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Abstract
We describe a collaborative project between our research
group and a small west-coast business to apply machine
learning techniques to a document processing task. This ex-
perience suggests two key points: (1) even as machine learn-
ing and artificial intelligence matures, there are many busi-
ness applications that have not yet exploited these techniques;
and (2) academically well-established machine learning tech-
niques have much to offer both in terms of flexibility and eco-
nomic benefit.

Introduction
A few years ago, our research group engaged in a collabo-
rative project with a small west-coast business (Data Data,
Inc.) whose mainstay product is a subscription service of in-
formation procured from public record documents across a
large range of counties with varying populations. The busi-
ness’s document processing involved four main steps: (1)
purchasing records from local municipalities; (2) categoriz-
ing documents; 3) extracting data from the documents; and
4) entering the extracted information into a database. Of
great surprise to us at the time was the fact that much of
this process (steps 2–4) were implemented by a third party
using an outsourced labor pool. Large quantities of these
scanned documents were being sent to India first to be cate-
gorized and then to have their data extracted and entered into
a database. We recognized that well-established machine
learning techniques could be applied to automate much of
this process and our collaboration began.

Our first task was to examine the potential impact of
automating this document pipeline. Because transitioning
from a process based on human labor to one based on ma-
chine learning required a significant leap of faith from the
management, we wanted to ensure that we looked at a spec-
trum of approaches that would range from minimal automa-
tion to full automation. As it turned out, the process descrip-
tion itself provided a nice scaffolding for this. In particular,
we could easily envision a partially automated process that
performed categorization (step 2) while leaving data extrac-
tion (step 3) to humans; similarly we anticipated that some
data extraction tasks may be easier than others and this might
allow us to scaffold step 3 further.
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At the time, the Data Data’s outsourced documents were
being manually examined to identify 20 fields that were then
entered by hand into a database. The business was charged
a fixed fee per field and per document for the data entry. In-
terestingly, many of these database entries were in fact irrel-
evant to them—as only a small fraction of the documents
were important for their products. However, because the
records were typically purchased in bulk by the day, there
was no easy way to identify each particular document’s type
a priori. Instead, someone needed to examine the scanned
image to determine if they were relevant. The least expen-
sive way to perform this task was to send all the documents
abroad.

After some discussion, we arrived at the following series
of potential automation tasks:

2-Class Categorization This is the simplest problem, in
which we determine whether a particular document is rel-
evant to the business prior to sending it off for manual
information extraction. Thus, all the manual work would
proceed as normal, but with a reduced document set that
contained only useful items.

Multi-class Categorization Four of the twenty database
fields associated with each document contained informa-
tion derived from the document’s specific type. Public
record document types run the gamut and include “liens”,
“deeds”, “deeds of trust”, and “marriage licenses” among
many others. Data Data was focused on data pertaining to
property transactions and was interested in only 25 of the
roughly 120 major document types. By correctly identi-
fying the category to which each relevant document be-
longed, entries for four data fields could be automatically
filled.

Stamp Classification Auditor and Recorder stamps con-
tain critical information such as the date the document
was recorded, the document number, document type in-
formation, and the name of the document recorder. In ad-
dition, by locating and interpreting these stamps, it is pos-
sible to identify documents that pass through the munic-
ipal recording system multiple times. Such re-recordings
occur quite frequently but must be ignored for the busi-
ness’s report (only the initial recording is salient). Thus,
by correctly reading data from stamps that appear on
the document, some documents can be deemed irrelevant
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(because they are re-recordings), and relevant documents
may have four additional data fields automatically filled.
Although these stamps can be knowledge rich, as we will
discuss, their use does have limitations. Most critically,
the stamps are county-specific and the document type in-
formation they encode is based on a county-specific tax-
onomy that does not always help isolate the document
types in which we are interested. This means that “read-
ing the label” will generally not solve even the 2-class
categorization problem.

Information Extraction Associated with each document
class is a pre-specified list of fields that must be extracted
to generate the document’s database entry. This list cov-
ers nine of the remaining twelve data fields and include
such items as the location of the property, the document’s
recording number, date, and the names of the owners.
However, accurately acquiring this information is non-
trivial. Compared with classification that typically relies
on optical character recognition performing reasonably
well in aggregate, information extraction targets much
smaller and more specific pieces of text and therefore re-
lies much more heavily on the accuracy of the OCR soft-
ware.

Implicit Information Inference The final three data fields
pose the greatest challenge as they are not necessarily ex-
plicitly available in the document itself. For example, cer-
tain documents are associated with a loan although there
is not necessarily any single piece of text that identifies the
specific loan type. One loan type, construction, can be in-
ferred if the deed has a special rider attached to it. Another
type, tied with, can be inferred if two documents, a deed
and deed of trust, have the same order number (identified
by a title company’s stamp) and are processed by the mu-
nicipality in a specific chronological order. In either case,
the data for these final fields must be inferred from a com-
bination of the document’s data and other information in
the municipal data stream. This dependency creates an
additional level of risk because it opens up the possibility
that errors will be propagated through the system instead
of isolated to a single document’s record.

By outlining these automation tasks, we were able to iden-
tify a spectrum of implementation options that ranged from
solving only a single task listed above, to a fully automated
process with little or no human interaction. To evaluate
the potential economic impact of different implementation
strategies, we next considered a series of tasks where we
began by solving the first task (2-class categorization) and
then incrementally added each additional automation feature
listed above. In practice, such a strict linear ordering is not
necessary.

The results are displayed in Figure 1 as the “Reliance on
Offshore Labor”. Reliance, here, is calculated as the antic-
ipated net change to manual encoding costs. Thus, the cur-
rent approach indicated by the first bar, labeled “Manual”
is normalized to 100%. Each subsequent bar shows the im-
pact of an incremental automation step on the predicted cost
of the remaining entries that must be made manually in the
database. To calculate this cost, we need to know the num-
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Figure 1: The potential impact of machine learning improve-
ments on the document processing pipeline and the resulting
decrease in reliance on outsourced labor.

ber of fields required per document (20, for a fully manual
approach), the number of fields that will be filled in auto-
matically given a particular implementation, and the typical
fraction of relevant documents amongst all the documents
retrieved from a municipality (roughly 30% based on a sam-
ple of over 5000 documents.

Figure 1 clearly illustrates one critical point: solving the
simplest problem (2-class categorization) has a very large
economic impact. Importantly, this also happens to be the
path of least commitment: a CEO anxious about relying
heavily on machine learning might still be convinced to at-
tempt solving a simple problem with an automated method,
especially if such a solution could have a proportionally
large impact on the business’ bottom line.

Given the examination of the problem, we set off to see
how much of the document processing task we could auto-
mate with off-the-shelf open-source technology. The over-
arching idea was to keep development costs extremely low
with the knowledge that we would likely be able to solve at
least the simple problem and make a significant economic
impact.

We started from scratch with a small group of Master of
Computer Science students and gave ourselves a one year
timeline to tackle the problems. In the remaining sections
of this paper, we describe some of the technologies we ex-
plored, the results, and the insights we obtained about the
role of artificial intelligence and machine learning within
this business domain.

Towards an Automated Document Pipeline
Initially, we constructed a corpus of 4441 public records
documents. This corpus contained manually entered doc-
ument type information for each record and pixel level
markup for a subset of the records. Each document
was processed using the open source Tesseract OCR plat-
form (Smith 2007) to generate a text document from the
scanned images. With this initial data set, we were able to
explore multiple lines of inquiry: from the quality of avail-
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able open source OCR software to our ability to find and
recognize county recording stamps and our ability to clas-
sify documents appropriately.

We then explored each of the automation tasks described
previously placing the most emphasis on those that were
technologically straightforward and offered the highest eco-
nomic yield.

2-Class Classification
We used the open-source Weka machine learning soft-
ware (Hall et al. 2009) for the majority of our learning tasks.
For document classification including both the two-class and
multi-class problems, learning begins by transforming each
multipage text document into a feature vector where features
indicate the number of times a particular word occurs in the
document 1. We examined a range of classifiers using dictio-
naries from 200 to 800 words. Table 1 illustrates the accu-
racies achieved during ten-fold cross validation on our train-
ing set. All classifiers achieve accuracies above 97% and the
best performer (DMNBtext (Su et al. 2008)) achieves nearly
99% accuracy with a 600 word dictionary. Note that with
the exception of AdaBoost M1 using a 200 word dictionary,
no classifier achieves a statistical victory over DMNBtext
on any given dictionary size. Moreover, across all dictio-
nary sizes, no classifier achieves a statistical victory over
DMNBtext with a 600 word dictionary.

DMNBtext is a Discriminative Multinomial Naive Bayes
classifier. Like all naive bayes classifiers, classification is
based on the following application of Bayes’ rule where cj
represents class label j and di represents the ith document
in the corpus D (McCallum, Nigam, and others 1998):

P (cj |di) =
P (cj)P (di|cj)

P (di)
(1)

Multinomial variants model P (di|cj) with the multino-
mial distribution using the following relationship in which
word counts play a crucial role:

P (di|cj) = P (|di|)|di|!
|V|∏
k=1

P (wk|cj)nik

nik!
(2)

In the expression above wk is a word selected from a fixed
vocabulary V; and nik is the number of times wk appears in
di.

Since we are typically only interested in the most likely
class, equations 1 and 2 can be combined and simplified so
that one computes:

argmax
j

P (cj)

|V|∏
k=1

P (wk|cj)nik (3)

The Bayes-optimal estimate for P (wk|cj) used in equa-
tions 2 and 3 can be found simply by counting the number
of times wk occurs in the documents that comprise cj in the
training set (typically with Laplace smoothing to deal with
edge conditions). Mathematically:

1For some classifiers, we use boolean feature vectors instead of
a bag-of-words model.

P (wk|cj) =
1 +

∑|D|
i=1 nikP (cj |di)

|V |+
∑|V |

s=1

∑|D|
i=1 nisP (cj |di)

(4)

If a multinomial model is trained incrementally, one can
maintain terms corresponding to the sums in the numera-
tor and denominator of equation 4. When a new document
from class cj is obtained, the corresponding sums are up-
dated based on the words observed in that document.

DMNBtext modifies this update/estimation procedure so
that P (wk|cj) is updated only as needed. Specifically,
DMNBtext begins by estimating the sums in the numera-
tor and denominator of equation 4 as 1 and |V | respectively
(the Laplacian estimator). Next, given a document di from
the training set, DMNBtext predicts the most likely class us-
ing equation 1 and then computes the prediction loss as:

L(di) = P (cj |di)− P̂ (cj |di) (5)

Where P̂ (cj |di) is the predicted probability that di is
of type cj and P (cj |di) is the actual probability. That is,
P (cj |di) is 1 if and only if di is of type cj ; otherwise it is 0.

Then, instead of simply updating the sums in the numer-
ator and denominator of equation 4 based on the number of
times each word is observed, the update is weighted by the
loss L(di). Thus, if the classifier already makes a perfect
prediction, no change to the term estimates will be made.
On the other hand, the more the classifier’s prediction differs
from the ground truth, the greater the update and therefore
the larger the contribution that di will have on modifying fu-
ture predictions (since in this case, updates from di will have
a large weight).

In a sense, DMNBtext combines the discriminative ap-
proach of the perceptron update rule with the statistical
grounding of multinomial naive bayes. The modified param-
eter estimation method is a boon in environments like text
classification where the independence assumption of Naive
bayes is violated. While the standard multinomial approach
tends to overweight correlated features, DMNBtext’s dis-
criminative approach is less susceptible to this problem and
can achieve performance on par with SVM classifiers, but
with a much faster, incremental, learning algorithm.

Multi-class Classification

Next, we explored multi-class classification after initial rel-
evancy testing. We used an array of class-specific binary
classifiers to identify the top three most frequently occur-
ring relevant document subtypes: Deeds of Trust, Statutory
Warranty Deeds, and Quit Claim Deeds. Although our num-
ber of training examples for each subtype was rather small
(hundreds), we were able to obtain a very low false positive
rate. This indicates that classifiers we obtained were appro-
priately specific. We were less concerned about false nega-
tive rate since the working assumption was that this would
simply mean more documents that had to be manually clas-
sified.
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Dict size (words) 200 400 600 800
DMNBtext (Su et al. 2008) 97.73 98.39 98.77 98.64
AdaBoost (J48) (Freund and Schapire 1996; Quinlan 1993) 98.29 98.46 98.56 98.59
RandomForest (Breiman 2001) 98.08 98.06 98.12 97.99
SPegasos (Shalev-Shwartz, Singer, and Srebro 2007) 97.88 97.87 97.87 97.67

Table 1: Accuracy of Top Classifiers

Document Type Accuracy F.N. Rate F.P. Rate
Deed of Trust 96.80 0.041 0.026
Statutory Warranty Deed 98.72 0.035 0.008
Quit Claim Deed 98.80 0.062 0.006

Table 2: Document Sub-typing After Relevancy Testing

Stamp Classification
Figure 2 shows two documents from our training set. Both
images have been stamped by the county office at the time of
recording (these stamps are circled in the images). Record-
ing stamps are significant because: (1) all counties have one;
(2) many stamps contain information such as the recording
date that must be extracted from the document to generate a
database entry; and (3) many stamps contain a document
type code that could improve document classification. A
close-up view of a recording stamp from Chelan county is
illustrated in Figure 3. This stamp has a number of valuable
pieces of information including: the recording number, the
date, and a document type code (DT in Figure 3). In addi-
tion, as we noted earlier, re-recorded documents can some-
times be identified because they carry two distinct recording
stamps. Thus, by carefully probing for the recording stamp
we hypothesized that we may be able to both improve docu-
ment classification and extract some critical information.

To perform stamp classification, we first need to recog-
nize the stamp. For this, a number of potential approaches
are possible. While the bar code associated with most of the
images present an obvious landmark, at the time of testing,
the open source barcode detectors ZBar (Brown 2013) and
zxing (Owen 2013) were not capable of correctly identify-
ing the barcodes that appeared on all of the county recording
stamps. We suspected this was either because of noise intro-
duced during scanning or due to proprietary or obscure bar-
code formats. We then considered image template match-
ing (Schweitzer, Deng, and Anderson 2011) and principal
component analysis (Draper, Yambor, and Beveridge 2002)
to find recording stamps directly from the pixel level data.
However, we were able to obtain 100% accuracy using a
simpler approach based on primitive features (e.g., height,
width and density) of connected components.

Once the stamps were isolated, we used landmark fea-
tures, defined for each county’s stamp, to determine the
placement of key features such as date, recording number
and document type. These segments of text were then iso-
lated and subjected to Tesseract’s OCR.

Although the county specific document type data seems
as though it will immediately solve the classification prob-

Figure 2: Two Documents from the Training Set (some in-
formation blurred to protect privacy)
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Figure 3: Close Up View of County Recording Stamp
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Classifier / Modification Accuracy F.N. Rate
DMNB Text (600 words) 98.77% 1.86%
DMNB w/ whitelist 99.07% 1.44%
DMNB w/ whitelist and stamp rules 99.22% 1.12%

Table 3: Improved Classification

lem, this is not the case. As it happens, the document type
code and the taxonomy of possible document type codes are
county-specific and do not necessarily align with the docu-
ment type taxonomy required by Data Data. Thus, we need
to examine the county-specific taxonomies by extracting
type codes using OCR (this process is imperfect especially
given the small font typically used in these stamps) and then
look for high support, perfect accuracy rules that predict
document relevancy within our own taxonomical classifica-
tion.

Not surprisingly, we cannot do this successfully in all sit-
uations or for all document sub-classes. Some county doc-
ument codes are overly general and include both relevant
and irrelevant documents. Other documents codes are eas-
ily misread by the OCR creating the false impression that a
code is overly general. Despite all of these issues, it turns
out we can create a set of targeted rules that make a statis-
tically significant improvement to the 2-class classification
performance in a subset of cases. Because of their limited
applicability, they are not very useful by themselves. How-
ever, when combined with our previous DMNBtext classi-
fier, they make a notable improvement in accuracy.

Table 3 shows the improved 2-class performance when a
we augmented the 600 word dictionary with: (1) a whitelist
of n-grams directly pulled from relevant document titles
(e.g., “Deed of Trust” “Quit Claim”); and (2) a preprocess-
ing step that uses high-support, perfect accuracy rules to ini-
tially screen documents based on their county-specific type
code.

Information Extraction
While the recording stamp contained some important fields
that would later be incorporated into the database entry, the
typical font sizes used proved to be a limiting factor regard-
ing the accuracy of off-the-shelf OCR. A number of possible
approaches could be explored to improve accuracy includ-
ing: (1) retraining the OCR software on the county-specific
fonts used in the recording stamps; (2) performing image
template matching (Schweitzer, Deng, and Anderson 2011)
using a fixed set of county-specific templates instead of the
more general OCR approach; or (3) looking for the desired
data in other areas of the text document (i.e., outside of the
recording stamp).

The first two options were relatively labor intensive as
they meant training at the county level instead of the cor-
pus level. Given this fact, and the fact that the bulk of the
information we hoped to be able to extract was located in the
document proper, we opted to explore the third option.

To understand the playing field, we used existing database
entries for a number of documents in our corpus to di-
rectly search for matching terms within the OCR’d docu-

ment. Since information extraction clearly relies on the doc-
uments containing the desired data to begin with, we wanted
to verify that the data we were seeking was, in fact, inside
each document. If we were unable consistently find the
database entry within the text document, that would be an
indication that either: (1) the data was obtained from some
external source; or more likely that (2) the OCR software
did not correctly interpret the image and thus produced text
that prevented a match.

We chose seven fields from the database related to prop-
erty addresses (e.g., Primary Address Number, City Name,
etc). We selected these as we expected that all real-estate re-
lated documents would clearly indicate the property address
and may even do so in more than one place, thereby offering
some redundancy. Once we established an upper bound on
performance, we trained a linear-chain Conditional Random
Field (Lafferty, McCallum, and Pereira 2001) on a manually
labeled set of documents to recognize the seven selected ad-
dress fields. We then examined how well we were able to
extract the appropriate labeled fields from within each doc-
ument.

Table 4 illustrates the results of the information retrieval
tasks. The first column indicates the database field under
consideration. The second column indicates the fraction of
documents from the test set from which the text from the
database actually occurs within the OCR’d document. This
represents an upper bound on performance. The third col-
umn represents the fraction of documents in which we were
able to extract the same data from the OCR’d document as
was represented in the database entry. This is recall. The
final column indicates our recall performance relative to the
upper bound.

The key findings from this table are three fold. First, the
target data (aside from the State) is not consistently avail-
able from a direct search of the OCR’d text. In fact, the
data from most critical fields: Primary Address Number and
Street Name, can only be found in 92% and 82% of the test
documents respectively. By itself, this is an indication that
the performance of the OCR system in its off-the-shelf state
is not up to the task of information extraction – at least not
when considered under the standards of practice (> 99%
accuracy). Of course, even these values are an upper bound
on performance and our initial extractors built using Condi-
tional Random Fields fall far short of identifying all of the
address fields within a given document. So, it is not surpris-
ing that without a more extensive training corpus, our re-
trieval performance is well below the upper bound. Finally,
when we consider these results along with the economic im-
pact offered by information extraction, it seems clear that
this task is best left to human labor—at least until we refine
the OCR results and construct a significantly larger labeled
training corpus.

Lessons and Insights
The case study explored in this paper presents some inter-
esting lessons. Principle among these is that although data
mining, machine learning and artificial intelligence are be-
coming household names, there are still substantial opportu-
nities to introduce these technologies into the many business
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Feature Fraction of Fraction of Performance
Data in Text Data Extracted Relative to Upper Bound

Primary Address Number 92% 55% 59%
Directional 71% 62% 88%
Street Name 82% 64% 78%
Suffix 97% 32% 33%
City Name 90% 74% 82%
State 100% 72% 72%
Zip Code 74% 71% 96%

Table 4: Performance of Conditional Random Field on Address Extraction

processes. Moreover, we believe that many of these busi-
ness problems (such as the 2-class categorization) can: 1) be
solved using well-established methods—in our case naive
bayes classifiers; 2) be introduced without ceding all control
to a learning algorithm—in our case, by retaining human in-
put on the data extraction step; and 3) still have a significant
and positive impact on the financial bottom line—in our case
by reducing document processing by roughly 70%.
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