
Mining Contextual Preferences in Data Streams

Jaqueline A. J. Papini, Allan Kardec S. Soares and Sandra de Amo
School of Computer Science

Federal University of Uberlândia, Brazil
jaque@comp.ufu.br, allankardec@gmail.com, deamo@ufu.br

Abstract
The dynamic nature of the problem of mining prefer-
ences increasingly requires solutions that quickly adapt
to change. The main reason for this is that most of the
time the user’s preferences are not static and can evolve
over time. In this article we formalize the problem of
mining contextual preferences in the stream setting and
propose two algorithms to solve this problem – an in-
cremental and a non-incremental one. We implemented
these algorithms and showed their efficiency through a
set of experiments over real and synthetic data.

Introduction
Mining data streams is one of the most interesting subjects
of data mining in recent years. A data stream may be seen
as a sequence of relational tuples that arrive continuously
at high speed and variable time. Traditional approaches for
data mining cannot successfully process the data streams
mainly due to the potentially infinite volume of data and
its evolution over time. Consequently, several stream min-
ing techniques have emerged to deal properly with this new
data format (Bifet et al. 2011).

Nevertheless, most of the research on preference mining
has focused on scenarios in which the mining algorithm has
a set of static information on user preferences at its disposal
(Jiang et al. 2008; de Amo et al. 2012). However it is natu-
ral to think on user preferences as something dynamic that
evolves over time. As a motivating example, consider an on-
line news site that wants to discover the preferences of its
users and make recommendations based on that. User’s pref-
erences on news depend on many factors, such as the media
in which the news is available, its category, author and key-
words. Due to the dynamic nature of news, it is plausible that
user’s preferences would evolve rapidly with time. It may be
the case that a news category could attract much attention at
a particular time of the year, for example, political news in
times of elections. Thus, in these times, a user can be more
interested in politics than in sports. However, in times of
Olympic Games, this same user might consider sports as his
or her favorite category.

This work focuses on a particular kind of preferences – the
contextual preferences. Preference Models can be specified

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

under either a quantitative (Crammer and Singer 2001) or a
qualitative (de Amo et al. 2012) framework. In the quanti-
tative formulation, preferences about movies (for instance)
can be elicited by asking the user to rate each movie. In
the qualitative formulation, the preference model consists in
a set of rules specified in a mathematical formalism, able
to express user preferences. In this article, we consider the
contextual preference rules (cp-rules) introduced in (Wilson
2004). A cp-rule allows specifying that some values of a par-
ticular attribute are preferable to others in a given context.

In this article we propose two algorithms (FPSMining
and IncFPSMining) for mining contextual preferences from
preference data samples coming in a stream format. The ex-
periments carried out show that our algorithms are efficient
to mining user preferences in a stream setting and outper-
form the accuracy and comparability rate of the baseline.

Background
In this section we briefly introduce the problem of mining
contextual preferences in a batch setting. Please see (de Amo
et al. 2012) for more details on this problem.

A preference relation on a finite set of objects A =
{a1, a2, ..., an} is a strict partial order over A, that is a bi-
nary relation R ⊆ A × A satisfying the irreflexivity and
transitivity properties. We denote by a1 > a2 the fact that
a1 is preferred to a2. A Preference Database over a relation
R is a finite set P ⊆ Tup(R) × Tup(R) which is consistent,
that is, if (u, v) ∈ P then (v, u) 6∈ P . The pair (u, v), usu-
ally called bituple, represents the fact that the user prefers
the tuple u to the tuple v. Fig. 1 (b) illustrates a preference
database over R, representing a sample provided by the user
about his/her preferences over tuples of I (Fig. 1 (a)).

The problem of mining contextual preferences in the
batch setting consists in extracting a preference model from
a preference database provided by the user. The preference
model is specified by a Bayesian Preference Network (BPN),
defined by (1) a directed acyclic graphGwhose nodes are at-
tributes and the edges stand for attribute dependency and (2)
a mapping θ that associates to each node of G a finite set of
conditional probabilities. Fig. 1(c) illustrates a BPN PNet1
over the relational schema R(A,B,C,D). Notice that the
preference on values for attribute B depends on the context
C: if C = c1, the probability that value b1 is preferred to
value b2 for the attribute B is 60%. A BPN allows inferring

Proceedings of the Twenty-Seventh International Florida Artificial Intelligence Research Society Conference

351

Id A B C D
t1 a1 b1 c1 d1
t2 a1 b1 c1 d2
t3 a2 b1 c1 d2
t4 a1 b2 c1 d2
t5 a2 b1 c2 d1
t6 a3 b1 c1 d1

(a)

(t1,t2)
(t1,t3)
(t4,t5)
(t4,t2)
(t5,t6)
(t3,t5)
(t4,t1)

(b)
(c)

Figure 1: (a) An instance I , (b) A Preference Database P , (c) Preference Network PNet1.

a preference ordering on tuples. The following example il-
lustrates how this ordering is obtained.

Example 1 Preference Order. Let us consider the BPN
PNet1 depicted in Fig. 1(c). In order to compare the tuples
u1 = (a1, b1,c1,d1) and u2 = (a2, b2,c1,d2), we proceed as
follows: (1) Let ∆(u1, u2) be the set of attributes where u1
and u2 differ. In this example, ∆(u1, u2) = {A,B,D}; (2)
Let min(∆(u1, u2)) ⊆ ∆(u1, u2) such that the attributes in
min(∆) have no ancestors in ∆ (according to graph G un-
derlying the BPN PNet1). In this example min(∆(u1, u2))
= {D,B}. In order to u1 be preferred to u2 it is necessary
and sufficient that u1[D] > u2[D] and u1[B] > u2[B]; (3)
Compute the following probabilities: p1 = probability that
u1 > u2 = P [d1 > d2|C = c1] ∗ P [b1 > b2|C = c1]
= 0.6 * 0.6 = 0.36; p2 = probability that u2 > u1 =
P [d2 > d1|C = c1] ∗ P [b2 > b1|C = c1] = 0.4 * 0.4 =
0.16. In order to compare u1 and u2 we select the higher be-
tween p1 and p2. In this example, p1 > p2 and so, we infer
that u1 is preferred to u2. If p1 = p2 we conclude that u1
and u2 are incomparable.

A BPN is evaluated by considering its accuracy (acc) and
comparability rate (CR) with respect to a test preference
database P . The accuracy is defined by acc(PNet,P)= N

M ,
whereM is the number of bituples inP andN is the amount
of bituples (t1, t2) ∈ P compatible with the preference or-
dering inferred by PNet on the tuples t1 and t2. The compa-
rability rate is defined by CR(PNet,P)= F

M where F is the
number of elements of P which are comparable by PNet.
The precision (prec) is defined by prec(PNet,P)= acc

CR = N
F .

Problem Formalization in the Stream Setting
The main differences between the batch and the stream set-
tings concerning the preference mining problem that we ad-
dress in this article may be summarized as follows:

• Input data: to each sample bituple (u, v) collected from
the stream of clicks from a user on a site is associated a
timestamp t standing for the time the user made this im-
plicit choice. Let T be the infinite set of all timestamps.
So, the input data from which a preference model will be
extracted is a preference stream defined as a possibly infi-
nite set P ⊆ Tup(R)×Tup(R)×T which is temporally
consistent, that is, if (u, v, t) ∈ P then (v, u, t) /∈ P .
The triple (u, v, t) (called temporal bituple), represents
the fact that the user prefers tuple u over tuple v at t.

Figure 2: The mining and testing processes through time.

• Output: the preference model to be extracted from the
preference stream is a temporal BPN, that is, a PNett
representing the model state at instant t. At each instant t
the algorithm is ready to return a model PNett updated
with the stream elements until instant t, which will be
used to predict the user preferences at this moment.

• The preference order induced by a BPN at each instant t:
At each instant t we are able to compare tuples u and v
by employing the Preference Model PNett updated with
the elements of the preference stream until instant t. The
preference order between u and v is denoted by >t and is
obtained as illustrated in example 1.

• The accuracy and comparability rate at instant t: The
quality of the preference model PNett returned by the
algorithm at instant t is measured by considering a finite
set Test of preference samples arriving at the system after
instant t, that is, by considering a finite set Test whose
elements are of the form (u, v, t′) with t′ ≥ t. Let P
be the (non temporal) preference database obtained from
Test by removing the timestamp t′ from its elements. The
acc and CR measures of the preference model PNett ob-
tained at instant t are evaluated according to the formulae
given in the previous section applied to the (static) BPN
PNett and the non temporal preference database P .

Fig. 2 illustrates the process of mining and testing the
preference model over time from the preference stream.

Now we are ready to state the problem of Mining Contex-
tual Preferences from a Preference Stream:

– Input: a relational schema R(A1, A2, ..., An), and a
preference stream S over R.

– Output: whenever requested, return a BPNt over R,
where t is the time instant of the request.

Algorithms for Mining Preferences in Streams
In this article we propose two algorithms for mining user
contextual preferences in the stream setting: FPSMining Al-
gorithm and IncFPSMining Algorithm. In order to save pro-
cessing time and memory, in both algorithms we do not
store the elements of the preference stream processed so

352

far, we just collect sufficient statistics from it. In both al-
gorithms, the sufficient statistics are incrementally updated
online for every new element that comes in the preference
stream and the training process is carried out by extracting
a preference model (a BPN) from these statistics. In order
to limit the growth of the statistics, both algorithms perform
the memory management occupied by them. The main dif-
ference between the two algorithms is in the way they build
the preference model (the BPN): the first algorithm builds it
from scratch whenever required, and the second one builds it
incrementally. Example 2 illustrates the sufficient statistics
collected from a preference stream.
Example 2 Sufficient Statistics. Let S be a preference
stream over R(A,B,C) as shown in Fig. 3(c), where the
T column stands for the time when the temporal bituple was
generated, and u1 >ti u2 (u1 is preferred to u2 at ti) for
every temporal bituple (u1, u2, ti) in the preference stream,
for 1 ≤ i ≤ 10. Consider the statistics for attribute C shown
in Fig. 3(a) collected from S until the instant t9. The tables
on the top and on the bottom of Fig. 3(a) show respectively
the context counters and the general counters over C. Con-
text counters account for the possible causes for a particular
preference over values of an attribute, and general counters
stores the number of times that a particular preference over
an attribute appeared in the stream. With the arrival of a tem-
poral bituple l = (u1, u2, t10) the statistics are updated as
follows (see Fig. 3(b)): (1) Compute ∆(u1, u2), which is the
set of attributes where u1 and u2 differ in l. In this example,
∆(u1, u2) = {C}, and so only the attribute C will have its
statistics updated with the arrival of l; (2) Increment context
counters a1 and b6 regarding the preference c2 > c1 (table
on the top of Fig. 3(b)). Notice that in the temporal bitu-
ple l the values a1 and b6 are possible contexts (causes) for
the preference c2 > c1, just because they are equal in both
tuples (u1 and u2). Since we had no context b6 so far, it is
inserted in the statistics; (3) Increment general counter of the
preference c2 > c1 (table on the bottom of Fig. 3(b)).

The FPSMining Algorithm
The main idea of FPSMining (Fast Preference Stream Min-
ing) is to create a preference relation from the most promis-
ing dependencies between attributes of a preference stream.
The degree of dependence of a pair of attributes (X,Y) is
a real number that estimates how preferences on values for
the attribute Y are influenced by values of the attribute X .
Its computation is carried out as described in Alg. 1. In or-
der to facilitate the description of Alg. 1 we introduce some
notations as follows: (1) We denote by T timeyy′ the finite sub-
set of temporal bituples (u1, u2, t) ∈ S, such that t ≤ time,
(u1[Y] = y∧u2[Y] = y′) or (u1[Y] = y′∧u2[Y] = y); (2)
We denote by Stimex|(y,y′) the subset of T timeyy′ containing the
temporal bituples (u1, u2, t) such that u1[X] = u2[X] = x;
Example 3 illustrates the computation of the degree of de-
pendence on the statistics.
Example 3 Degree of Dependence on the Statistics. Let us
consider the preference stream in Fig. 3(c) until instant t10
and the snapshot Q of its sufficient statistics for attribute
C shown in Fig. 3(b). In order to compute the degree of

Algorithm 1: The degree of dependence of a pair of at-
tributes

Input: Q: a snapshot of the statistics from the preference
stream S at the time instant time; (X,Y): a pair of
attributes; two thresholds α1 > 0 and α2 > 0.

Output: the degree of dependence of (X,Y) with respect to
Q at the time instant time.

1 for each pair (y, y′) ∈ general counters over Y from Q,
y 6= y′ and (y, y′) comparable do

2 for each x ∈ dom(X) where x is a cause for (y, y′)
being comparable do

3 Let f1(Stime
x|(y,y′)) = max{N, 1−N}, where N =

4
|{(u1, u2, t) ∈ Stimex|(y,y′) : u1 >t u2 ∧ (u1[Y] = y ∧ u2[Y] = y′)}|

|Stime
x|(y,y′)|

5 Let f2(T time
yy′) = max {f1(Stime

x|(y,y′)) : x ∈ dom(X)}
6 Let f3((X,Y), Q) = max{f2(T time

yy′) : (y, y′) ∈ general
counters over Y from Q, y 6= y′, (y, y′) comparable}

7 return f3((X,Y), Q)

dependence of the pair (A,C) with respect to Q, we first
identify the context counters related to A in Fig. 3(b). The
thresholds we consider are α1 = 0.1 and α2 = 0.2. The
support of (c1, c2) and (c4, c5) are (4 + 3)/10 = 0.70 and
3/10 = 0.30, respectively. Therefore, we do not discard
any of them. Entering the inner loop for (c1, c2) we have
only one set named Sa1|(c1,c2). The support of Sa1|(c1,c2)
is 5/5 = 1.0 and N = 3/5. Hence, f1(Sa1) = 3/5 and
f2(Tc1c2) = 3/5. In the same way, for (c4, c5) we have
Sa2|(c4,c5) with support 2/2 = 1.0 and N = 2/2 = 1.0.
Therefore, f1(Sa2|(c4,c5)) = 1.0 and f2(Tc4c5) = 1.0. Thus,
the degree of dependence of (A,C) is f3((A,C), Q) =
max{3/5, 1.0} = 1.0.

Given this, our algorithm is straightforward and builds a
BPNt from the preference stream using the Alg. 2.

The IncFPSMining Algorithm
The main idea of IncFPSMining is the following: for each
chunk of b temporal bituples arrived (parameter of the algo-
rithm called “grace period”) the current preference model
M built so far is updated. This model M consists of a graph
with some edges e1,e2,...,en, each one with degree of depen-
dence dd measured at the time that M has been constructed.
The gap of an edge ei measures how close dd is from the
minimum limit 0.5, that is, gap = dd− 0.5. Only the edges
having gap sufficiently high are admitted at each update.
The threshold is given by the Hoeffding Bound ε (Hoeffding
1963) associated to the random variable gap. It is computed
as follows:

ε =

√
R2ln(1

δ)

2n , where:

-R is the size of the range of values of the random variableX
associated to the problem considered. In our case,X = gap.
Therefore, the higher value R of gap is 0.5. So, R = 0.5.
-δ is the probability that Xcurrent −Xfuture > ε.
-n is the number of temporal bituples seen so far.

The Hoeffding Bound ensures (with an error probabil-
ity δ) that, if the degree of dependence ddt of an edge e

353

c1 > c2 c2 > c1 c4 > c5

A
a1 3 1 -
a2 - - 2

B
b3 1 - 1
b5 1 - 1

c1 > c2 4
c2 > c1 2
c4 > c5 3

(a)

c1 > c2 c2 > c1 c4 > c5

A
a1 3 2 -
a2 - - 2

B

b3 1 - 1
b5 1 - 1
b6 - 1 -

c1 > c2 4
c2 > c1 3
c4 > c5 3

(b)

u1 u2

T A B C A B C

t1 a1 b3 c1 a1 b3 c2

t2 a1 b3 c2 a1 b5 c1

t3 a2 b5 c2 a1 b3 c1

t4 a2 b3 c4 a2 b6 c5

t5 a1 b5 c1 a1 b5 c2

t6 a2 b3 c4 a2 b3 c5

t7 a1 b3 c1 a1 b5 c2

t8 a2 b5 c1 a1 b6 c2

t9 a1 b5 c4 a2 b5 c5

t10 a1 b6 c2 a1 b6 c1

(c)

Figure 3: (a) Sufficient statistics for attribute C at the time instant t9, (b) Sufficient statistics for attribute C at the time instant
t10, (c) Preference stream S until the time instant t10.

Algorithm 2: The FPSMining Algorithm
Input: R(A1, A2, ..., An): a relational schema; S: a

preference stream over R.
Output: whenever requested, return a BPNt over R.

1 Take a snapshot Q of the statistics from S at t.
2 for each pair of attributes (Ai, Aj), with 1 ≤ i, j ≤ n, i 6= j

do
3 Use Alg. 1 for calculate the degree of dependence dd

between the pair (Ai, Aj) according to Q
4 Let Ω be the resulting set of these calculations, with elements

of the form (Ai, Aj , dd)
5 Eliminate from Ω all elements whose dd < 0.5 (indicates a

weak dependence between a pair of attributes)
6 Order the elements (Ai, Aj , dd) in Ω in decreasing order

according to their dd
7 Start the graph Gt of the BPNt with a node for each attribute
8 for each element (Ai, Aj , dd) ∈ ordered set Ω do
9 Insert the edge (Ai, Aj) in the graph Gt only if the

insertion does not form cycles in Gt

10 Once Gt was created, estimate the tables θt of the BPNt,
using the Maximum Likelihood Principle (see (de Amo et al.
2012) for details) over Q.

11 return BPNt

at instant t satisfies ddt − 0.5 ≥ ε, when the number of
temporal bituples seen so far was n, then in any future
instant tfut its degree of dependence ddfut must satisfy
(ddt − 0.5) − (ddfut − 0.5) ≤ ε. That is, ddt − ddfut ≤ ε
and so ddfut is not very far from the acceptable degree of
dependence at the current instant t. So, the edges that were
introduced in an earlier phase will not have their dd wors-
ened too much in the future, that is, they will not get closer
to the limit 0.5 than before.

This algorithm only considers the statistics related to
edges that have not been inserted in the graph so far. Thus,
we first select edges not belonging to the current graph,
whose dd verifies the Hoeffding Bound condition (gap =
dd − 0.5 ≥ ε). For each of these edges we test if its in-
clusion produces cycles in the graph. If so, we evaluate the
dd of all edges in the cycle, and eliminate the edge with the
worst dd. In case of tie in choosing edges to be eliminated
from the cycle, we always choose to eliminate older edges.
The IncFPSMining algorithm is described in Alg. 3.

Algorithm 3: The IncFPSMining Algorithm
Input: R(A1, A2, ..., An): a relational schema; S: a

preference stream over R.
Output: whenever requested, return a BPNt over R.

1 Let Gt be a graph with a node for each attribute of R
2 for each temporal bituple l of S do
3 Increment n, the number of elements seen until t
4 if n mod grace period = 0 then
5 Compute Hoeffding bound ε
6 Take a snapshot Q of the statistics from S at t
7 for each possible edge ei outside Gt do
8 Use Alg. 1 for calculate the degree of

dependence dd of ei according to Q
9 Let Ω be the resulting set of these calculations, with

elements of the form (ei, dd)
10 Order the elements (ei, dd) in Ω in decreasing order

according to their dd
11 for each pair (ei, dd) ∈ ordered set Ω do
12 if dd− 0.5 ≥ ε then
13 Insert the edge ei in Gt

14 if ei has created cycle in Gt then
15 Remove from Gt the edge with lower

dd in the cycle
16 Once Gt was created, estimate the tables θt of the

BPNt, using the Maximum Likelihood Principle
(see (de Amo et al. 2012) for details) over Q.

Experimental Results
In this section we describe the results concerning the per-
formance of our algorithms over synthetic and real datasets.
The algorithms were implemented in Java and all the exper-
iments performed on a Windows 7 machine with 3.40 GHz
clocked processor and 12 GB RAM.

We adapted the statistical significance technique de-
scribed in (Tan, Steinbach, and Kumar 2005) for our pref-
erence mining task on data stream. For this approach, we
need to use a t-distribution to compute the confidence in-
terval for the true difference between the algorithms: dcvt =
d ± γ, where d is the average difference of the experiment,
γ = t(1−α),neval−1×σ̂dcv and σ̂dcv is the standard deviation.
The coefficient t(1−α),neval−1 is obtained from a probability
table with two input parameters, its confidence level (1−α)
and the number of degrees of freedom (neval − 1).

354

IncFPS. FPS.
Stream acc CR prec acc γ CR γ prec

10m and 10att 0.95236 1.000 0.95236 0.95151 3×10−4 0.999 3×10−4 0.95238
10m and 15att 0.94762 1.000 0.94762 0.94673 3×10−4 0.999 3×10−4 0.94759
50m and 10att 0.95239 1.000 0.95239 0.95162 1×10−4 0.999 1×10−4 0.95239
50m and 15att 0.94765 1.000 0.94765 0.94678 1×10−4 0.999 1×10−4 0.94763

100m and 10att 0.95240 1.000 0.95240 0.95160 9×10−5 0.999 9×10−5 0.95240
100m and 15att 0.94771 1.000 0.94771 0.94684 1×10−4 0.999 1×10−4 0.94768

(a)

0 2 · 107 4 · 107 6 · 107 8 · 107
0.9

0.92

0.94

0.96

0.98

training instances processed

ac
c

(b)

0 2 · 107 4 · 107 6 · 107 8 · 107
2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

training instances processed

re
fr

es
h

m
od

el
tim

e(
s)

FPS. IncFPS.

(c)
Figure 4: Experimental Results on Synthetic Data.

The Experiments Protocol. We adapted the sampling tech-
nique proposed by (Bifet et al. 2011) (based on holdout for
data stream) to the preference mining scenario. This sam-
pling technique takes three parameters as input : ntrain,
ntest and neval. The ntrain and ntest parameters represent,
respectively, the number of elements in the stream to be
used to train and test the model at each evaluation. The
parameter neval represents the number of evaluations de-
sired along the stream. For example, let us consider the val-
ues1 ntrain = 10k, ntest = 1k and neval = 9090. Consider
S = {e1, e2, e3, ...} the preference stream used in the tests.
The dynamic of the evaluation for this example is as follows:
(1) elements e1 to e10k from S are used to train the model;
(2) elements e10001 to e11k are used to test the quality of the
model. The acc, CR and prec of the model are calculated
according to this test period; (3) elements e11001 to e21k are
used to train the model, and so on for 9090 cycles.

Synthetic Data. The synthetic data were generated by an
algorithm based on Probabilistic Logic Sampling (Jensen
and Nielsen 2007), which samples bituples for a preference
stream S given a BPN with structure G and parameters θ.
We have considered different BPNs varying the number of
attributes (10, 15) and the stream length2 (10m, 50m, 100m);
the size of the domain for each attribute is 10.

The values for the holdout parameters are ntrain = 10k
and ntest = 1k. For tests with 10m, 50m, 100m of ele-
ments, we used neval10m = 909, neval50m = 4545 and
neval100m = 9090. For all tests, we used α1 = 0.2 and
α2 = 0.1 (thresholds used in the degree of dependence).
The choice of the parameters α1 and α2 depends on the data
used in the tests and in this article they were chosen through
an experimental study. The default values for IncFPSMining
are δ = 10−7 (value usually used by the research commu-
nity of data stream mining) and grace period = 1k. The value
of grace period (1k) was defined according to ntrain (10k),

11k = 1000.
2We often abbreviate million by m in the text.

so that would be performed ten updates in the model built so
far along each period of training of the holdout protocol.
1. Performance Analysis. Fig. 4(a) shows the average values
of acc, CR and prec obtained with FPSMining and IncFPS-
Mining for streams with different sizes and numbers of at-
tributes. The quality of both algorithms remained stable over
the six different streams. In this test we also calculated
the statistical significance regarding the slight improvement
presented by IncFPSMining compared to FPSMining. Our
question is: At α = 95%, can we conclude that IncFPS-
Mining outperforms FPSMining? The null and alternate hy-
potheses for acc and CR are H0 : IncFPS ≤ FPS and
HA : IncFPS > FPS. The results show that H0 is re-
jected, and thus, HA is substantiated. Thus, although the
difference between the algorithms is very small, it is statisti-
cally significant. Fig. 4(b) illustrates how acc of FPSMining
evolves over time. Here we consider the stream with 100m
of elements and 10 attributes of Fig. 4(a). This curve shows
that the acc values of FPSMining were stable over time and
also were very close to the average values (Fig. 4(a)).
2. Execution Time. Fig. 4(c) shows the time measured in sec-
onds taken by FPSMining and IncFPSMining to generate the
model at each refresh point. The same data used in the exper-
iment (b) have been considered here. Notice that the time to
refresh the model is very small for both algorithms, on the
order of milliseconds. Notice also that for both algorithms
the time remains almost constant with increasing number of
training instances processed, mainly due to the efficiency of
the memory management used. Finally, notice that IncFPS-
Mining needs less time to generate the model, due to the
incremental building of the graph of the BPN.

Real Data. In these tests we considered data containing
preferences related to movies collected by GroupLens Re-
search from the MovieLens web site3 concerning ten differ-
ent users (named Ui, for i = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10). We
simulated preference streams from these data, as follows: we

3Available at http://movielens.umn.edu

355

FPS. Hoeffding Tree Naive Bayes
User Tuples acc CR prec acc γ CR γ prec acc γ CR γ prec
U1 7359 0.658 0.930 0.707 0.360 0.033 0.642 0.027 0.546 0.353 0.021 0.492 0.027 0.713
U2 7046 0.583 0.823 0.708 0.418 0.039 0.662 0.055 0.634 0.391 0.036 0.561 0.052 0.694
U3 5167 0.597 0.944 0.634 0.325 0.041 0.596 0.041 0.521 0.267 0.032 0.407 0.058 0.662
U4 4483 0.600 0.930 0.648 0.376 0.051 0.664 0.043 0.541 0.281 0.050 0.477 0.056 0.591
U5 4449 0.605 0.906 0.667 0.333 0.037 0.638 0.035 0.523 0.242 0.044 0.402 0.063 0.611
U6 4165 0.591 0.943 0.627 0.312 0.056 0.551 0.085 0.484 0.248 0.050 0.362 0.059 0.690
U7 3755 0.680 0.918 0.743 0.390 0.033 0.661 0.037 0.558 0.399 0.027 0.546 0.044 0.728
U8 3414 0.617 0.900 0.691 0.362 0.067 0.609 0.084 0.525 0.355 0.025 0.543 0.037 0.650
U9 3187 0.584 0.906 0.646 0.324 0.072 0.649 0.085 0.476 0.306 0.059 0.516 0.087 0.597
U10 3164 0.610 0.912 0.668 0.394 0.075 0.622 0.075 0.589 0.302 0.052 0.481 0.049 0.619

Table 1: Baseline with Real Data.

stipulated a time interval λ, and each tuple in the dataset Di

of movies evaluated by the user Ui was compared to all oth-
ers movies of Di in a radius λ relative to its timestamp, thus
generating temporal bituples for each user Ui. The resulting
preference stream Si has five attributes (director, genre, lan-
guage, star and year), and its elements correspond to pref-
erences on movies concerning user Ui. For example, the
dataset D1 is constituted by movies evaluated by the user
U1 from 5th Aug 2001 to 3rd Jan 2009.
Baseline. We did not find any published algorithm that ad-
dresses the exact same problem we address. As in data min-
ing the classification task is the closest to mining prefer-
ences, we adapted a baseline with classifiers to compare the
performance of our algorithms. In this approach, the classes
are the ratings given by the users to the movies and can take
the values: 1, 2, 3, 4 or 5. We designed this baseline so that
in each cycle of the holdout, the sets of training and testing
samples of our algorithms contain the same movies used by
the classifiers. This ensures a fair evaluation process.

Table 1 compares the performance of FPSMining with
two baselines widely used in the literature: Hoeffding Tree
and Naive Bayes. We ran IncFPSMining on these same data,
performing tests with both hypotheses: 1) assuming that
FPSMining is strictly better than IncFPSMining and 2) vice
versa. Both hypotheses were rejected, which leads us to con-
clude that our two algorithms have tied in these data. There-
fore, we showed only the results for FPSMining in Table
1. For these experiments, we used the MOA (Bifet et al.
2010) implementation of Naive Bayes and Hoeffding Tree
in the default configuration parameters4. The values for the
holdout parameters were ntrain = 150 and ntest = 100.
For FPSMining we used α1 = 0.2 and α2 = 0.1. For
these experiments, the main question is: At α = 95%, can
we conclude that FPSMining outperforms the other meth-
ods? The null and alternate hypotheses for acc and CR are
H0 : FPS ≤ HT , NB and HA : FPS > HT , NB.
The results show that H0 is rejected, and thus, HA is sub-
stantiated. This shows that FPSMining outperforms both al-
gorithms used as baseline. We also calculated the statis-
tical significance of the difference between IncFPSMining
and the two baselines, and we have concluded that IncFPS-
Mining outperforms both. Thus, we can conclude that our

4Hoeffding Tree: gracePeriod g = 200, splitConfidence c =
10−7, tieThreshold t = 0.05, numericEstimator n = GAUSS10.

algorithms, which were specifically designed for preference
mining, perform better than classical classifiers.

Conclusion and Further Work
In this article we introduced the problem of mining user
preferences in the stream setting and proposed the algo-
rithms IncFPSMining (incremental) and FPSMining (non-
incremental) to solve it. Both algorithms were implemented
and a varied set of experiments showed that both are fast and
produce satisfactory results. As a future work, we intend to
study the behavior of both algorithms under stream data af-
fected by concept drift.

Acknowledgments
We thank the Brazilian Research Agencies CNPq and
FAPEMIG for supporting this work.

References
Bifet, A.; Holmes, G.; Kirkby, R.; and Pfahringer, B. 2010.
MOA: Massive Online Analysis. J. Mach. Learn. Res. 11:1601–
1604.
Bifet, A.; Holmes, G.; Kirkby, R.; and Pfahringer, B. 2011.
Data stream mining: A practical approach. Technical report,
The University of Waikato.
Crammer, K., and Singer, Y. 2001. Pranking with ranking. In
Proceedings of the NIPS 2001, 641–647.
de Amo, S.; Bueno, M. L. P.; Alves, G.; and Silva, N. F. 2012.
CPrefMiner: An algorithm for mining user contextual prefer-
ences based on bayesian networks. In Proceedings of the ICTAI
’12, 114–121.
Hoeffding, W. 1963. Probability inequalities for sums of
bounded random variables. J. Amer. Statist. Assoc. 58:13–30.
Jensen, F. V., and Nielsen, T. D. 2007. Bayesian Networks and
Decision Graphs. Springer Publishing Company, 2nd edition.
Jiang, B.; Pei, J.; Lin, X.; Cheung, D. W.; and Han, J. 2008.
Mining preferences from superior and inferior examples. In
Proceedings of the KDD ’08, 390–398.
Tan, P.-N.; Steinbach, M.; and Kumar, V. 2005. Introduction to
Data Mining, (First Edition). USA: Addison-Wesley Longman
Publishing Co., Inc.
Wilson, N. 2004. Extending cp-nets with stronger conditional
preference statements. In Proceedings of the National Confer-
ence on Artifical Intelligence, AAAI’04, 735–741.

356

