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Abstract
Positioning characters in virtual environments currently
requires manual work and human intervention to com-
plete. Many applications focus primarily on producing
nonverbal behaviors and interacting one-on-one with
humans. The problem is that most applications, espe-
cially games, are very interactive experiences. They in-
troduce a human factor where a character (the human)
may choose not to follow a predefined script, yet an au-
thor needs to be able to accommodate the unexpected
movements when blocking their AI characters.

Here, we look to our prior work on positioning char-
acters in these types of virtual environments to cre-
ate an AI Director to pre-block a play-script. In ad-
dition, we incorporate a force-directed graph compo-
nent to assist with positioning the AI characters when
there is a human-controlled character involved. Force-
directed graphs have been shown to position objects
aesthetically for large and complex graphs. We rely
upon this feature to assist with adjusting pre-defined
play-script blocking to include the human-controlled
character, making the human appear to be moving cor-
rectly even when they are not. Finally, we evaluate this
approach based on occlusion and clustering analysis to
show its effectiveness in balancing a production and in-
corporating a human-controlled character.

Introduction
There is a need for greater automation of character posi-
tioning within virtual environments, especially around vi-
sualizations of play-scripts. Current state of the art tech-
niques for pre-blocking plays and virtual scenes primarily
centers on hand-mapping and hard-coding. This becomes
an issue when trying to arrange a mixture of human- and
agent-controlled characters on a stage. Humans do not al-
ways follow predictable patterns, and virtual characters must
be able to react appropriately (spatially) within the environ-
ment. However, the AI character authors want to ensure their
characters adapt to the human(s) in their environment. They
want it to look like the human is doing the right thing, and
be sure to make the human feel included in the scene.

A good example of this can be seen in theater produc-
tions. In real life, actors arrange themselves on the stage ac-
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Figure 1: Virtual Characters Enacting a Scene

cording to both the basic rules of theatre, as well as with
respect to the positioning of the other actors on-stage. Hu-
mans participating in this blocking exercise may not always
hit their mark, may move when they are not supposed to, or
may not even move at all when they should. By hard-coding
the AI characters’ movements in the play, the play may re-
sult in unrealistic positioning of the characters, occlusion of
characters, or excessive clustering of characters. Similarly,
in games, there is a desire to adjust the positions of agent-
controlled characters based on where the human-controlled
character is, in order to provide better visibility (or less vis-
ibility) of those characters.

In our prior work, we incorporated the use of natural
language processing (Talbot and Youngblood 2012) and a
rules engine (Talbot and Youngblood 2013d) with a play-
script to provide an automated method for pre-blocking
a scene for a virtual environment. We showed that these
methods have been able to reproduce a famous produc-
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tion of Hamlet directed by Sir Gielgud in 1964 (Colleran
et al. 1964) with 89% accuracy for positioning on-stage
through an entire scene. While working to improve upon
this method, we incorporated force-directed graphs (Talbot
and Youngblood 2013c; 2013a) to balance the characters.
Force-directed graphs provide a way to position nodes in a
2D drawing evenly and balanced. They can also be drawn
while locking down the position of some of the nodes. The
use of force-directed graph drawing enables the ability to
adjust characters onstage based on a human-controlled char-
acter’s actions, regardless whether they are correct, on-time,
or not. We provided algorithms and initial analysis of their
use with character positioning in our prior work (Talbot and
Youngblood 2013c; 2013a).

In this paper, we utilize the techniques from our prior
works, which incorporate the use of a standard play-script,
natural language processing, a rules engine, and force-
directed graphs, to provide an automated way of blocking
an entire scene which includes a human-controlled charac-
ter. We analyze the production of a scene from Hamlet based
on the occlusion of characters and the clustering of charac-
ters on the stage. We also review the effects of one charac-
ter being human-controlled and following the play-script (or
not) with differing accuracy.

Background
When reviewing prior work, the focus has not been on the
placement of characters on a stage or virtual environment.
Researchers focus on the conversational and nonverbal do-
mains, such as Thespian (Si et al. 2010), Virtual Storyteller
(Theune, Faas, and Heylen 2003), and Stability and Support
Operations (SASO) (Kenny et al. 2007). However, these do
not emphasize the spatial aspects of the interactions between
multiple characters, but center on the emotional or one-on-
one interactions of characters with humans.

Spatial reasoning within verbal instructions have been
the focus for robotics. For instance, Langley, Schermerhorn,
and Scheutz provide an approach to human-robot interac-
tion which allows for communicating complex tasks which
can be translated into procedures for the robot (Trivedi et
al. 2011). Matuszek and Herbst take natural language and
robotic perceptions and translate it into a robot control lan-
guage for following route directions (Matuszek et al. 2012).
Dzifcak, Scheutz, and Baral also utilize natural language
to determine actions and goals for the robot (Dzifcak et al.
2009). All of these incorporate explicitly telling a robot what
to do or where to go.

Although Brooks’s work attempted to train a robot to be
an actor by utilizing verbal directions (Brooks 2006), we
want to be less explicit when providing directions to our
characters. David Lu and Bill Smart’s work with robots in
theater focused on pre-recording real actors’ movements and
replicating them on robots to perform specific scenarios (Lu
and Smart 2011). The focus with Lu and Smart’s work is on
believability; however, their work is based more on a mocap-
like style of replaying actions done by a human and does not
address our concerns with dynamically positioning multiple
characters without pre-recording.

In our previous work, we focused on what had been ex-
plicitly written as an annotation (in natural language) in
a play-script. We showed that combining play-scripts, nat-
ural language, and a rules engine can correctly position
characters about 89% of the time (Talbot and Youngblood
2013d) with respect to a well-known production of Hamlet
(Colleran et al. 1964).

In addition, work done by groups around personal space
and conversational space are key in appropriately applying
spatial logic. For instance, Jan describes five different forces
that affect when/why a person may shift position when in a
group of people, such as someone being too close to them
to feel comfortable. Additional research shows that people
prefer to be across from one another than next to each other
in most situations, but there is importance to the surrounding
area for determining the distance that is comfortable (Som-
mer 1962). Also, friendship and attraction can affect the
spatial distances between people by decreasing, while neg-
ative attitudes may not have much affect on the spatial dis-
tances (Sundstrom and Altman 1976). According to studies
reviewed by Sundstrom, comfortable face-to-face distance
for speaking while sitting is approximately 5 feet and com-
fortable face-to-face conversation standing is approximately
3 feet (Sundstrom and Altman 1976).

We utilized this information in our prior work (Talbot and
Youngblood 2013d) when we defined some basic rules for
positioning characters onstage. Movements identified by our
natural language processor were fed into our rules engine to
adjust the motion based on these rules:

r1: Characters should face the audience as much as possi-
ble, and avoid turning their back to the audience

r2: Characters should face the person speaking

r3: Characters with higher importance or larger roles
should be placed slightly closer to the audience rela-
tive to lesser role characters

r4: Characters should try to stay closer to center line as
much as possible to improve visibility for the maxi-
mum portion of the audience

r5: Characters should avoid unnatural movements by ad-
hering to basic frame coherence rules, such as not hav-
ing their gaze or orientation jump from left to right im-
mediately

r6: Characters should maintain appropriate personal space
based on inter-character relationships within the play

r7: Characters should be next to an item they wish to pick
up (Talbot and Youngblood 2013d)

However, this positioning was done with computer-
controlled characters only. We did not introduce the variable
of the human-controlled character.

When including the effects of a human-controlled char-
acter, we have to adjust our rules in a more real-time man-
ner. For instance, the human may forget to move when they
are supposed to, move at the wrong time, or even miss their
mark. We need to ensure that all the characters onstage
are appropriately positioned, even with an incorrect human
movement (or lack thereof).
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(a) Force-Directed Layout
of Three Characters

(b) Force-Directed Layout
of Nine Characters

Figure 2: Character Positioning Using Forces
Red=Human; Green=AI Character; Black=Target; Blue=Center Point

(Talbot and Youngblood 2013a)

Related Work
To spatially arrange characters, we look towards force-
directed graphs which utilize repellent and attractive forces
between connected nodes in a graph. These graphs utilize
the information contained within the structure of the graph
for the placement of the nodes. The goals of force-directed
graphs are to be aesthetically pleasing, meaning that all edge
lengths should be the same length, and it should maximize
symmetry over the entire graph layout.

Looking at some of the different implementations of
force-directed graphs out there, we must start with Tutte’s al-
gorithm from 1963 which was one of the first force-directed
graph drawing methods (Tutte 1963). In his algorithm, he
guarantees a crossings-free drawing and that all faces of
the drawing are convex for a 3-connected planar graph. The
forces in this model are proportional to the distance between
vertices, with no repulsive forces, and places each free ver-
tex at the barycenter of its neighbors. This is useful in our
work since we are concerned with obstructing the audience’s
view of all the characters onstage. However, there are some
results of this algorithm that produce a graph with infinite
area (Kobourov 2012), or would not place our characters
within our stage’s confines. Also ensuring 3-connectedness
and a convex drawing may be challenging in a dynamic en-
vironment with a human-controlled character.

Next, Fruchterman and Reingold’s algorithm from 1991
introduces an equalization of vertex distributions. It calcu-
lates the forces between adjacent vertices as well as between
all pairs of vertices, plus introduces the concept of tempera-
ture to reduce the amount of movement of vertices as the lay-
out improves. This algorithm was targeted for small graphs,
such as those with 40 or fewer vertices. Its cooling of move-
ment via temperature is a specialized use of simulated an-
nealing, which helps to limit oscillations of the layout. How-
ever the forces are based on the size of the grid that is to
be drawn on, and therefore tries to maximize the real estate

used. (Fruchterman, Edward, and Reingold 1991)
Force-directed graphs have been used for many differ-

ent purposes, such as social networks, such as Bannister
et al’s work. Their work attempts to centralize vertices that
are more theoretically central in the graph (Bannister et al.
2012). This is interesting because of its close relationship to
our work—visualizing relationships between nodes.

With our previous work ((Talbot and Youngblood
2013a)), we analyzed the use of these types of graph struc-
tures in positioning characters at a specific point in time
based on the relationships at that moment. This work showed
that we were able to use these force-directed graphs to ap-
propriately position the characters on the stage, meeting our
six criteria for success: even vertex distribution, small num-
ber of vertices, fixed vertices, oscillation-free arrangements,
centering and encircling of groups, and varying attracting
and repellent forces. In this paper, we expand upon that work
to validate the use of force-directed graphs across an entire
scene, as well as to incorporate the impacts of a human-
controlled character that may not follow the script.

Approach
To incorporate the force-directed graphs into our current ar-
chitecture, we allow our natural language processing module
and rules engine module to determine an initial target for a
character’s position onstage. We then feed this information,
along with all other onstage character positions, targets, and
relationships into a force-directed graph. Each character is
provided a link to their intended target (the position pro-
vided by the natural language processing and rules engine),
a link to all other characters onstage, a link to the audience,
and a link to a central point for the onstage characters. Each
of these linkages have different strengths of attraction and
repellant forces, dependent upon the type of relationship be-
tween the entities.
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As any character moves (including the human-controlled
character), each of the forces are re-evaluated to determine
the need to adjust a character’s position. The rules around
facing direction are re-applied once the movements are com-
pleted since the force-directed graph approach does not han-
dle facing directions.

Graph Structure
In composing the force-directed graphs, we should define
how each aspect of the character positioning relates to the
graph structure. First, we have the characters themselves
which will be represented as a node within the graph. These
will each have a position attribute that corresponds to their
position on the stage. Next, we have the targets or marks
on the stage that the characters are supposed to hit based
on the play-script. These could be a particular object on the
stage, a relative location to the audience or another charac-
ter, etc. These targets are represented by a node in the graph,
and also have a position attribute associated with them. Ob-
viously, we will also have a node for the human-controlled
character. This character / node will not be adjustable by the
AI Director, but is key in guiding the positioning of the other
characters onstage.

The other nodes in the graph are a little more complex
in nature. The audience nodes are created for each char-
acter that is onstage. This node will maintain the same x-
coordinate as its corresponding character, and will help to
pull the character towards the front of the stage. There is
also a node to represent the center of all characters onstage,
residing in the center of all the characters. The center node
will only be part of the graph if there are two or more char-
acters onstage, and will assist with forming a semi-circular
arrangement of the characters facing the audience (in con-
junction with its own audience node).

Edges of the graph will connect all of these nodes in
different ways, each with different attractive and repellent
forces based on the relationship represented. First, the obvi-
ous, is the character-to-character edge. This edge will rep-
resent an attractive and repellent force to help the charac-
ters maintain a reasonable conversational distance from each
other. If two characters enter onstage at the same time, their
attractive forces on this edge will be stronger to help enforce
the characters’ relationship spatially.

Edges from each of the characters to the human-
controlled character will also be created to help pull the
scripted AI characters towards the human, thereby creat-
ing an inclusive arrangement for the human. Every character
will have an edge to their personal audience node which will
pull them towards the front half of the stage. In addition,
each character (including the human-controlled character)
will have an edge connected to the center point. These edges
will force characters into a semi-circle instead of a circle
due to the additional edge for the center point to the center
point’s audience node.

Finally, each character will have an edge to their target
or mark on the stage. This connection will help to ensure
characters remain close to their intended / scripted position
in order to maintain the integrity of the play-script. It will

also lose attraction force strength over time, just as charac-
ters lose the need to remain on a specific mark over time.

Details on the quantification of the different forces can be
seen in (Talbot and Youngblood 2013a). Also, some visual
samples of these types of graphs can be seen in Figure 2.

Application of Graph Structure
The algorithms described in our previous paper (Talbot and
Youngblood 2013c; 2013a) are then utilized to determine
better target position(s) for the onstage characters. These al-
gorithms include a force-directed graph drawing algorithm
based on Fruchterman and Reingold’s algorithm from 1991
which calculates an equalization of forces within the graph,
and introduces a time cooling to minimize oscillations of
the layouts (Fruchterman, Edward, and Reingold 1991). Ad-
justments were made to remove the feature that tries to
maximize the real estate used for drawing the graph. Ad-
ditional algorithms were defined to handle when characters
are added to a scene, when a character moves to a new posi-
tion, when the human-controlled character moves, and when
a character leaves the scene (Talbot and Youngblood 2013c).

Also in our prior work (Talbot and Youngblood 2013a),
we showed that this structuring of the force-directed graphs
with respect to character positioning provided the key re-
quirements for positioning the characters: even node distri-
bution, ability to maintain fixed nodes, oscillation-free ar-
rangements, changes of relationships over time, centering
and encircling of groups, and varying attractive and repel-
lent forces based on relationships of the objects.

As each character moves, we utilize their scripted position
and target / mark as input to each of the characters’ node po-
sitions within the force-directed graph. We then run the mod-
ified Fruchterman and Reingold algorithm to determine the
adjusted movement for each character, and move the char-
acters into position. This process is repeated for each set of
movements fed through the natural language processor and
rules engine via the play-script.

Experimentation
To evaluate the effectiveness of the force-directed graphs for
positioning characters, we take two approaches:

1. Direct comparison with the 1964 Hamlet production

2. Incorporation of a human-controlled character

The first comparison involves comparing the positioning of
characters (all assumed to be AI characters) using our force-
directed graphs with our baseline positioning of characters
from the same Hamlet scene in the Broadway production by
Sir Gielgud in 1964. These are compared for the criteria of
occlusion and clustering of characters. This provides a base-
line for comparison for the next experiments which highlight
the visual balance that audiences appreciate in imagery.

To further our baseline, we also incorporate one of the
characters from the scene as a human-controlled charac-
ter and vary their accuracy in following the play-script as
written. This provides us with a secondary comparison to
evaluate the effectiveness of including the human-controlled
character with our force-directed graph approach versus
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count∑
i=0

count∑
j:i+1

char[i].maxX − char[j].minX

stageLength

{
> 0; char[i].maxX − char[j].minX

≤ 0; 0
(1)

the hard-coded play-script approach that is most commonly
used today.

Next, we incorporate a human-controlled character and
vary their desire to follow the play-script through different
runs. We then compare these runs with the same criteria of
occlusion and clustering. The intent is that a similarity in the
amount of occlusion and clustering should be maintained,
regardless of the human-controlled character’s movements.
This will show that we are able to adjust our positioning to
include a human-controlled character, yet still maintain the
integrity of the play-script as much as possible.

The human character’s movements are simulated by al-
lowing them to move at the right times, but not to the right
locations. This is based on how accurately we allow the hu-
man to follow the play-script. The more accurate the human
is, the more likely they’ll follow the play-script perfectly.
However, when they choose not to follow the play-script, we
choose a random location for the human to move to during
that moment, which does not coincide with the play-script.

Evaluation Criteria
To evaluate our methods, we have chosen to utilize two crite-
ria: occlusion and clustering. With occlusion, we are looking
to avoid the overlap of characters onstage from an audience’s
perspective. We do not wish to obscure the audience’s view
of the scene by misplacing a character onstage and block
another character. To calculate this, we will assume an or-
thographic projection for the audience’s view of the char-
acters onstage, due to the small variance in viewing angle
in a typical theatre. This allows us to use the character’s
x-position onstage with a buffer to indicate their coverage
area for occluding another character. Any overlap distance
for each character will be summed up and compared to the
length of the stage (or potential occlusion area). This can
be seen in Equation 1, where we sum the overlaps of each
character and divide by the length of the stage.

The second criteria, clustering, is used to ensure we aren’t
clumping everyone too close together, leaving a large por-
tion of the stage unused. To calculate this, we will simply
take the range in both the x and y dimension on the stage
to determine the percentage of the stage being utilized in
both width and depth. This can be seen in Equations 2 and
3, where we take the min and max values of both x and y
across all characters and divide by the length of the stage in
that dimension.

Max∀i(char[i].x)−Min∀i(char[i].x)

stageLengthX
(2)

Max∀i(char[i].y)−Min∀i(char[i].y)

stageLengthY
(3)

We will look to minimize the occlusion equation and max-
imize the two clustering equations to determine quality of
the spatial positioning.

Evaluation
To evaluate our approach, we ran numerous experiments as
described above. We started with a baseline reading which
utilized the hand-mapped blocking from the 1964 Hamlet
production on Broadway. As can be seen in Table 1, we have
some minor occlusions of the characters on the stage with
that production, at over three percent. There is also a fair
amount of clustering in both dimensions of the stage as well
( 20% along the length of the stage and 15% along the depth
of the stage).
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0 Baseline All AI 3.6% 19.5% 14.6%
1 Baseline Human 90% 3.6% 19.1% 15.4%
2 Baseline Human 50% 2.9% 20% 14.7%
3 Baseline Human 10% 4.4% 30.9% 28.7%
4 Forces All AI 2.4% 16.8% 14.6%
5 Forces Human 90% 2.4% 16.8% 14.6%
6 Forces Human 50% 1.6% 20.4% 13.8%
7 Forces Human 10% 2.4% 20.8% 14%

Table 1: Experiment Results of Occlusion and Clustering
Averaged Over Entire Scene

When we take a look at our method of controlling all the
characters to follow a play-script, we see that we are able
to reduce the frequency of characters being occluded on the
stage. We still have the clustering of the characters, and they
now occupy less space than we saw with the baseline mea-
surements.

Considering the scene we utilized has at most 3 charac-
ters onstage at any time, we expect to see normal cluster-
ing at approximately 28% if we utilized only conversational
space for positioning the characters side-by-side. The Ham-
let production from 1964 produces slightly tighter clustering
due to the nature of the scene (characters are focused on the
grave). As we introduce the human-controlled character, we
see less clustering, which reveals that the human-controlled
character is not being included in the AI characters’ posi-
tioning. However, when we look at the force-directed graph
approach, the characters are able to cluster better and in-
clude the human-controlled character, which is revealed by
the smaller clustering numbers.

We also see that having all the characters behaving cor-
rectly provides very similar clustering results to when we
have an errant human-controlled character when we utilize
the force-directed graphs. However, with the hard-coded AI
character blocking, we see a jump in the amount of clus-
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tering of the characters. This shows that the force-directed
graphs not only help to include the human, but is also able
to maintain the integrity of the script.

Conclusion
In this paper, we have shown how applying force-directed
graphs can help with positioning characters within a scene
when a human-controlled character is involved. We are able
to avoid occlusion of characters and incorporate an errant
human-controlled character into our play-script defined po-
sitioning scheme. The human-controlled character is more
tightly integrated with the AI characters onstage, despite its
incorrect movements, yet maintains its play-script integrity.

This approach is based upon the ability to pre-block a
play objectively, however real theatre blocking is based more
upon chemistry and make-up of a cast. The overall arrange-
ment of how the ensemble looks onstage is more important
than being on the right mark or knowing ahead of time where
to go. However, our approach brings us one step closer to be-
ing able to block a play in an automated fashion.
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