidable, necessary changes of some
state. For such action domains, any legitimate state either re-
mains persistent in the absence of any further actions upon it
(alias after an action Wait), or else it can be forced to persist
by using suitable (voluntary) actions.

Formally, by a persistent action domain we will mean any
action description D in the language C+ such that for any
state s of D (that is, for any model of D0), there is a consis-
tent transition (i.e., a model of D1) from s to s.

It turns out to be surprisingly difficult to express the above
semantic property of transition models in terms of some syn-
tactic restrictions on action descriptions in C+. Still, it is
easy to verify the validity of this persistence property for
many descriptions used in action theories. Thus, in the cen-
tral Monkey and Bananas example from (Giunchiglia et al.
2004) every simple fluent is inertial, so any state of the tran-
sition model can be shown to persist in the absence of ac-
tions. On the other hand, for the case of non-inertial fluents
that tend to change by themselves, the corresponding action
descriptions usually contain actions that make them persist.
Thus, the pendulum domain from (Giunchiglia et al. 2004)
involves an action Hold that keeps the position of the pen-
dulum (which tends to sway otherwise).

Now, in persistent action domains, any state of a transi-
tion model can be consistently viewed as a result of some
transition, which immediately leads to the following

Theorem 3. If ∆ is a persistent action description in C+
and ∆C its corresponding dynamic causal theory, then the
canonical transition model of ∆ coincides with the exact
transition model of ∆C .

As a matter of fact, the above correspondence between
C+ and the dynamic causal calculus can be extended, though
in a somewhat weaker form, even beyond persistent action
domains. To this end, we should note that practically all
queries that are usually formulated in action formalisms are
‘future-oriented’, namely they ask whether there is a path in
a transition model from a given initial state that satisfies cer-
tain further requirements (such as whether it ends in a target
goal state). Now, in many cases we can extend the source ac-
tion description in C+ with some auxiliary actions that will
allow us again to reconstruct any given initial state as an out-
put of some exact transition (though in the extended action
description). Moreover, this can be done without changing
the future of the original states of the transition model, but
only by augmenting their ‘past’. As an immediate conse-
quence, we will obtain that, for such action domains, the dy-
namic causal calculus will provide the same answer to such
queries as the original action descriptions in C+.
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Causal Inference
The framework described in the preceding section is a typi-
cal example of a nonmonotonic formalism; conclusions that
can be obtained on the basis of the exact transition semantics
can change non-monotonically if we add some further facts
or causal rules to the original dynamic causal theory. Still,
as with other formalisms for nonmonotonic reasoning (see
(Bochman 2011)), the causal rules of the dynamic causal
calculus presuppose a certain underlying logic that agrees
with the above nonmonotonic semantics. Such a logic will
provide us with a formal description of the associated dy-
namic causal inference.

Causal Inference Relations
The original causal calculus of (McCain and Turner 1997)
has been defined only semantically, but (Bochman 2004) has
described a logical formalism of causal inference relations,
which has been shown to provide a complete formalization
of a logical (monotonic) reasoning in causal theories. From
a logical point of view, causal inference relations were de-
fined as sets of causal rules that were required to satisfy al-
most all the usual postulates of classical inference, except
Reflexivity A⇒A. The latter feature has turned out to be
essential for an adequate representation of causal reasoning.

Definition 3. A causal inference relation is a relation⇒ on
the set of propositions satisfying the following conditions:

(Strengthening) If A � B and B⇒C, then A⇒C;
(Weakening) If A⇒B and B � C, then A⇒C;
(And) If A⇒B and A⇒C, then A⇒B ∧ C;
(Or) If A⇒C and B⇒C, then A ∨B⇒C;
(Cut) If A⇒B and A ∧B⇒C, then A⇒C;
(Truth) t⇒ t;
(Falsity) f⇒ f .

The rule Or permits reasoning by cases; this feature can
be seen as one of the main advantages of causal reasoning as
compared with, say, default logic. It indicates that the causal
logic is an objective (extensional) logical system, a system
of reasoning about the world. In this respect, it is similar
to classical logic, and distinct from modal (intensional) for-
malisms that deal primarily with beliefs and knowledge.

Yet another important feature of causal inference stems
from the validity of the following rule:

(Coherence) If A⇒¬A, then A⇒ f .

The above rule says that if a proposition causes propo-
sitions that are incompatible with it, then it is causally in-
consistent. This feature indicates, in effect, that the above
notion of causal inference is atemporal. For example, the
rule p ∧ q⇒¬q cannot be understood as saying that p and
q jointly cause ¬q (afterwards) in a temporal sense; instead,
by Coherence it implies p ∧ q⇒ f , which means, in effect,
that p ∧ q cannot hold. Just as in classical logic, however, a
representation of temporal domains in this formalism can be
obtained by adding explicit temporal arguments to proposi-
tions; this is what has been actually done in the action de-
scription framework of (Giunchiglia et al. 2004).

A possible worlds semantics
A semantic interpretation of causal inference relations can
be given in terms of ordinary possible worlds (or Kripke)
models (W,R, V ), where W is a set of possible worlds, R a
binary accessibility relation on W , and V a function assign-
ing each world a propositional interpretation. Intuitively,
Rαβ means that α is an initial state, and β a possible output
state of a causal process. A Kripke model is quasi-reflexive
if it satisfies the condition that if Rαβ, then Rαα.
Definition 4. A rule A⇒B is valid in a Kripke model
(W,R, V ) if, for any worlds α, β such that Rαβ, if A holds
in α, then B holds in β.

By a set of causal rules determined by a Kripke model we
will mean the set of rules that is valid in it. It can be verified
that such a set satisfies all the postulates of causal inference.
Moreover, as for other modal formalisms, a suitable con-
struction of a canonical semantics allows us to obtain the
corresponding completeness result:
Proposition 4. A set of causal rules forms a causal infer-
ence relation if and only if it is determined by some quasi-
reflexive Kripke model.

As a by-product, the above semantics immediately sanc-
tions a simple modal representation of causal rules. Namely,
let � be the usual modal operator definable in a possible
worlds model: �A holds in α iff A holds in all β such
that Rαβ. Then the validity of A⇒B in a possible worlds
model is equivalent to validity of the formula A → �B.
Consequently, causal rules are representable by modal for-
mulas of the latter form. As a matter of fact, this modal
representation has actually been used in many approaches to
formalizing causation in action theories (see, e.g., (Geffner
1990; Turner 1999; Giordano, Martelli, and Schwind 2000;
Zhang and Foo 2001)).

The nonmonotonic semantics of causal inference
Causal inference relations are just a special kind of causal
theories, so they also possess a nonmonotonic semantics.
Moreover, due to the logical properties of causal inference,
the description of this nonmonotonic semantics can be sim-
plified as follows.

To begin with, we extend causal rules to rules having ar-
bitrary sets of propositions as premises: given a causal in-
ference relation ⇒ and an arbitrary set u of propositions,
u⇒A will be taken to hold if, for some finite a ⊆ u,∧
a⇒A belongs to ⇒. C(u) will denote the set of propo-

sitions caused by u, that is C(u) = {A | u⇒A}. Then a
world α is an exact world of a causal inference relation if
and only if

α = C(α).

Given an arbitrary causal theory ∆, we will denote by
⇒∆ the least causal inference relation that includes ∆. It
has been shown in (Bochman 2003) that ∆ has the same
nonmonotonic semantics as⇒∆, which means that the rules
of causal inference are adequate for causal reasoning with
respect to the nonmonotonic semantics of causal theories.
Moreover, it has been shown that causal inference rela-
tions constitute in this respect a maximal such logic (see
(Bochman 2004) for details).
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Dynamic Causal Inference
By a dynamic causal inference relation we will mean a set
of dynamic causal rules of the form A.B⇒C that satisfies
the conditions described below.

The first group of postulates states that a set of dynamic
causal rules with a fixed first premise (D) should satisfy the
postulates of an ‘ordinary’ causal inference:

(Strengthening) If A � B and D.B⇒C, then D.A⇒C;
(Weakening) If D.A⇒B and B � C, then D.A⇒C;
(And) If D.A⇒B and D.A⇒C, then D.A⇒B ∧ C;
(Or) If D.A⇒C and D.B⇒C, then D.A ∨B⇒C;
(Cut) If D.A⇒B and D.A ∧B⇒C, then D.A⇒C;
(Truth) t.t⇒ t;
(Falsity) t.f⇒ f .

In view of the above postulates, dynamic causal rules
C.A⇒B can be seen as ordinary, binary causal rules
A⇒B that are conditioned by the preceding context C.

The next two postulates describe the logical properties of
this preceding context in dynamic causal rules:

(Left-Str) If A � B and B.D⇒C, then A.D⇒C;
(Left-Or) If A.D⇒C and B.D⇒C, then A∨B.D⇒C.

The combined effect of the above pair of postulates is that
the associated semantic interpretation of dynamic causal in-
ference (described in the next section) will be again a kind of
a possible world semantics, in which both the two premises
and conclusion of a dynamic causal rule are evaluated with
respect to worlds (complete states).

Finally, the last postulate is a formal expression of the
requirement that any state that can be an input of some tran-
sition, is also an output state of at least one transition:
(Transition) If t.A⇒ f , then A.t⇒ f .

Recall that we have decided to identify static causal laws
A⇒B with dynamic causal laws of the form t.A⇒B.
Then the above postulate can be rewritten as
(Transition1) If A⇒ f , then A.t⇒ f .

On this reformulation, the above postulate stipulates, in
effect, that any input state of a consistent transition should
be (statically) causally consistent. Combined with the other
postulates, this will immediately imply that both the input
and output state of a transition should be closed with respect
to the valid static laws.

In the next section we will describe a possible-worlds se-
mantics for the above logical formalism of dynamic infer-
ence.

A possible worlds semantics
A possible worlds semantics of dynamic causal relations can
be obtained by generalizing an accessibility relation on pos-
sible worlds to ternary relations.

A causal possible world model of dynamic causal infer-
ence is a triple (W,R, V ), where W is a set of possible
worlds, R a ternary accessibility relation on W , and V a
function assigning each world a propositional interpretation.

The accessibility relation will be required to satisfy the fol-
lowing two conditions:

(Quasi-reflexivity) If Rαβγ, then Rαββ.
(Transition) If Rαββ, then Rδαα, for some δ ∈W .

Definition 5. A ruleA.B⇒C is valid in a model (W,R, V )
if, for any worlds α, β, γ such that Rαβγ, if A holds in α
and B holds in β, then C holds in γ.

Given the above definition of validity, it is easy to verify
the following
Lemma 5. The set of dynamic causal rules valid in a causal
possible world model forms a dynamic causal inference re-
lation.

Moreover, using a suitable construction of a canonical se-
mantics for a dynamic causal inference relation, the follow-
ing completeness result can be established:
Theorem 6. A set of dynamic causal rules forms a dynamic
causal inference relation if and only if it is determined by a
causal possible world model.

Proof. (A sketch) Due to the connection between dynamic
causal rules and the original, atemporal causal rules, the
proof is a relatively straightforward generalization of the
corresponding completeness proof for causal inference re-
lations, given in (Bochman 2004, Theorem 7.4). More pre-
cisely, given a dynamic causal relation⇒, we can construct
the corresponding canonical model (W,Rc) by taking W to
be the set of all maximal consistent sets of propositions, and
defining Rc as follows8:

Rcαβγ ≡ C(α.β) ⊆ β ∩ γ.

Notice that this definition directly implies quasi-
reflexivity of Rc. Moreover, the use of the Transition postu-
late allows us to prove the transition property of Rc. Finally,
it can be shown that A.B⇒C holds for the source dynamic
causal relation if and only if it is valid in (W,Rc).

Remark. One of the interesting consequences of the above
semantic characterization of dynamic causal inference is
that, similarly to a straightforward modal translation of ordi-
nary causal rules as formulas of the formA→ �B, dynamic
causal rules can be represented as formulas of arrow logic
(see, e.g., (Venema 1997)). As a matter of fact, one of the
principal motivations behind arrow logic has also consisted
in providing an abstract description of dynamic (transition)
models (cf. (van Benthem 1994)). Moreover, semantic in-
terpretation of arrow logic is also based on a possible world
semantics with a ternary accessibility relation, and it can be
easily verified that, by the above semantic description, a dy-
namic causal rule A.B⇒C turns out to be equivalent to a
formula

A ◦B → C

of arrow logic, where ◦ is a binary ‘arrow conjunction’ op-
erator having the following semantic interpretation: A ◦ B
holds in a world α if and only if there are worlds β, γ such
that Rβγα, A holds in β and B holds in γ.

8See the next section for a definition of C(α.β).
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Correspondences

Recall that a dynamic causal theory is an arbitrary set of dy-
namic causal rules. For any dynamic causal theory ∆ there
exists a least dynamic causal inference relation that includes
∆. We will denote it by⇒∆. Clearly, ⇒∆ is the set of all
dynamic causal rules that can be derived from ∆ using the
postulates of dynamic causal inference.

As before, we will extend the notation of dynamic causal
rules to sets of propositional formulas in premises: for sets
u, v of propositional formulas, u.v⇒Awill be taken to hold
if
∧
a.
∧
b⇒A, for some finite a ⊆ u, b ⊆ v. In addition,

C(u.v) will denote the set of propositions {A | u.v⇒A}.
Due to the logical properties of a dynamic causal infer-

ence relation, the definition of an exact transition can now
be simplified, namely a pair of worlds (α, β) will be an ex-
act transition with respect to a dynamic causal inference re-
lation if and only if

β = C(α.β).

Then the following key result of this study shows, in ef-
fect, that the logic of causal dynamic inference is adequate
for reasoning with respect to the exact semantics of dynamic
causal theories, since it preserves the latter.

Theorem 7. The exact transition models of a dynamic
causal theory ∆ coincide with the exact transition models
of⇒∆.

Proof sketch. It can be shown that if C∆ is the provability
operator of⇒∆, then, for any worlds α, β, if C∆(α.β) is a
consistent set, then it coincides with Th(∆(α.β)). Conse-
quently, α = C∆(α.β) iff α = Th(∆(α.β)), and therefore
exact transitions of ∆ will coincide with exact transitions of
⇒∆. Hence the result.

Moreover, it can be shown that the logic of causal dy-
namic inference constitutes a maximal logic that is adequate
for reasoning with exact causal models.

Definition 6. Two dynamic causal theories ∆ and Γ are
strongly equivalent if, for any set Φ of causal rules, ∆ ∪ Φ
has the same exact transition models as Γ ∪ Φ.

Strongly equivalent theories are ‘equivalent forever’, that
is, they are interchangeable in any larger causal theory with-
out changing the nonmonotonic semantics. Consequently,
strong equivalence can be seen as an equivalence with re-
spect to the background monotonic logic of causal theories.
And the next result shows that this logic is precisely the logic
of dynamic causal inference.

Theorem 8. Dynamic causal theories ∆ and Γ are strongly
equivalent if and only if⇒∆ =⇒Γ.

The above result states that dynamic causal theories are
strongly equivalent if and only if each of them can be ob-
tained from the other using the postulates of dynamic causal
inference.

Summary and Perspectives
The primary objective of this study consisted in showing that
causal reasoning in dynamic action domains can be given a
direct and concise logical representation. Moreover, being
combined with the wealth of representation capabilities of
such a reasoning, demonstrated in (Giunchiglia et al. 2004),
the results of this study strongly indicate that a theory of dy-
namic causal inference can be viewed as a self-subsistent
logical theory that provides an adequate and comprehen-
sive representation framework for reasoning in dynamic do-
mains. The study creates also obvious incentives for broader
questions about the role and scope of causation in common-
sense reasoning, as well as in knowledge representation in
AI.

Causation has always been one of the most discussed con-
cepts in the philosophy of science. It is intimately related to
practically all notions that are essential both for a common-
sense and scientific view of the world, such as laws, coun-
terfactuals, explanation and abduction. On the other hand,
causation and related notions have shown to be extremely
elusive and problematic concepts. Efforts of many philoso-
phers and logicians in the past have been focused on a for-
mal, logical explication of these notions, but the task has
turned out to be surprisingly difficult. Furthermore, start-
ing with David Hume, an influential line of philosophical
thought has argued, in effect, that causation should be ex-
pelled from the language of Science and Logic.

In recent years, however, we witness a revival of interest
in the concept of causation, accompanied with new, more
practical, insights about its role in our reasoning. Most
prominent in this respect is Pearl’s theory of causal reason-
ing (Pearl 2000) and its applications in statistics, economics,
cognitive and social sciences.

An important alternative source of the new understanding
of causation and its role in our reasoning comes from Ar-
tificial Intelligence, especially from theories of action and
change. In these theories causation is a working concept al-
lowing us to single out intended models of commonsense
action descriptions. They make especially vivid the fact
that causal reasoning, that is, asking why and seeking ex-
planations, is germane to our reasoning about the world.
However, these theories have also made evident that, though
causal reasoning includes an important logical part, it is not
reducible to a plain logical derivation in some ingenious
causal logic. Instead, causal reasoning should be viewed
as an important case of general nonmonotonic (assumption-
based) reasoning. Accordingly, the tools and formalisms of
nonmonotonic reasoning should hopefully provide us with
a more adequate understanding of the concept of causation
itself.
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