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Abstract
Research in the field of Affective Computing on affect
recognition through speech has used a “fishing expedition”
approach. Although some frameworks could achieve certain
success rates, many of these approaches missed the theory
behind the underlying voice and speech production
mechanism. In this work, we found some correlation among
the acoustic parameters (paralinguistic/non-verbal speech
content) in the physiological mechanism of voice
production. Furthermore, we also found some correlation
when analyzing their relationships statistically. Aligned
with this finding, we implemented our framework using the
K-Nearest Neighbors (KNN) algorithm. Although our work
is still in its infancy, we believe this context-free approach
will bring us forward toward creating an intelligent agent
with affect recognition ability. This paper describes the
problem, our approach and our results.

Introduction
Recent advances in Computer Science have allowed us

to envision the development of smart machines that can be
integrated into our daily activities. In 2001: A Space
Odyssey, the main character HAL (Heuristically
programmed ALgorithmic computer) controls the
spacecraft system with its artificial intelligence. Its original
cognitive circuits are designed to help the astronaut crews
to achieve their missions in Jupiter. However, HAL ends
up killing two crew members and falsifies the causes of
death as accidental. These murders happen because HAL is
unable to resolve an internal conflict between its general
mission and its motives derived from its heuristic
knowledge and logic. If HAL were to exist, its logical rules
could continue to be a threat to many lives and its mission
could be steered away from its original one. Will we allow
it to happen or can we introduce intelligence into these
future machines to avoid such threats?
Affective Computing [1] has inspired many scientists to

work not only in creating machines with linguistic and
mathematical-logical reasoning abilities but also in
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developing agents that demonstrate their own emotions, as
well as recognize affect in other agents, primarily humans.
Here we focus on affect recognition in a human by a
computer (e.g., robot, virtual human, avatar, etc.).
Even though there are no known signals that can be read

directly from the human’s body to tell a computer how
he/she is feeling, several modalities exist that can be used
to detect human’s emotion. Some of them have been
integrated into some machines. These modalities include:
(a) body posture [2], (b) facial expressions [3], (c)
combination of facial expressions and voice [4], (d)
combination of facial expressions, body postures, and
touch [5], (e) physiological signals [6, 7], (f) skin
conductance and galvanic skin response [8], (g) touch [9],
(h) combination of conversational cues, body posture, and
facial expressions [10, 11], and (i) speech [12, 13, 14].
Zeng et al. [15] gives an in-depth overview of the current
state-of-the-art research and the challenges faced by many
scientists in this affect recognition domain.

Related Works
Many researchers have proposed several models of

affect recognition through speech in the past several
decades. Fernandez & Picard [12, 13, 14] designed a
system that automatically recognizes affect through speech
using machine learning techniques. It does this by fusing
three different features: (1) loudness, (2) intonation, and
(3) voice quality. Four emotions were investigated in this
study: fear, anger, joy, and sadness. The overall
recognition rate achieved was 49.4% (compared to 60.8%
rate by human listeners) [12].
Another work by Iliev et al. [16, 17] proposed an

approach that combines (1) the glottal symmetry feature,
(2) Tonal and Break Indices (ToBI) of American English
intonation, and (3) Mel Frequency Cepstral Coefficients
(MFCC) of the glottal signal. Six emotions were
investigated through this study: joy, anger, sadness,
neutral, fear, and surprise. Combining classical features
and ToBI domains led to 64.49% performance accuracy
[16].
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We believe that affect recognition through context-free
speech alone can achieve a certain degree of accuracy. By
integrating several modalities in our human body, we will
be able to have intelligent agents with more accurate and
robust affect recognition capabilities. In this initial work,
the acoustics features were used to classify emotion. In our
future work, the knowledge of the context and the context
shifts during interaction with the agent will be integrated.

Approach
To evaluate the relationships among several acoustics

parameters and their significances for each emotion and to
establish the foundation of our work, a multivariate
statistical analysis using these parameters was performed.

Speech Material
Audio files as part of the Geneva Multimodal Emotional

Portrayal (GEMEP) database [18] were used for this study.
In this corpus, 10 (five male and five female) professional
French-speaking theater actors (mean age of 37.1 years;
age range: 25-57 years) portrayed 18 affective states. Each
speaker in the corpus enacted expression by saying one of
these two pseudo speech sentences (in French): “nekal
ibam soud molen!” (equivalent to a declarative statement
or an exclamation) or “koun se mina lod belam”
(equivalent to a question) for each affective state. Due to
space limitation, interested readers can refer to [18] for
further details on the emotion elicitation technique,
recording procedures and setups, and the statistical analysis
of the perceptual accuracy for the believability,
authenticity, and plausibility.

Voice Source Analysis
Our work focuses on five emotions: anger, joy, fear,

relief, and sadness. From 50 speech samples (five emotions
x 10 speakers), in this initial work, five acoustic
parameters are extracted using Praat voice analysis
software [19]. These include jitter/RapJitter (varying pitch
in the voice, which causes a rough sound), shimmer (a
frequent back and forth change in amplitude from soft to
louder), mean harmonics-to-noise ratio (HNR, the ratio
between multiples of fundamental frequency and the
noise), mean noise-to-harmonics ratio (NHR, the ratio
between multiples of the noise and fundamental
frequency), and mean frequency (mf0, the average of the
sound’s pitch, which shows the highness or lowness of the
human voice, measured in Hertz).

Non-Parametric Statistical Analysis
To assess the relationships among five acoustic

parameters, the Spearman Rank-Order Correlation test was

run across all speakers and emotions using SPSS. The
Spearman Rank-Order Correlation was used when the data
did not pass the monotonicity test or the normality test.
Human visual inspection of the entire scatterplot graphs

shows that all data parameters pass the monotonicity test.
Next, we ran the normality test with our data. Based on the
p-values (0.000, 0.003, and 0.008), all parameters are not
normally distributed as assessed by Shapiro-Wilk’s test (p
< 0.05). Thus, we accepted the alternative hypothesis and
concluded that the data did not come from a normal
distribution.
The Spearman Correlation Test results have suggested

strong positive correlations for mean frequency-HNR
(rs(48) = 0.486), jitter-shimmer (rs(48) = 0.667), jitter-NHR
(rs(48) = 0.735), shimmer-NHR (rs(48) = 0.781) and strong
negative correlations for mean frequency-jitter (rs(48) = -
0.715), mean frequency-shimmer (rs(48) = -0.423), mean
frequency-NHR (rs(48) = - 0.486), jitter-HNR (rs(48) = -
0.680), shimmer-HNR (rs(48) = -0.768), and NHR-HNR
(rs(48) = -0.953).
The Spearman Correlation Test result does not only

provide us with the significant association between each
pair of parameters, but it also gives us the knowledge on
the magnitude and directional changes as their pairs
increasing or decreasing.

Discussion
Our directional and significance results above are also

parallel to the findings in [20, 21] done on the same dataset
but using different approaches. These authors suggested
that “Mf0, Jitter, Shimmer, and HNR are all related to
vocal fold vibration, which would be influenced by vocal
fold length and tension, glottal adduction, and sub-glottal
pressure” [20]. The frequency of vocal fold vibration
represents the number of times the vocal folds open and
close per second, and directly determines the fundamental
frequency (lowest frequency) of the produced sound.
Typically, men’s average fundamental frequency is
approximately 125 Hz, over 200 Hz for women, and over
300 Hz for children [22]. The size of vocal folds also can
affect the fundamental frequency; men have vocal lengths
between 17 and 24 mm and women have the lengths
between 13 mm and 17 mm.
Many speech-language pathologists also have confirmed

experimentally the relationship between these parameters
and the vocal fold vibratory patterns [23, 24, 25]. So what
is the relationship between vocal fold vibratory patterns
and emotion elicitation?
Vocal fold vibration patterns, which are not only

involved in voice production and filtering, also relate
directly to the motor effects of the emotion-related
physiological processes [20]. The vibration patterns for joy
is characterized by high frequency and high subglottal
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Table 1: Experiment Results

pressure while sad is characterized by low frequency, weak
glottal adduction, and low subglottal pressure. On the other
hand, high subglottal pressure, high adduction, and high
frequency are related to fear while anger corresponds to
high subglottal pressure and low shimmer value. These
physiological processes are controlled by the limbic system
of human’s brain, which is activated by autonomic nervous
system and somatic nervous system. The causes and effects
of affect arousal on the vocalization process are
cumbersome. In a highly simplified manner, the autonomic
nervous system (ANS), part of the peripheral nervous
system that controls heart rate, digestion, respiratory rate,
salivation, perspiration, pupil dilation, urination, and
sexual arousal, activates both sympathetic and
parasympathetic systems when they receive commands
from the human’s brain. In parallel, the limbic system also
activates the somatic nervous system (SNS) that controls
the muscle tone and motor commands. The activation of
both ANS and SNS influences other systems such as
respiration, which controls vocal intensity and frequency,
phonation, which controls vocal intensity, frequency, and
quality, and articulation, which controls vocal quality and
resonances (formants). Due to space limitation, readers
interested in more in-depth information on how vocal and
emotional arousal is intertwined can refer to [26].
The fact that the relationships between the mean pitch

(mf0) has negative correlation with both jitter and shimmer
(through the human visual inspection) has also been
confirmed by several investigations for other datasets [27 –
33]. In addition, Orlikoff et al. [33] discovered that the
relationship between jitter and mf0 over the entire range of
phonatory frequency was nonlinear. Our finding on the
relationship’s strength between each pair of emotion
parameters has also been confirmed by [20, 21] that the
mf0 has positive relationship with NHR and negative
relationship with HNR.

Implementation
After establishing the fundamental foundation of our

work through a multivariate statistical analysis, we
describe the implementation of our proposed architecture
next.

Architecture
Fig. 1 shows our

initial architecture.
In this
implementation, the
entire 50 speech
samples of the

GEMEP corpus, used in our statistical analysis, are
utilized in this implementation.

Data Segmentation & Feature Extraction
EasyAlign [34] was used to segment the audio corpus

and generate the training and testing datasets. EasyAlign, a
freely available system with a plug-in to the Praat, a well-
known speech analysis software, includes two external
components: a grapheme-to-phoneme1 conversion system
and a segmentation tool for alignment at the phone level.
The segmentation process produces 188 word segments

whose acoustic parameters (jitter, shimmer, pitch, NHR,
and HNR) are measured using the Praat software. The
dataset distribution is as follows: anger (39 segments), joy
(39 segments), fear (32 segments), relief (38 segments),
and sadness (40 segments). These measured data serve as
the training and testing datasets for the KNN algorithm;
each datum belongs to one dataset only.

KNN Algorithm & Results
A non-parametric method, the KNN algorithm, classifies

the testing data to the most common class amongst its k
nearest neighbors (k is a positive integer, k = 3, k = 5, and
k = 10). From our measured data, N datasets are chosen
randomly; 10, 20, and 30 are the selected values of N for
the testing datasets while using the remaining data, which
are different from the testing datasets, as the training
datasets.
Table 1 shows the average value of the performance

results for given k and N values. Although our results do
not perform to our expectation, this work has given us
good direction to our research effort. Combining this
method with more advanced classification algorithms, such

as Gaussian Mixture Model
(GMM), ARTMAP,
Support Vector Machine
(SVM), we believe that
better performance
accuracy can be achieved.

Conclusion & Future Work
The relationship among several acoustics features using

a multivariate statistical analysis method is presented.
These features have become the inputs to our KNN
algorithm. This simple implementation has shown
promising results. In the future, besides segmenting the
corpus to more refined tiers, phones and syllables, we also
want to integrate this work with other acoustic features and
more advanced classification algorithms to have a more
robust and enhanced affect recognition intelligent agent.

1 Grapheme is a minimal unit of a writing system consisting of sequences
of written symbols to represent phoneme.

Figure 1: Proposed Architecture
Block Diagram
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