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Abstract

Construction of agent based model systems is often dif-
ficult considering the dynamic and complex nature of
real world problems and various implicit factors affect-
ing their behavior. This presents a problem in building
accurate and valid systems for use as decision support
tools. In this paper, we present an approach for handling
some of these factors, specifically acceptance rate, re-
tention rate and social influence, and enable simulated
social agent models to evolve in a dynamic environ-
ment. The objective is to achieve a more reliable be-
havior and outcome for the agents in the simulation, de-
spite unpredictable environmental changes. The agents’
knowledge, in terms of their observed responses to the
environment and corresponding outcomes, is captured
in a semantic tree. A metric is used to detect changes
in the environment and the threshold of response of the
agent, thereby triggering the agent to adapt its decision
tree to maintain a reasonable response beyond its histor-
ical knowledge. The results reveal the ability of agents
to detect changes in the environment more quickly and
with better accuracy, using a case study, and as a result
learn to adapt by modifying their decision tree under the
influence of considered factors.

1 Introduction
The acceptability of an Agent Based Model (ABM) strongly
depends upon the validation and reliability of its results with
respect to the real world problem being modeled. Consider-
ing this, (Remondino and Correndo 2006) describes three
classes of validation, i.e. Empirical Validation, Predictive
Validation and Structural Validation. Empirical Validation
intends to validate an ABM by comparing its simulation re-
sults with those observed in real world system. This gives
an idea of the correctness of model for some given situa-
tions. Predictive Validation focuses on validating an ABM,
in terms of producing more reliable outcomes for unseen
situations, the ones not directly observable in real world.
It helps study the behavior of real world system for non-
repeatable situations. Lastly, Structural Validation ensures
that processes used by an ABM to generate outcome com-
ply with those used in the real world system.
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Of the three validation types, in recent work by (Dogra
and Kobti 2013) was an attempt towards handling the Pre-
dictive Validation in ABMs working under the influence of
dynamic environment. Here, the overall validation or reli-
ability of ABM was measured in terms of average predic-
tion accuracy. This measure was shown to increase using the
proposed approach despite the initialization of agents with a
prior knowledge different from the one reflected by the sim-
ulation environment. However, the experiments were con-
ducted in a controlled environment. It was assumed that the
data, used for training the agents and thereby representing
the simulation environment, was available all at once.

In this work, we incorporate three main factors namely ac-
ceptance rate, retention rate and social influence (Kobti et al.
2006) into the approach outlined in (Dogra and Kobti 2013)
and present a detailed study of their effects on the overall
progress of ABM, aiming specifically at the learning rate
of agents and synchronization level attained by them. Fur-
ther, the training data set is modeled as a continuous stream
of data, causing the knowledge represented by it to change
with every time step during the simulation. In the next sec-
tion, we present an overview of our previous work, followed
by a detailed description of each of the considered factors.
The case study is then presented along with the experimen-
tal setup and the results obtained are discussed in the section
following it. In final section, we present our conclusion and
the scope of future work in this research.

2 Related Work
An integrated approach was introduced in (Dogra and Kobti
2013), for improving the overall reliability of an ABM work-
ing under dynamic environment, by integrating the features
of learning and adaptability in it. These features ensured the
consistent synchronization of ABM with the dynamically
changing environment, thus maintaining the validity of its
results at all times. The reliability of ABM was measured
in terms of average prediction accuracy (Olson and Delen
2008) to determine its capability of predicting correct out-
comes. Two aspects were identified towards achieving the
outlined goal: the first one dealt with incorporating learning
into agents to make them capable of learning from their past
experiences and absorb environmental changes. The second
one focused on computing the similarity of knowledge, re-
flected by the decision trees, contained by an agent and that
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represented by the dynamic simulation environment. This
similarity measure was also used by an agent to detect a
change in the environment and thereby trigger its learning
process. In addition, it was also used as a fitness function
by them to determine their level of synchronization with the
simulation environment and accordingly monitor their learn-
ing behavior.

3 Defining Factors/Parameters
This section describes some of the real world fac-
tors/parameters that tend to affect the learning of new in-
formation. Three factors/parameters have been considered:
acceptance rate, retention rate and social influence; which
tend to mimic the accuracy with which people learn new
information, their chances of sticking to existing informa-
tion and not learning the new one, and the role of social in-
teractions in knowledge sharing amongst them, respectively
(Kobti et al. 2006). Here, the new information corresponds
to the change in knowledge represented by environment, i.e.
global knowledge.

Learning Rate: The learning rate of an agent gives an idea
of its capability to adapt to environmental changes. In other
words, it is defined as the rate at which an agent detects and
absorbs new information or a change in it, from the simula-
tion environment. In this paper, the average learning rate of
agents is considered, depicted by the slope of average simi-
larity measure plot, shown in Figure 1.

Synchronization Level: The synchronization level at-
tained by an agent refers to the measure of similarity be-
tween its own knowledge and the global knowledge. It gives
an idea of the correctness of agent’s knowledge with respect
to the global knowledge. In this paper, the average synchro-
nization level of agents is considered, reflected by the y-axis
of the average similarity measure plot, shown in Figure 1.

4 Case Study and Experimental Approach
We use the same dataset of Golf Play referred from the
University of Regina. The experiment was setup around the
problem described in (Emele et al. 2012)’s work. In the ex-
perimental setup, the global agent was considered as the su-
pervisor of golf ground, with the prime motive of granting
agents the access to ground based on current weather condi-
tions. The global knowledge, possessed by the global agent,
represents the rules/policies for allocating ground under dif-
ferent weather conditions. This knowledge can be accessed
by the simulation agents, referred to as the seeker agents,
through interactions with the global agent. In the beginning
of the simulation, each agent was assigned a prior knowl-
edge different from that of the global knowledge. This was
done to model the worst case scenario, where the global
knowledge (i.e. rules/policies) has recently changed and all
agents are out of synch with it. A synthetic data generator
was used to extend the original Golf Play dataset. This ex-
tended dataset was then used as a training dataset for the
agents and the decision tree induced from it represented the
global knowledge. Further, a decision tree editor was used
to generate different variants of the original decision tree
(obtained over Golf Play dataset), which were randomly as-

signed to the seeker agents (Dogra and Kobti 2013). With
this initialization, the aim of all seeker agents was to build
their respective prediction models that mapped the global
knowledge as closely as possible. This would help agents
know, beforehand, if the global agent will grant access to
golf ground or not, for the current weather conditions. This
would help them considerably reduce the number of requests
to the global agent, by only requesting for the ground when
they are highly certain of getting access to it. Therefore,
each seeker agent intends to build more accurate prediction
model, by continuously learning and adapting the changes
occurring in the global knowledge.

5 Results and Discussions
For all the results presented in this section, a population of
20 agents was used except for the social influence factor
where a population of 50 agents was used instead. Further,
1000 synthetic data records were generated from the orig-
inal Golf Play dataset. Thus, each simulation ran for 1000
time steps and every time step a record from this dataset was
transmitted to all the seeker agents. Moreover, a memory
length of 120 records was used for all the seeker agents and
the corresponding simulation was referred to as ABM-120.
For all the results obtained, the average similarity measure
plot, shown in Figure 1, was used as the standard to study the
average learning rate of agents (represented by the slope of
graph) and their average synchronization level (represented
by average similarity measure, expressed in %). In addition,
SMT was set to 80% in all the experiments.

The training dataset, obtained using synthetic data gener-
ator, was modeled as a continuous stream of data. In other
words, instead of using all the records in this dataset for
generating a decision tree for the global knowledge, this
dataset was initialized with only 120 records at the begin-
ning and with every time step one record was added to
it. This caused the global knowledge to update incremen-
tally with every time step. Figure 1 presents a compari-
son of the results obtained by using incrementing and non-
incrementing datasets. These results are referred to as ID-
Enabled (Incrementing Dataset) and ID-Disabled, respec-
tively, where ID-Disabled is referred from (Dogra and Kobti
2013).

Effect of Retention Rate
ABM-120 was run for three different values of retention
rate, specifically 70, 80 and 90. The corresponding results
obtained, referred to as RR-70, RR-80 and RR-90 respec-
tively, are shown together in Figure 2 for an easy compari-
son. For all three values of retention rate, the acceptance rate
was kept constant at 100%.

Higher retention rate should make an agent more reluctant
to accept the new information, sticking firmly to its existing
knowledge, and vice-versa. The results shown in Figure 2
portray similar behavior, where the average similarity mea-
sure for agents in RR-70 is the earliest to cross the SMT
value and for RR-90 it never reaches the SMT value. On
the other hand, the performance of average similarity mea-
sure for RR-80 lies approximately in between the two. Fol-
lowing this, it can be observed that the agents initialized
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Figure 1: Average similarity measure of agents with and
without incrementing training dataset for ABM-120 and
SMT 80%

Figure 2: Average similarity measure of agents for different
values of retention rate for ABM-120 and SMT 80%

with smaller value of retention rate require lesser number
of records to reach the SMT. Specifically, RR-70 required
only 300 records to achieve desired synchronization level,
RR-80 required approximately 455 records and RR-90 never
reached the SMT. Thus, the results go well with the hypoth-
esis indicating that the agents with higher retention rate are
more likely to ignore the new information as compared to
their counterparts. In addition, the average learning rate re-
flected by the slope of each plot also follows the similar
trend, where it is highest for agents in RR-70, lowest for
agents in RR-90 and follows a decent rate in RR-80, again
lying somewhere in between the previous two.

Effect of Acceptance Rate
Three different values for acceptance rate, i.e. 60, 80 and
100, were used to run ABM-120. The corresponding results
obtained are referred to as AR-60, AR-80 and AR-100, re-
spectively, and are shown in Figure 3. Here, for all three val-
ues of acceptance rate, the retention rate was opted as 80%
considering it to be a trade-off between its other two values.

Following the discussion on acceptance rate, it is expected
that an agent with a higher value for this parameter will
learn the new information with least possible error and vice-
versa. The results shown in Figure 3 follow a similar trend,

Figure 3: Average similarity measure of agents for different
values of acceptance rate for ABM-120 and SMT 80%

where AR-100 agents are the fastest and AR-60 agents are
the slowest to reach the SMT. The performance of AR-80
agents, though lies in between the two, but is closer to AR-
100, as depicted by the results. Although the results for AR-
80 and AR-100 closely follow each other, however it can
still be concluded that the agents with high acceptance rate
tend to achieve a higher level of synchronization with the
environment.

The result for AR-60 shows deterioration in the average
similarity measure for the first 600 records. The reason for
such a behavior is the difference in the agents’ knowledge
and the global knowledge in the beginning, due to which de-
spite updating their knowledge in every time step, the agents
end up learning incorrect information in 40% of the cases.
However, after going through sufficient number of records,
the agents start making an improvement towards their in-
dividual synchronization level and consequently the overall
average similarity measure also starts improving. Thus, the
results justify the hypothesis that higher the value of accep-
tance rate in agents, the more accurately they tend to learn
the new information and require less time or data records to
achieve desired level of synchronization. Further, the slopes
of each plot in Figure 3 give a clear indication of highest
learning rate shown by AR-100 agents, closely followed by
the learning rate of AR-80 agents and finally a poor learning
rate is displayed by AR-60 agents.

Effect of Social Influence
Using this parameter, we intend to study the impact of
knowledge sharing among the agents, taking into account
the parameters of retention rate and acceptance rate. The
value acceptance rate and retention rate was set to 80%, as
it depicts the trade-off between their other values. Also, this
value tends to provide better and more realistic results as
shown in their respective figures, i.e. Figure 2 and Figure 3.
In this case, a population of 50 agents was considered since
the number 20 was too small to setup any neighborhood net-
work amongst the agents. Each agent was linked to its 3
closest neighbors based on their respective locations. The
ABM-120 was run twice, with and without the social influ-
ence and the results obtained are referred to as SI-Enabled
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(SI-E) and SI-Disabled (SI-D), respectively.

Figure 4: Average similarity measure of agents with and
without social influence for ABM-120 and SMT 80%

Social influence and hence the social interactions were
considered to enable knowledge sharing among the agents,
with the expectation that the agents will learn faster requir-
ing lesser number of records to attain the desired synchro-
nization level, as compared to when they are not socially
active. However, the results shown in Figure 4 contradict
with this hypothesis. In the results, the agents achieve the
SMT value faster in the case when no social interactions ex-
ist, pointing towards the negative effect of social influence
on the agents’ learning. This indicates that the knowledge
shared by the agents in a social network may not always
be correct. The reason for such a behavior is that the knowl-
edge of agents in the beginning was different from the global
knowledge, and under such situation allowing them to share
knowledge would lead to the spread of incorrect knowledge.
Due to this, it requires more time/data records for an agent
to acquire enough information regarding the change. Thus,
despite learning from the global agent and through social in-
teractions, the overall time taken by the average similarity
measure to reach SMT is increased noticeably. Therefore, it
can be inferred that social influence will have a positive ef-
fect on the working of agents, only when considerable num-
ber of agents possess the correct knowledge. The agents in-
volved in social interactions, though tend to learn slowly, but
are steadier with their progress in comparison to their coun-
terpart.

6 Conclusions and Future Work
The experimental results show that for a lower value of re-
tention rate and a higher value of acceptance rate, the agents
exhibit a higher learning rate achieving a higher level of syn-
chronization with the environment. However, for a value too
high and too low for retention rate and acceptance rate, the
agents require more records to reach SMT and show a signif-
icant deterioration in their learning rate, respectively. Thus,
the results justify the hypothesis that lower retention and
higher acceptance enable an agent to accept new information
with more accuracy. The results for social influence high-
light the negative impact knowledge sharing can have on the
overall learning rate and synchronization level of an ABM,

when majority of agents possess incorrect knowledge. In-
stead of increasing the learning rate and achieving higher
level of synchronization, as expected, the results portray an
opposite behavior. Therefore, it can be inferred that for so-
cial influence to work effectively, a considerable number of
agents should possess the correct knowledge. Moreover, the
comparative analysis done for incrementing dataset high-
lights that, agents tend to absorb nearly all environmental
changes and thus attain better synchronization with environ-
ment, when trained using a continuous stream of training
dataset. For future work we plan to test our approach on a
bigger dataset that complies with the characteristics exhib-
ited by the Golf Play dataset.
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