

A Natural Language Conversational System
for Online Academic Advising

Edward M. Latorre-Navarro and John G. Harris
Computational Neuro-Engineering Laboratory, Elec. and Comp. Eng. Dept., Univ. of Florida, Gainesville, FL

elatorre@ufl.edu, harris@ece.ufl.edu

Abstract

We have designed an academic advising online system to
advise college students using natural language
conversations. The system embeds knowledge of current
and future teaching schedules, degree requirements, course
prerequisites and various administrative procedures. While
this information can be found by searching several
university websites and catalogs, students continually ask
human advisors these questions during their limited face-to-
face time, which limits deeper developmental and educative
advising that is only available from human advisors. Our
system enhances the advising experience by offering a
source for instant academic advice that does not require
student training or additional human resources. The system
contains a pattern-matching dialog management system with
access via a web browser. We describe the motivation for
our system, the design requisites, our approach for
deployment, and analyze results from real-world field tests.

 Introduction and Motivation
Academic advisors assist students in personal, academic,
professional and social matters. Successful advising
programs increase student retention, improve graduation
rates and help students meet educational goals (Gordon et
al. 2011). Advising tasks are identified as prescriptive,
providing expert advice, and developmental, where the
advisor engages in a mutual learning process with the
student, in order to help the student’s problem solving,
decision making and evaluations skills (Appleby 2008).
 Academic institutions are also adopting learning-
centered educative advising, to guide students on the
philosophy of the curriculum and provide them with the
skills needed for long-term educational planning (Melander
2005; Hagen and Jordan 2008). To help advisors manage
these tasks, advising research has focused on technologies
such as instant messaging, social networking and course-
management systems (Leonard 2008; NACADA 2012).
We propose the next generation of interactive advising

Copyright © 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

systems should include a natural language interface to
allow students to communicate as freely as they do with
their advisors. Such a system would allow students to
easily ask a wider range of questions than those in
traditional expert-based systems and obtain immediate
responses instead of waiting for peers or advisors to reply.
This application also responds to a digital generation that
thrives on immediate gratification through firsthand
capabilities (Prensky 2001; Junco and Mastrodicasa 2007).
In essence, the fundamental objective of this work is to
provide students with an advising experience that is as
close as possible to traditional human interaction.

Related Work
Several research publications describe expert-based
systems for helping students with straightforward repetitive
tasks such as choosing majors and accessing degree audits,
e.g. (Nambiar and Dutta 2010; Feghali et al. 2011). Two
publications show an advising system combined with
natural language processing (NLP) techniques for
communication, (McMahan 2010) and (Leung et al. 2010),
however, to our knowledge, there are no academic advising
systems with a full natural language interface.
 Some advising tasks of our system are similar to features
available in conversational agent (CA) systems for e-
learning environments, such as those examined in (Gandhe
et al. 2009; Mori et al. 2013). The evolution of these CAs,
shows examples of initially using pattern-matching
techniques, followed by statistical methods as sufficient
data becomes available. The success of many of these CAs
suggests the viability of the advising system we propose.

System Fundamentals
Kerly, et al. presents a series of questions for developers of
CAs for e-learning (Kerly et al. 2009). We group these into
four key subjects to address the system requirements.

(i) What approach to NLP should the developer adopt?
Most practical dialog systems are corpus-based, while the

Proceedings of the Twenty-Seventh International Florida Artificial Intelligence Research Society Conference

186

latest research trends are on statistical methods (Jurafsky
and Martin 2000; Nadkarni et al. 2011). The enclosed
domain of our application and the lack of advising data
favor a corpus-based approach. We decided to select an
advanced CA system within the open source alternatives.
(ii) Who controls the direction of the interaction? Users

initiate and control the dialog, including usage of follow-
up questions and contextual references. The system must
respond with the correct answer or state that it is not
available. The system output must be succinct and prevent
unnecessary follow-up questions or invite off-topic dialog.
(iii) What will users say? The system must include the
unique vocabulary of the user field, as well as technical
terms such as, e.g., the course-code COMP1234, and C++,
either an unofficial course name or a programming
language. Many of these terms must be collected from the
user field by implicitly crowdsourcing the users through
either the Wizard-of-Oz technique (Jurafsky and Martin
2000) or by releasing a hand built prototype system that
they can feed. We decided to hand build the input patterns
based on how users could request each available answer.
 The user data contains intricacies such as implicitly
conveyed information, ambiguity, contextual references,
and similar to traditional text messaging, will not contain
formal writing features such as punctuation and
capitalization. To determine the intention of the user from
the linguistic expression, we need to distinguish every
significant lexical unit (LU) and their relationships within
the context, i.e., we need effective keyword extraction
(KE) and context-based disambiguation structures. To
overcome the lack of data, we follow the approach of
(Hulth 2004; Bellotti et al. 2011), which showed that parts-
of-speech (POS) tags, noun-phrase chunks and lexical
relations are significant features for KE algorithms,
independent of the usual statistical term selection methods.
(iv) How much testing will be required? CA systems for
e-learning often undergo over two thousand conversations
before reaching operational state (Kerly et al. 2009).
 Three additional key technical requirements include,
first, that the system be available at all times through an
online instrument such as a webpage or mobile application.
Secondly, the system must obtain and store student
academic data without compromising their private
information. Third, the dialog system must systematically
manage the complexities of multiple course sequences
within an academic program and the multiple amendments
that often occur in the academic field.

The Instant Academic Advice System
We propose the INSTant Academic adVICE system
(Instavice) to offer students the advising system described
above. Instavice includes information about the academic
programs, course schedules, answers to a wide range of
academic FAQs, recommendations for the development of

a course plan, and refers students to academic services. We
created the knowledge base (KB) through university
documents and reports from the academic advisors. We
organized the KB as a list of triples containing a question,
its answer and the topic to which we classified the answer.
 For course schedule information, which is updated daily
in the Registrar’s webpage during enrollment period, we
use an automated Python script to read the online data and
update the system database. This process assures Instavice
has the latest information without dependency of human
maintenance. This information is available by specifying a
term in a query, e.g., “Who taught C++ in Fall 2012”.
 The website was developed using Python, JavaScript,
HTML, CSS and uses sockets for communication. The
website is hosted on a desktop computer running on a
Linux OS, with an Intel Pentium 4 processor and 1.8GB of
RAM. The website was designed for speed with a load
time under one second on contemporary versions of all
major browsers. To protect user data, the system requires
anonymous usernames. Anonymity also encourages
students to provide feedback without fear of repercussions.
Each account stores the user’s data for ensuing sessions.
Figure 1 shows a screenshot of the website.
 The advising dialogue engine (ADE) in Instavice drives
the input, output and states of the system. We built our
ADE around ChatScript (CS), an open source scripting
language for a rule-based dialog system available for
download at (Wilcox 2011). We used CS version 2.0.

Figure 1: Above: screenshot of Instavice during the experiments.

Below: The FAQ list on the right side frame of the screenshot.

 This is a natural language application.
 Type as you would usually speak to your advisor.

 You may type Help at any time for assistance.

 Example questions include:

 When is Circuits 2 taught next semester?
 Where is EEL 3112 given next spring?
 Who will teach EEE3308C?
 What will Dr. Gugel teach?
 How many credits does Micro P have?
 What is the prereq of Controls?
 How many gen ed courses do I have to take?
 How can I find out my catalog year?
 Which programming courses am I required to take?
 How many drops can I have?
 Which courses do I need a C+ to pass?
 What is IPPD?
 Can undergrads take 6000 level courses?
 Can I take online courses?

University of Florida
Electrical and Computer Engineering Undergraduate Advising System

 Login to connect to the Advising System Chrome, Safari and Firefox recommended WWATCHATCH THETHE T TUTORIALUTORIAL ONON
Login:

 Welcome to the ECE-UF Natural Language Advising System

 Register or login by entering your preferred username & password. Do not identify yourself!
 Registered users have their data saved for ensuing sessions.

 Your participation is anonymous. We do not have access to your UF personal records.
 Be careful when registering a password. To ensure anonymity, there is no password recovery method.

 To logout at any time, just say Goodbye.

 Chat:

187

 CS features a knowledge-based architecture, a query
system for a dynamic database, it includes the WordNet
ontology to manage synonymous expressions, and a client-
server architecture that communicates using sockets. Our
ADE runs as a client of the underlying Python script that
manages Instavice, which allows integrating CS with
external functions. For example, using methods in (Bird et
al. 2009; Norvig 2007), we added a spell-checker using
Python to manage the unique terms.
 Similar to semantic grammars, scripts in CS comprise
topics, patterns, concepts and facts. A topic is a collection
of patterns for input matching. Patterns contain keywords
and logic functions for conditioning a match. A concept is
a collection of LUs. Facts, the elements of the database, are
triples that contain LUs or other facts as field values.
 To define the input patterns, we identified keywords,
POS tags, noun-phrase chunks and lexical relations from
our initial KB. We organized these features within the
topics in which we pre-classified each question answer
pair. For example, we defined the topic course schedule
information to include the keywords “any course name”, “a
professor’s name”, the word professor and the word teach.
This topic contains a pattern for an input such as, who will
teach C++ during the next semester, where the extracted
keywords are who, teach, C++ and next-semester. Within
CS, we generalized the keywords into who, “teach-word”,
“course-name” and “term-phrase”, where
• Teach-word is any word that refers to a course being

taught, e.g. teach, teaches, lectures and give.
• Course-name is a name from the list of all courses.
• Term-phrase is any phrase that refers to an academic

term, e.g. next semester, Fall 2012 and next summer.
 Figure 2 shows the algorithm for this example. Clearly,
this is not the only way to ask who will teach a specified
course. The user could ask Who is the professor of C++, or
if the request is within the context of a previous input, Who
is teaching it. For the first case, we add a new pattern and
map it to the pattern defined above. For the second case,
we define a pattern that determines if the previous input
was within the predefined context of course information.

Algorithm: Match user request for a course offering
Input string S: who teaches C++ next semester
Desired output: Name of whom teaches C++ in the next
semester or C++ is not offered next semester

If S contains a keyword of the topic course_search
If S matches with a who-teaches pattern
 If S contains a term-phrase keyword
 Calculate the term T, using the date and phrase tense
 Else
 Use previous T value. Default value is the next term
 If the course C++ exists in the schedule of T
 Find the corresponding data element Instructor
 Return C++ is taught by Instructor in T
 Else Return C++ not offered in T

Figure 2: Example of a procedure to match a user request.

 To determine the context, we use features such as the
topic that previously matched, the current keywords and
the state of the variables of potentially missing keywords.
 In our CS script, the last two sequential topics manage
the input queries that did not match to an available answer.
The penultimate topic returns suggested questions related
to matched keywords. The last topic contains default
responses for unrecognized input. While many intricacies
are involved in designing the close to 200 input patterns
our CS script contains, a thorough description of all
functionalities in CS is beyond the scope of this paper.

Results and Analysis
We designed and deployed our system for undergraduate
students of the Electrical and Computer Engineering
Department of the University of Florida. Our system is
accessible via http://advising.ece.ufl.edu. We advertised
the website with a desktop computer setup in the student
services office of the department during a six-week period
between October and November 2012 and recorded data
from 53 anonymous users who made at least three input
entries. Users with less than three were discarded. A
second testing period began when the department advisors
emailed the students announcing our advising webpage.
We recorded 103 users during this four-week period
between March and April 2013. Students did not receive
tutorials or demos on how to use the system, except for the
instructions and example questions on the webpage.
 Figure 3 shows example dialog extracted from multiple
users. Responses by the system are curtailed for clarity and
user syntactic errors are preserved for authenticity. For the
first period, the average number of input entries per user
was 16.0, where 49% had between four and ten entries.
The second period results were 11.4 and 58% respectively.
 While Instavice contains over 100 unique answers to
academic FAQs, students did not seek many of these
answers. Surveys from a sample of the users showed that
they did not have a need for these answers at the time of
the conversation or they lacked the academic experience to
necessitate finding out the information. As seen in Figure
1, we have a short list of suggested questions as examples.
Many students opted to start out with those questions, then
try similar and follow-up questions. For these students, this
exercise proved to be a useful academic informative
session. We plan to extend that list of examples in order to
inform the students of the system capabilities and incite
them to learn the information.
 Student feedback showed that the most requested
features were personalized recommendations for course
enrollment and to track their progress through the degree.
Statistical analysis of the system responses was not
included in this phase, as data acquisition and viability
analysis were the main objectives, and not enough data
was available for statistically significant conclusions.

188

 Albert is the Instavice persona for our implementation
jer123: There is an error in my degree audit. How do I

get my audit fixed?
Albert: The Registrar's office handles your degree audit…
dude: How many drops can I have
Albert: Students are given two drops prior to reaching ...
dude: What if I am out of drops?
Albert: A third drop must be petitioned. You may…
uhingb: What will Zmuda be teaching
Albert: Prof Zmuda, Henry is teaching in Fall 2013 EEL

4930 POWER SYSTEM ANALYSIS for 3 …
uhingb: tell me about EEL 4930
Albert: I'm working on getting a good synopsis of …
rlb1116: when is eel3701c in spring?
Albert: For Spring 2013 we have EEL 3701C is on …
rlb1116: what about next spring?
Albert: I don't have the Spring 2014 schedule yet.
jrs5269: what grade is considered passing for critical

tracking courses?
Albert: You need to pass all the listed tracking courses …
tab7240: what if i drop and go below 12 credit hours
Albert: 12 credits is the minimum required to be a full …
slapeyre: Feedback
Albert: If you wanna leave me feedback, I'm listening.
slapeyre: put in all the course info and scheduling from the

rest of the UF website pages

Figure 3. Selected dialog extracted from multiple user log files.
An ellipsis represents a response truncated for this illustration.

Conclusion and Future Work
We present natural language conversational system that
provides instant academic advising for members of the
academic community. Our system allows users to
communicate analogous to how two people interact, thus
not requiring a user learning curve. This system is an
instrument to increase student integration, retention,
satisfaction and performance, without requiring additional
personnel, by allowing advisors to allocate resources to
developmental and educative tasks, instead of repetitive
time intensive tasks related to prescriptive advising.
 With the data collected, we have originated a corpus of
academic advising FAQs that will allow including
statistical NLP techniques into future developments. As
future work, we will integrate statistical measurements
from the log files content and include indirect evaluations
by the constituencies. The evaluation data will offer
advisors documented assessment of the areas of advising
that most concern students. Additional work includes
adding an expert system for academic enrollment planning,
a mechanism to forward selected conversations to advisors
and allowing users to add lexical definitions.

Acknowledgments
We appreciate the support from participating students,
advisors and personnel of the student services office.

References
Appleby, D.C. 2008. Advising as teaching and learning. Academic
advising: A comprehensive handbook. San Francisco, CA. 2: 85-102:
Jossey-Bass
Bellotti, F.; et al. 2011. Towards a conversational agent architecture to
favor knowledge discovery in serious games. In Proceedings of the 8th Int
Conf on Advances in Computer Entertainment Technology. 17.
Bird, S.; Klein, E. and Loper, E. 2009. Natural language processing with
Python. O'Reilly Media, Incorporated.
Feghali, T.; Zbib, I. and Hallal, S. 2011. A web-based decision support
tool for academic advising. In International Forum of Educational
Technology & Society. Athabasca University, Canada: 14:1, 82-94.
Gandhe S.; et al. 2009. An Integrated Authoring Tool for Tactical
Questioning Dialogue Systems. In Proceedings of the 6th Workshop on
Knowledge and Reasoning in Practical dialogue Systems, Pasadena, CA:
AAAI Press.
Gordon, V.N.; Habley, W.R. and Grites, T.J. eds. 2011. Academic
Advising: A Comprehensive Handbook. Manhattan, KS: Wiley.
Hagen, P.L. and Jordan, P. 2008. Theoretical foundations of academic
advising. Academic advising: A comprehensive handbook. San Francisco,
CA: 2: 17-35: Jossey-Bass.
Hulth, A. 2004. Combining machine learning and natural language
processing for automatic keyword extraction. Department of Computer
and Systems Sciences, Institutionen för Data-och systemvetenskap.
Junco, R. and Mastrodicasa, J. 2007. Connecting to the Net. Generation:
What Higher Education Professionals Need to Know about Today's
Students. NASPA, Student Affairs Administrators in Higher Education.
Jurafsky, D. and Martin, J.H. 2000. Speech and language processing.
Speech and language processing. Prentice Hall.
Kerly, Alice, Richard Ellis, and Susan Bull. 2009. Conversational Agents
in E-Learning. Applications and Innovations in Intelligent Systems XVI.
169-182: Springer.
Leonard, M.J. 2008. Advising delivery: Using technology. Academic
advising: A comprehensive handbook. San Francisco, CA: 292-306.
Jossey-Bass
Leung, C.M.; et al. 2010. Intelligent Counseling System: A 24 x 7
Academic Advisor. EDUCAUSE Quarterly ERIC. 33:4.
McMahan, B. 2010. An Automatic Dialog System for Student Advising.
J. of Undergraduate Research, Minnesota State University, Mankato.
Melander, ER. 2005. Advising as Educating: A Framework for
Organizing Advising Systems. NACADA Journal; 25:2 84-91.
Mori D.; et al. 2013. An easy to author dialogue management system for
serious games. J. Comput. Cult. Herit. 6:2 10:1-10:15.
NACADA – National Academic Advising Association. 2012. Advising
Technology Innovation Awards. 1998–2012.
Nambiar, A.N. and Dutta, A.K. 2010. Expert system for student advising
using JESS In Proceedings of the International Conf on Educational and
Information Technology. 1:312.
Nadkarni P.M.; Ohno-Machado L. and Chapman W.W. 2011. Natural
language processing: an introduction. In Proceedings J Am Med Inform
Assoc; 18:5 544-551.
Norvig, P. 2007. How to write a spelling corrector. Unpublished.
Available: http://norvig.com/spell-correct.html
Prensky, M. 2001. Digital natives, digital immigrants Part 2: Do they
really think differently? On the horizon. 9:6 1-6: MCBUP Ltd
Wilcox, B. 2011. ChatScript project. Documentation and source code
available for download at http://chatscript.sourceforge.net

189

