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Abstract

Ordinal conditional functions (OCFs) provide a semantic do-
main for qualitative conditionals of the form “if A, then (nor-
mally) B” by ordering worlds according to their degree of
surprise. Transferring the idea of maximum entropy to a
more qualitative domain, c-representations of a knowledge
base R consisting of a set of conditionals have been defined
as OCFs satisfying in particular the property of conditional
indifference. While c-representations for R can be specified
as the solutions of a constraint satisfaction problem CR(R),
it has been an open problem whether there may be different
minimal c-representations induced by minimal solutions of
CR(R). Another open question has been whether particu-
lar inequations in CR(R) may be sharpened by transforming
them into equations without loosing any minimal solutions,
taking different notions of minimality into account. In this
paper, we answer both questions and discuss further aspects
of OCF minimality.

1 Introduction
Probably the most often used form of knowledge represen-
tation is some kind of if-then rules. In this paper, we con-
sider knowledge bases R consisting of a set of qualitative
conditionals that represent if-then rules allowing for excep-
tions, like birds (normally) fly or computer scientists (nor-
mally) like their job, formally denoted by (fly |bird) and
(like job|computer scientist). Since such conditionals al-
low for exceptions, they require a powerful semantic do-
main. Ordinal conditional functions (OCFs) (Spohn 1988)
order worlds according to their degree of implausibility (or
surprise, respectively) and provide such a domain.

Different approaches have been proposed for determin-
ing ranking functions for a knowledge base R, see e.g.
(Goldszmidt, Morris, and Pearl 1993; Goldszmidt and Pearl
1996), (Goldszmidt, Morris, and Pearl 1993), (Weydert
1998), (Kern-Isberner 2001). In this paper we focus on c-
representations (Kern-Isberner 2001; 2002) that are an ex-
tension of system Z (Goldszmidt, Morris, and Pearl 1993).
C-representations for R can be obtained from the solu-
tions of a constraint satisfaction problem CR(R) that can
be solved by constraint logic programming (Beierle, Kern-
Isberner, and Södler 2013; 2012). We investigate several dif-
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ferent notions of minimality, and show that there may be dif-
ferent non-equivalent c-representations induced by minimal
solutions of CR(R). Another open question we answer con-
cerns the computation of minimal solutions when employing
a seemingly obvious optimization by using a constraint sat-
isfaction problem that is more restrictive than CR(R), but
that can be solved much more efficiently.

In Sec. 2, we briefly recall the background of conditional
logic, OCFs, and c-representations. In Sec. 3, various no-
tions of minimality are presented and illustrated. In Sec. 4,
syntactic characteristics of a knowledge base are elaborated
allowing for non-equivalent c-representations even in the
case of ind-minimality, and Sec. 5 shows that an intuitive
sharpening of CR(R) may loose minimal solutions and may
even classify non-minimal solutions as minimal ones. In
Sec. 6 we conclude and point our further work.

2 Background
Conditional Logic and OCFs Let L be a propositional
language over a finite set Σ of atoms a, b, c, . . .. The for-
mulas of L will be denoted by uppercase Roman letters
A,B,C, . . .. For conciseness of notation, we will omit the
logical and-connective, writing AB instead of A ∧ B, and
overlining formulas will indicate negation, i.e.Ameans ¬A.
Let Ω denote the set of possible worlds over L; Ω will be
taken simply as the set of all propositional interpretations
over L and can be identified with the set of all complete
conjunctions over Σ. For ω ∈ Ω, ω |= A means that the
propositional formula A ∈ L holds in the possible world ω.

By introducing a new binary operator |, we obtain the set
(L | L) = {(B|A) | A,B ∈ L} of conditionals over L.
(B|A) formalizes “if A then (normally) B” and establishes
a plausible, probable, possible etc connection between the
antecedent A and the consequence B. Here, conditionals
are supposed not to be nested, that is, antecedent and con-
sequent of a conditional will be propositional formulas. A
conditional (B|A) is an object of a three-valued nature, par-
titioning the set of worlds Ω in three parts: those worlds sat-
isfying AB, thus verifying the conditional, those worlds sat-
isfyingAB, thus falsifying the conditional, and those worlds
not fulfilling the premise A and so which the conditional
may not be applied to at all. This allows us to associate to
(B|A) a generalized indicator function χ(B|A) going back
to (DeFinetti 1974) (where u stands for unknown or indeter-
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minate):

χ(B|A)(ω) =


1 if ω |= AB
0 if ω |= AB
u if ω |= A

(1)

To give appropriate semantics to conditionals, they are
usually considered within richer structures such as epis-
temic states. Besides certain (logical) knowledge, epistemic
states also allow the representation of preferences, beliefs,
assumptions of an intelligent agent. Basically, an epistemic
state allows one to compare formulas or worlds with respect
to plausibility, possibility, necessity, probability, etc.

Well-known ordinal approaches to represent epistemic
states are Spohn’s ordinal conditional functions, OCFs,
(also called ranking functions) (Spohn 1988), and possibility
distributions (Benferhat, Dubois, and Prade 1992), assign-
ing degrees of plausibility, or of possibility, respectively, to
formulas and possible worlds. In these frameworks, a condi-
tional (B|A) is valid (or accepted), if its confirmation, AB,
is more plausible, possible, etc. than its refutation, AB; a
suitable degree of acceptance is calculated from the degrees
associated with AB and AB.

In this paper, we consider Spohn’s OCFs (Spohn 1988).
An OCF is a function κ : Ω → N expressing degrees of
plausibility of propositional formulas where a higher degree
denotes “less plausible” or “more surprising”. At least one
world must be regarded as being normal; therefore, κ(ω) =
0 for at least one ω ∈ Ω. For expressing certain knowledge,
the codomain of κ can be extended to N ∪ {∞}. Each such
ranking function can be taken as the representation of a full
epistemic state of an agent. Each such κ uniquely extends to
a function (also denoted by κ) mapping sentences and rules
to N ∪ {∞} and being defined by

κ(A) =

{
min{κ(ω) | ω |= A} if A is satisfiable
∞ otherwise

(2)
for sentences A ∈ L and by

κ((B|A)) =

{
κ(AB)− κ(A) if κ(A) 6=∞
∞ otherwise

(3)

for conditionals (B|A) ∈ (L | L). Note that κ((B|A)) >
0 since any ω satisfying AB also satisfies A and therefore
κ(AB) > κ(A). The belief of an agent being in epistemic
state κ with respect to a default rule (B|A) is determined by
the satisfaction relation |=O given by:

κ |=O (B|A) iff κ(AB) < κ(AB) (4)
Thus, (B|A) is believed in κ iff the rank of AB (verify-
ing the conditional) is strictly smaller than the rank of AB
(falsifying the conditional). We say that κ accepts the con-
ditional (B|A) iff κ |=O (B|A). Furthermore, κ accepts a
knowledge baseR iff it accepts every Ri ∈ R; if there is no
such κ, thenR is inconsistent. For the rest of this paper, we
assume thatR is consistent.

C-Representations Different ways of determining a rank-
ing function for a knowledge base R are given by system Z
(Goldszmidt, Morris, and Pearl 1993; Goldszmidt and Pearl

1996) or its more sophisticated extension system Z∗ (Gold-
szmidt, Morris, and Pearl 1993), see also (Bourne and Par-
sons 1999); for an approach using rational world rankings
see (Weydert 1998). For quantitative knowledge bases of the
form Rx = {(B1|A1)[x1], . . . , (Bn|An)[xn]} with prob-
ability values xi and with models being probability distri-
butions P satisfying a probabilistic conditional (Bi|Ai)[xi]
iff P (Bi|Ai) = xi, a unique model can be chosen by
employing the principle of maximum entropy (Paris 1994;
Paris and Vencovska 1997; Kern-Isberner 1998); the maxi-
mum entropy model is a best model in the sense that it is the
most unbiased one among all models satisfyingRx.

Using the maximum entropy idea, in (Kern-Isberner
2002) a generalization of system Z∗ is suggested. Based
on an algebraic treatment of conditionals, the notion of
conditional indifference of κ with respect to R is de-
fined and the following criterion for conditional indiffer-
ence is given: An OCF κ is indifferent with respect to
R = {(B1|A1), . . . , (Bn|An)} iff κ(Ai) < ∞ for all
i ∈ {1, . . . , n} and there are rational numbers κ0, κ+i , κ

−
i ∈

Q, 1 6 i 6 n, such that for all ω ∈ Ω,

κ(ω) = κ0 +
∑

16i6n
ω|=AiBi

κ+i +
∑

16i6n

ω|=AiBi

κ−i . (5)

When starting with an epistemic state of complete ignorance
(i.e., each world ω has rank 0), for each rule (Bi|Ai) the
values κ+i , κ

−
i determine how the rank of each satisfying

world and of each falsifying world, respectively, should be
changed, taking (1) into account:
• If the world ω verifies the conditional (Bi|Ai), – i.e.,
ω |= AiBi –, then κ+i is used in the summation to obtain
the value κ(ω).

• Likewise, if ω falsifies the conditional (Bi|Ai), – i.e.,
ω |= AiBi –, then κ−i is used in the summation instead.

• If the conditional (Bi|Ai) is not applicable in ω, – i.e.,
ω |= Ai –, then this conditional does not influence the
value κ(ω).

κ0 is a normalization constant ensuring that there is a small-
est world rank 0. Employing the postulate that the ranks of
a satisfying world should not be changed and requiring that
changing the rank of a falsifying world may not result in an
increase of the world’s plausibility leads to the concept of a
c-representation.

Definition 1 (c-representation (Kern-Isberner 2002))
Any ranking function κ satisfying the conditional indiffer-
ence condition (5) and κ+i = 0, κ−i > 0 and

κ(AiBi) < κ(AiBi) (6)
for i = 1, . . . , n is called a (special) c-representation ofR.

Note that for i ∈ {1, . . . , n}, condition (6) expresses that
κ accepts the conditional Ri = (Bi|Ai) ∈ R (cf. the def-
inition of the satisfaction relation in (4)) and that this also
implies κ(Ai) < ∞. Furthermore, κ0 = 0 holds in Def. 1
sinceR is assumed to be consistent.

Thus, finding a c-representation for R amounts to choos-
ing appropriate values κ−1 , . . . , κ−n . In (Beierle, Kern-
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ω κ1(ω) κ2(ω) κ3(ω)

fba 0 0 0
fba 1 1 1
fba 0 0 0
fba 0 0 0

ω κ1(ω) κ2(ω) κ3(ω)

fba 1 1 2
fba 1 2 1
f ba 0 0 0
f ba 0 0 0

Figure 1: Different ranking function κi accepting the rule
setRbirds given in Example 1

Isberner, and Södler 2013) this situation is formulated
as a constraint satisfaction problem CR(R) whose solu-
tions are vectors of the form (κ−1 , . . . , κ

−
n ) determining c-

representations of R. The formulation of CR(R) requires
that the κ−i are natural numbers (and not just rational num-
bers) and that min(∅) =∞.

Definition 2 [CR(R) (Beierle, Kern-Isberner, and
Södler 2013)] Let R = {(B1|A1), . . . , (Bn|An)}. The
constraint satisfaction problem for c-representations of
R, denoted by CR(R), is given by the conjunction of the
constraints, for all i ∈ {1, . . . , n}:

κ−i > 0 (7)

κ−i > min
ω|=AiBi

∑
j 6=i

ω|=AjBj

κ−j − min
ω|=AiBi

∑
j 6=i

ω|=AjBj

κ−j (8)

A solution of CR(R) is an n-tuple (κ−1 , . . . , κ
−
n ) of natu-

ral numbers, and with SolCR(R) we denote the set of all
solutions of CR(R).

Proposition 1 (Beierle, Kern-Isberner, and Södler
2013) For R = {(B1|A1), . . . , (Bn|An)} let #»κ =
(κ−1 , . . . , κ

−
n ) ∈ SolCR(R). Then the function κ defined by

κ(ω) =
∑

16i6n

ω|=AiBi

κ−i (9)

and denoted by κ #»κ , is an OCF that acceptsR.

Given a knowledge base R = {R1, . . . , Rn} of condi-
tionals, a ranking function κ accepting every Ri represents
an epistemic state of an agent acceptingR. Every OCF κ ac-
ceptingR inductively completes the knowledge given byR,
and for any consistent R there may be many different such
κ, each representing a complete set of beliefs with respect to
every possible formula A and every conditional (B|A).

Example 1 LetRbirds = {R1, R2, R3} be given by:

R1 : (f |b) birds fly
R2 : (a|b) birds are animals
R3 : (a|fb) flying birds are animals

In Figure 1, three different OCFs κ1, κ2, κ3 accepting
Rbirds are given. Thus, for any i ∈ {1, 2, 3} and j ∈
{1, 2, 3} it holds that κi |=O Rj . In order to illustrate the
evaluation of beliefs, consider the conditional (a|bf) (“Are
non-flying birds animals?”) that is not contained in R. For
κ3, we get κ3(abf) = 2 and κ3(abf) = 1 and therefore
κ3 /|=O (a|bf) so that the conditional (a|bf) is not accepted

by κ3. On the other hand, for κ2 we get κ2(abf) = 1 and
κ2(abf) = 2 and therefore κ2 |=O (a|bf).

The full beliefs about non-flying birds being animals or
not, represented by the conditionals (a|bf) and (a|bf), are
given by the following table:

κ1 /|=O (a|bf) κ2 |=O (a|bf) κ3 /|=O (a|bf)
κ1 /|=O (a|bf) κ2 /|=O (a|bf) κ3 |=O (a|bf)

An agent being in epistemic state κ2 believes that non-flying
birds are animals and does not believe that non-flying birds
are not animals. An agent being in epistemic state κ3 does
not believe that non-flying birds are animals and believes
that non-flying birds are not animals. An agent being in
epistemic state κ1 is completely indifferent with respect to
non-flying birds being animals or not, since she considers a
world where non-flying birds are animals as equally plausi-
ble (or equally surprising) as a world where non-flying birds
are not animals.

The computation of OCFs being c-representations by
solving the constraint satisfaction problem CR(R) is illus-
trated in the following example.

Example 2 Let Rbirds = {R1, R2, R3} be as in Exam-
ple 1. From (8) we get

κ−1 > 0, κ−2 > 0−min{κ−1 , κ
−
3 }, κ−3 > 0− κ−2

and since κ−i > 0 according to (7), the two vectors

sol1 = (κ−1 , κ
−
2 , κ

−
3 ) = (1, 0, 1)

sol2 = (κ−1 , κ
−
2 , κ

−
3 ) = (1, 1, 0)

are two different solutions of CR(Rbirds). The OCF κsol1
(resp. κsol2 ) induced by sol1 (resp. sol2) according to (9) is
κ1 (resp. κ2) as given in Example 1.

3 Notions of Minimality
Example 1 illustrates that there are different ways of com-
pleting the knowledge given by a conditional knowledge
base R. While in principle, one is interested in character-
izing and determining the full set of accepting OCFs, it is a
crucial question whether some κ is to be preferred to some
other κ′, and whether among the preferred ones there is a
unique “best” κ. Among all OCFs accepting R, usually a
less specific OCF – i.e., regarding worlds as plausible as
possible while taking R into account – is preferred over a
more specific one. Thus, one is typically interested in min-
imal solutions. In (Goldszmidt and Pearl 1996), an OCF κ
accepting R is said to be minimal iff for every other κ′ ac-
ceptingR there exists a world ω ∈ Ω with κ(ω) < κ′(ω). In
(Bourne 1999; Bourne and Parsons 1999), minimality is de-
fined with respect to vectors inducing ranking functions, and
an algorithm for finding a minimal solution is given; there
may be more than one minimal solutions, but the algorithm
fails to find more than one minimal one.

Since in this paper, our focus is on c-representations,
and since for any R, the OCFs being c-representations and
accepting R are induced by the solutions of CR(R), we
will consider different orderings on SolCR(R), leading to
three different minimality notions. A complete ordering on
SolCR(R) is obtained by using the sum of the κ−i , i.e.,
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(κ−1 , . . . , κ
−
n ) 4+ (κ′

−
1 , . . . , κ

′−
n ) (10)

iff
∑

16i6n

κ−i 6
∑

16i6n

κ′
−
i .

A vector #»κ ∈ SolCR(R) is sum-minimal iff #»κ 4+
#»κ ′ for

all #»κ ′ ∈ SolCR(R).
The component-wise ordering 4cw is defined by

(κ−1 , . . . , κ
−
n ) 4cw (κ′

−
1 , . . . , κ

′−
n ) (11)

iff κ−i 6 κ′
−
i for all i ∈ {1, . . . , n}.

Since 4cw is reflexive, transitive, and antisymmetric, it
yields a partial order 4cw on SolCR(R). A vector #»κ is
cw-minimal iff there is no vector #»κ ′ ∈ SolCR(R) such that
#»κ ′ 4cw

#»κ and #»κ 64cw
#»κ ′.

Still another alternative is to compare the full OCFs κ #»κ

induced by #»κ = (κ−1 , . . . , κ
−
n ) according to (9), yielding the

partial ordering 4O on SolCR(R) defined by:

(κ−1 , . . . , κ
−
n ) 4O (κ′

−
1 , . . . , κ

′−
n ) (12)

iff κ #»κ (ω) 6 κ #»κ ′(ω) for all ω ∈ Ω.

The relation 4O is reflexive and transitive; however, since
different vectors may induce the same OCF, it is not an-
tisymmetric. Thus, 4O defines a partial preorder on
SolCR(R). A vector #»κ is minimal with respect to the
induced OCF (or just ind-minimal) iff there is no vector
#»κ ′ ∈ SolCR(R) such that #»κ ′ 4O

#»κ and #»κ 64O
#»κ ′.

Two ind-minimal solution vectors #»κ , #»κ ′ are equivalent iff
κ #»κ = κ #»κ ′ . For instance, the two solution vectors sol1
and sol2 in Example 2 are both sum-minimal and also cw-
minimal, but only sol1 is ind-minimal.

4 Non-Equivalent Ind-Minimal Solutions
In (Beierle, Kern-Isberner, and Södler 2013; 2012) a soft-
ware implementation GenOCF of a solver for CR(R) using
constraint logic programming is presented. For each of the
three orderings 4+, 4cw , and 4O , a corresponding mode of
GenOCF computes all minimal solutions of CR(R). There
are many examples demonstrating that two sum-minimal so-
lutions of CR(R) may induce different OCFs; the same
holds also for two different cw-minimal solutions (cf. Ex-
ample 2). On the other hand, in none of the examples of
knowledge bases R evaluated in (Beierle, Kern-Isberner,
and Södler 2013; 2012), multiple ind-minimal solutions gen-
erating different OCFs were found, and so far, it has been un-
clear whether this is a general property of c-representations
and thus of the corresponding constraint satisfaction prob-
lem CR(R). In the following, we investigate and elaborate
syntactic characteristics ofR and show that for various syn-
tactic variations, different ind-minimal solutions exist that
lead to different induced OCFs.

Transitive Connections We call a conditional (C|A)
transitive connection of (C|B) and (B|A). The following
example provides a knowledge base containing a transitive
connection.
Example 3 The following table presents the situation of a
knowledge base R = {R1, R2, R3, R4} with a transitive

connection. Verifying and falsifying worlds are indicated by
v and f , respectively. CR(R) contains the constraints

κ−1 > 0− 0, κ−2 > 0− κ−4 ,
κ−3 > 0−min{κ−2 + κ−4 , κ

−
1 }, κ−4 > 0− κ−2

and there are two ind-minimal solution vectors sol1 and
sol2; both induce the same OCF, i.e., κsol1 = κsol2 .

ω
R1:

(b|a)
R2:
(c|b)

R3:
(c|a)

R4:
(b|c) κsol1(ω) κsol2(ω)

abc v v v − 0 0
abc v f f f 1 1
abc f − v − 1 1
abc f − f v 1 1
abc − v − − 0 0
abc − f − f 1 1
abc − − − − 0 0
abc − − − v 0 0

sol1 1 1 0 0
sol2 1 0 0 1

Thus, in Example 3, we have two different ind-minimal
solutions sol1, sol2 ∈ SolCR(R). Since they both induce
the same OCF, we have sol1 4O sol2 and sol2 4O sol1.

Replacing (b|c) in Example 3 by (b|a c) changes the sit-
uation: sol1 is still a solution, but it is now the unique ind-
minimal solution. However, when replacing (b|c) by (b|a),
another new situation arises.

Example 4 Replacing (b|c) by (b|a) in Example 3 yields

ω
R1:

(b|a)
R2:
(c|b)

R3:
(c|a)

R4:
(b|a)

κsol1(ω) κsol2(ω)

abc v v v − 0 0
abc v f f − 1 1
abc f − v − 1 1
abc f − f − 1 2
abc − v − f 1 1
abc − f − f 2 1
abc − − − v 0 0
abc − − − v 0 0

sol1 1 1 0 1
sol2 1 0 1 1

where CR(R) now contains the constraints:

κ−1 > 0− 0, κ−2 > 0−min{κ−3 , κ
−
4 },

κ−3 > 0−min{κ−1 , κ
−
2 }, κ−4 > 0− 0.

Note that in Example 4, we have again two ind-minimal
solutions sol1, sol2 ∈ SolCR(R), but this time κsol1 6=
κsol2 , and neither sol1 4O sol2 nor sol2 4O sol1 holds.
Thus, transitive connections in a knowledge base may lead
to non-equivalent ind-minimal solutions.

Other Situations with Multiple Ind-Minimal Solutions
We call two conditionals of the form (B|A) and (B|A) an-
tecedent complementary. Also if a knowledge base contains
antecedent complementary conditionals, there may be non-
equivalent ind-minimal solutions.
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Example 5 Antecedent complementary conditionals:

ω
R1:

(b|a)
R2:

(b|a)
R3:

(a|c)
R4:
(b|c) κsol1(ω) κsol2(ω)

abc v − v − 0 0
abc v − − v 0 0
abc f − v − 1 1
abc f − − f 1 2
abc − v f − 1 1
abc − v − v 0 0
abc − f f − 2 1
abc − f − f 1 1

sol1 1 1 1 0
sol2 1 0 1 1

Here, CR(R) contains the constraints:

κ−1 > 0− 0, κ−2 > 0−min{κ−3 , κ
−
4 },

κ−3 > 0− 0, κ−4 > 0−min{κ−1 , κ
−
2 }.

Thus, as in Example 4, also in Example 5 there are two ind-
minimal solutions sol1, sol2 with κsol1 6= κsol2 .

Based on the findings presented above regarding the ex-
istence of multiple ind-minimal ranking functions, we also
investigated subconditionals and perpendicular conditionals
(Kern-Isberner 2001). Both for knowledge bases contain-
ing subconditionals and for knowledge bases containing per-
pendicular conditionals we were able to construct exam-
ples with different ind-minimal OCFs. However, in these
cases the knowledge bases exhibiting this behaviour were
slightly more complex, having either more conditionals or
using more propositional variables; it is still an open ques-
tion whether this is a general property, or whether also cor-
responding examples with just four conditionals over only
three propositional variables exist. We are grateful to an
anonymous reviewer for referring to the nested crossing ex-
ample in (Weydert 2003, p. 296); in our framework of em-
ploying c-representations, also this example yields two dif-
ferent ind-minimal solutions.

5 Sharpening Inequations to Equations
The constraints in CR(R) given by (8) ensure that each con-
ditional (Bi|Ai) ∈ R is accepted. Since all κ−i are assumed
to be natural numbers, we can replace the strict inequation
(8) by

κ−i > 1 + min
ω|=AiBi

∑
j 6=i

ω|=AjBj

κ−j − min
ω|=AiBi

∑
j 6=i

ω|=AjBj

κ−j (13)

without changing the set of solutions SolCR(R). As one is
interested in minimal solutions and thus in minimizing the
values of all κ−i , one could be tempted to replace the non-
strict inequality in (13) by an equality as in:

κ−i = 1 + min
ω|=AiBi

∑
j 6=i

ω|=AjBj

κ−j − min
ω|=AiBi

∑
j 6=i

ω|=AjBj

κ−j (14)

However, as pointed out in (Beierle, Kern-Isberner, and
Södler 2012), using just (14) instead of (8), one might loose
a solution in the case where the right hand side of the in-

equation (8) is negative since then (14) might require that
κ−i is negative, which is inconsistent with (7). If the right
hand side of (8) is negative, κ−i > 0 due to (7) already en-
sures that (8) holds, so in that case no additional requirement
on κ−i is needed. Thus, (14) should be used only if the right
hand side of (8) is not negative, i.e. if

1 + min
ω|=AiBi

∑
j 6=i

ω|=AjBj

κ−j > min
ω|=AiBi

∑
j 6=i

ω|=AjBj

κ−j (15)

holds (Beierle, Kern-Isberner, and Södler 2012). Putting
these constraints together yields

κ−i = 1 + min
ω|=AiBi

∑
j 6=i

ω|=AjBj

κ−j (16)

−min{1 + min
ω|=AiBi

∑
j 6=i

ω|=AjBj

κ−j , min
ω|=AiBi

∑
j 6=i

ω|=AjBj

κ−j }

Definition 3 (CRE(R)) CRE (R) is the constraint sys-
tem obtained from CR(R) by replacing (8) by (16).

Note that just as required, (16) reduces to κ−i = 0 if
(15) does not hold. As an optimization of CR(R), in
(Beierle, Kern-Isberner, and Södler 2012) is suggested to
use CRE (R) instead of CR(R). Note that this transforms
a strictly-greater-than relationship into an equation; thus it
should be clearly distinguished from the modelling of a con-
straint x > y by x > y + 1 which might be done by the
underlying constraint solver. For all knowledge bases in-
vestigated previously and for different notions of minimal-
ity, this sharpening of CR(R) to CRE (R) did not loose
any minimal solution; on the other hand, the runtime needed
for solving CRE (R) is significantly smaller (Beierle, Kern-
Isberner, and Södler 2012).

However, in the following, we will show that there are
knowledge bases where using CRE (R) instead of CR(R)
does loose minimal solutions, and that this is the case for
any of the three notions of minimality considered above.

Example 6 (CR(R)) The following table presents the sit-
uation of a knowledge baseR = {R1, R2, R3, R4} in a rep-
resentation as used above.

ω
R1:

(b|a)
R2:

(b|a)
R3:

(a|c)
R4:
(c|b) κsol1(ω) κsol2(ω)

abc v − v − 0 0
abc v − − − 0 0
abc f − v v 1 1
abc f − − f 2 3
abc − v f − 1 1
abc − v − − 0 0
abc − f f v 2 1
abc − f − f 2 2

sol1 1 1 1 1
sol2 1 0 1 2

There are two solutions sol1 and sol2 of CR(R); note that
both solutions are sum-minimal, cw-minimal, and also ind-
minimal.
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We will now investigate CR(R) forR from Example 6.

Example 7 (CRE(R)) In Example 6, CR(R) contains
the following inequations:

κ−1 > 0− 0

κ−2 > 0−min{κ−3 , κ
−
4 }

κ−3 > 0− 0

κ−4 > min{κ−1 , κ
−
2 + κ−3 } −min{κ−1 , κ

−
2 }

Instead of these four inequations, CRE (R) contains the fol-
lowing four equations:

κ−1 = 1 + 0− 0 = 1

κ−2 = 1 + 0−min{min{κ−3 , κ
−
4 }, 1 + 0}

κ−3 = 1 + 0− 0 = 1

κ−4 = 1 + min{κ−1 , κ
−
2 + κ−3 }

−min{min{κ−1 , κ
−
2 }, 1 + min{κ−1 , κ

−
2 + κ−3 }}

Solving CRE (R) reveals that the solution sol2 =
(1, 0, 1, 2) of CR(R) is also a solution of CRE (R). How-
ever, the other solution sol1 = (1, 1, 1, 1) of CR(R) is not a
solution of CRE (R) since the second equation of CRE (R)
given above does not hold.

Thus, we have shown that in general, when using
CRE (R) instead of CR(R), one might loose minimal solu-
tions, and this observation holds for any of the three notions
of minimality considered above. Replacing R3 and R4 in
Example 6 by (a|bc) and (c|b) yields R′ where we even get
an incorrect answer since the unique ind-minimal solution
of CR(R′) is not among the solutions of CRE (R′).

6 Conclusion and Further Work
Ordinal conditional functions are a powerful means for rep-
resenting the semantics of qualitative conditional knowledge
bases. In this paper, we focused on c-representations and,
using various notions of minimality, studied questions re-
garding the existence of non-equivalent minimal solutions
and regarding the computation of c-representations by solv-
ing a constraint satisfaction problem.

While preferring smaller ranking functions over larger
ones seems reasonable in many cases, it is still an open prob-
lem how to determine in which cases a minimal solution is
also considered to be a best solution. For instance, taking
into account the suggested interpretation of the birds’ world
in Example 1, the epistemic state κ2 might be preferred to
κ1 (although κ1 is the unique minimal model) since only in
κ2 an agent believes that birds are still animals even if they
can not fly. Of course, this background knowledge is not
present in the simple knowledge base Rbirds , and there are
other interpretations of a, b, f where κ1 might be preferred
to κ2. Further research is needed how to specify such kind
of background knowledge and how to take it into account
for specifying and finding minimal and best solutions.
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