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Abstract 
We study in this paper how explicit user feedback can be 
used by a case-based reasoning system to improve the 
quality of its retrieval phase. More specifically, we explore 
how both ranking feedback and relevance feedback can be 
exploited to modify the weights of case features. We 
propose some options to cope with each type of feedback. 
We also evaluate, in an interactive setting, their impact on a 
travel scenario where some user provides feedback on a 
series of queries. Our results indicate that the combined 
weight-learning scheme proposed in this paper succeeds, on 
average, to assign more weights to the features used to 
formulate relevance and ranking feedback. 

 Introduction  
To be useful, a case-based reasoning (CBR) system must 
provide recommendations that meet the information needs 
of its users. In most CBR systems, the quality of the 
recommendations strongly depends on how case similarity 
is evaluated. However, it is difficult to determine at design 
time a generic similarity configuration that will be 
satisfying for most situations encountered by the system. 
Moreover, this configuration might have to be personalized 
for multiple users having different needs, interests and 
preferences.  
 Our objective is to study how CBR systems can improve 
the quality of their content-based recommendations by 
learning from their interactions with human users during 
online retrieval sessions. Given some preliminary retrieval 
results made by the system, we would like the CBR system 
to self-adapt its retrieval knowledge to the on-line feedback 
of a specific user.  
 In this paper, we address the problem of learning the 
weights of case features when the system is provided with 
mixed feedback. More specifically, we propose an 
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optimization scheme that combines techniques to cope 
with both relevance feedback and ranking feedback.  
 This approach is useful for CBR applications where case 
solutions are complex objects. For instance, one of our 
applications is the support of intelligence operations where 
products such as likely events and courses of actions are 
recommended based on the similarity of past operational 
situations. In this scenario, human feedback is required to 
assess the retrieval results. As this revision process is 
usually tedious, we assume that CBR self-adaptation has to 
be conducted on a limited amount of feedback. 

Learning Weights Based on User Feedback  
We assume that some user is responsible to train the CBR 
system according to its own needs and preferences. As we 
do not assume that the user is familiar with CBR 
technology, training of the system is solely accomplished 
by critiquing the recommendations made by the CBR 
retrieval component. A training episode would proceed as 
follows (Figure 1):  
a) The trainer (i.e. the user) submits a query to the CBR 

system and gets some recommendations (retrieval 
results). We assume that case similarity is estimated as 
a weighted average of the local similarity measures of 
the case features; 

b) The trainer analyzes the recommendations and, if not 
satisfied, provides some feedback on the validity 
and/or the relative importance of the cases presented in 
the retrieval results;  

c) A learning component then takes the recommendations 
of the system and the feedback of the user to 
determine how the similarity configuration of the 
system should be modified. A similarity configuration 
contains all the functions and parameters necessary to 
estimate the similarity between two cases.  

 Once the similarity configuration of the system is 
updated, the user can submit new queries and proceed 
again with steps a) to c) to further refine the similarity 
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configuration. Such a process would be repeated until the 
user is satisfied with the quality of the recommendations 
provided by the CBR system. 

As the user might use have strict criteria and soft 
preferences for evaluating retrieval results, we want the 
system to handle two types of explicit feedback: ranking 
feedback and relevance feedback. 

Ranking feedback allow the user to reorder the results as 
a function of his perceived similarity to the current 
situation. In our experiments, the user is able to perform re-
ranking by using some graphical user interface to move a 
selected retrieval result up or down.  Relevance feedback is 
done by tagging results as either “relevant”, “irrelevant”, 
or as “unknown” (the latter indicating that the user is 
uncertain about the relevance of a case).  

 
Figure 1: Learning weights from user feedback 

The objective of the system is to modify the weights of 
the similarity measure to obtain a new ordering of cases 
that reflects the specified feedback. This is accomplished 
by using the techniques discussed in the next sections. 

Learning from Ranking Feedback 
Given a list of cases retrieved by the CBR system that are 
presented in decreasing value of similarity, a user can 
provide a ranking feedback describing the ordering of 
cases he would have liked to get from the system. An 
example of ranking feedback is presented in Figure 2.  

The new ordering of cases provided by the user indicates 
that, for any two consecutive cases, the first should either 
have a higher rank or be ranked equal to the other. The 
latter occurs either when two cases are considered 
equivalent (e.g. having similar feature values) or when the 
user has no specific preference over two cases. Hence a 
ranking feedback does not necessarily require a strict total 
order of the cases. It is also important to mention that the 
feedback of the user only applies to the cases returned as 
retrieval results by the CBR system.  

 
Figure 2: Example of Ranking Feedback 

 To modify the ranking of some cases, we need to modify 
the global similarity of each case c with the 
query q such that the ranking of the system becomes 
identical to the ranking of the user. In our work, this 
similarity is estimated as the weighted sum of the local 
similarities , i.e. 

 .    
 

 Given a ranking feedback from the user, we want to 
determine a new set of weights  such that if 

 then  
where  

 . 
 
The general algorithm to update the weights is described in 
Figure 3. The LEARN-RANKING-WEIGHTS algorithm is a 
heuristic search that tries to adjust feature weights so that 
the cases returned by a CBR component have the same 
order as those in the ranking feedback. This algorithm 
relies on three functions: 
- UPDATE-WEIGHTS modifies the weights according to 

the differences between the retrieval results and the 
ranking feedback provided by the user. 

- RERANK-CASES evaluates, using a set of weights, the 
similarity of cases with the query problem. In practice, 
this function simply invokes the retrieval phase of the 
CBR component with the cases that were contained in 
the initial retrieval results.  

- ESTIMATE-ERROR estimates to what extent the ranking 
in the retrieval results diverges from the ranking 
feedback.  
 

function LEARN- RANKING-WEIGHTS(query,  
               retrievalResults, weights, feedback) returns weights   

cases the k nearest cases contained in retrievalResults. 
 repeat until some stopping criterion is satisfied 
     weights  UPDATE-WEIGHTS(weights, retrievalResults,  
                 feedback);  
     results  RERANK-CASES(query, cases, weights);  
     error  ESTIMATE-ERROR(results, feedback); 
 return weights 
Figure 3: General algorithm for learning weights from ranking 

feedback

LEARN-RANKING-WEIGHTS iteratively tries to find a 
promising set of weights, determine the new case ranking 
obtained with these weights and determine if this new 
ranking still contains errors. These were repeated steps 
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until a combination of the following stopping criteria is 
satisfied:  
• There is no more ranking error (as estimated by the 

ESTIMATE-ERROR function); 
• The algorithm has completed N iterations (N being a 

threshold value defined by the system designer);  
• The ranking error is small and does not get further 

reduced over multiple iterations. 

Estimation of the Learning Error  
A ranking error occurs when two cases are not respectively 
ranked as recommended by the ranking feedback. For 
instance, as illustrated in Figure 4, the user would have 
liked that the ranking of cases c2 and c4 to be inversed in 
the retrieval result.  

 
Figure 4: Ranking error between cases c2 and c4 

The estimation of the ranking error for two wrongly 
ranked cases ci and cj could be estimated using the 
following measures: 
• The difference of similarity between the two cases. In 

our example, the similarity difference is 0.53. 
• The number of ranks separating the pair of cases. In 

our example, c2 and c4 are separated by 2 ranks. 
• A combination of both errors. For instance:  

 

function ESTIMATE-ERROR(results, feedback) returns weights  
 cases  the k nearest cases contained in the results.  
 totalError  0.0; 
 for each case1 in cases 
  for each case2 following case1 in cases 

if (WRONG-RANKING (case1, case2, results, feedback))
          simError =  sim(case1) – sim(case2) 
          rankError = rank(case2) – rank(case1) 
  totalError  totalError + (simError * rankError)  
 return totalError 

Figure 5: Error estimation function 

In our work, we use the latter error definition and the 
total error over all the wrong rankings in the retrieval 
results of the CBR system as estimated by the ESTIMATE-
ERROR function described in Figure 5.  

Learning to Rerank 
To learn new weights from ranking feedback, we adopted a 
gradient descent approach [Stahl 2001]. Gradient descent is 

an optimization method that search for a local optimum by 
modifying a solution step by step. The modifications made 
at each step are proportional to some gradient values, 
which is a quantity estimating to what extent a feature 
contributes to the total ranking error.  
 

function LEARN-WEIGHTS-GRADIENT(query, retrievalResults, 
weights, feedback) returns weights 
   bestWeights  0 
   lowestError  ESTIMATE-ERROR(retrievalResults, feedback); 
   repeat until  (error  0) or (nbIterations > MAX_STEPS) 
  newWeights  UPDATE-WEIGHTS -GRADIENT(bestWeights,   
                                   retrievalResults,  feedback, learningRate);  
  results  RERANK-CASES(query, cases, newWeights);  
  newError  ESTIMATE-ERROR(results, feedback); 
  if  (newError < lowestError) 
  bestWeights  newWeights 
  lowestError  newError 
  else 
  learningRate   learningRate * scalingFactor 
  increment nbIterations 
 return bestWeights 

Figure 6: Learning weights from ranking feedback using gradient 
descent 

function UPDATE-WEIGHTS -GRADIENT(weights,   
         retrievalResults, feedback, learningRate) returns weights  
 for each weight in weights    
      gradient  COMPUTE-GRADIENT(retrievalResults,  
                            feedback, feature);  
       newWeight  weight + (learningRate  gradient) 
       add newWeight to newWeights 
 return NORMALIZE(newWeights) 
 
function COMPUTE-GRADIENT(retrievalResults, feedback, 
                         feature) returns double  
 cases  the list of cases from retrievalResults 
 gradient  0.0;  
 for each case1 in cases  
    for each case2 following case1 in cases  
         if (WRONG-RANKING (case1, case2, results, feedback)) 
          simDiff =  simfeature(case1) – simfeature(case2) 
          rankDiff = rank(case1) – rank(case2) 
   gradient  gradient + (simDiff * rankDiff)   
 return gradient 

Figure 7: Updating weights using gradient descent 

 More formally, the gradient is obtained from the first 
derivative of the total ranking error function with respect to 
each weight variable. To minimize the ranking error, we 
update each feature weight  by making a step 
corresponding to the inverse of the gradient (i.e. we follow 
the opposite direction of the slope of the error function to 
reach some minimum point). The resulting update function 
corresponds to the sum of the local errors for each inverted 
pair of cases, i.e.  

 

where is the set of wrongly ranked pairs of cases and 
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 . 

A pseudo-code description of the algorithm is provided 
in Figure 6 and Figure 7. The learning rate  is a small 
positive value that regulates the changes made to the 
weights. Usually the learning rate is adjusted empirically 
by conducting trials on a representative domain case base. 
We found in our experiments that a small value should be 
selected to prevent the algorithm from bouncing back and 
forth over a local optimal set of weights. A scaling factor, 
between 0 and 1, is used to decrease the learning rate when 
weight updates fails to reduce the error rate.  

Learning from Relevance Feedback
We describe in this section how to adjust the weights of the 
CBR system when a user provides some feedback on the 
relevance of some cases.  

Relevance Feedback 
The idea of relevance feedback is to get the user to indicate 
that some cases should either be present or not present in 
the retrieval results. In general, relevance should indicate if 
a case meets some user’s information needs. However, in 
practice, a case might be judged irrelevant for one of the 
following reasons:  
a) The value of one important feature is not acceptable.  
b) Some combinations of feature values do not go well 

together. 
c) The solution of a case is not useful. 

With respect to weight optimization, the reasons a) and 
b) indicate that more weight should be assigned to the 
features used to determine the relevance of a case. 
However reason c) is more complex as it relates to the 
utility of a case. While we expect case utility to be 
proportional to case similarity, it cannot be fully 
guaranteed in practice. Hence, relevance feedback should 
work well if the feedback given by user is solely based on 
the features of the case problems.  

Rocchio Update 
The field of Information Retrieval (IR) [Manning et al. 
2009] has studied for many years how to cope with 
relevance in retrieval systems. Their main intuition was 
that the keywords of a query should be assigned a higher 
weight if they appear in relevant documents. Conversely, 
they should be penalized if they appear frequently in non-
relevant documents.  

We adapted this intuition to case-based reasoning as 
follows: features assigning higher similarity values to 
relevant cases should see their weight increased while 

weights of other features should be decreased. Extending 
the Rocchio equation proposed in the IR literature, we 
propose the following update function to adjust weights 
based on relevance feedback: 

 

 

where casesREL is the group of relevant cases and casesNR is 
the group of non-relevant cases. This relevance feedback 
update function has the effect of modifying the feature 
weights so that the query problem q is moved closer to the 
centroid of the relevant cases and moved away from the 
centroid of the non-relevant cases.  
 The parameters  and  determine the relative important 
of relevant cases to irrelevant ones. In practice, values such 
as  and  are frequently used. But we 
recommend determining them empirically on a 
representative data set.  
 It is important to mention that this approach does not 
require an iterative algorithm as the learning algorithm 
presented for coping with ranking feedback. Given some 
retrieval results and a relevance feedback, the update 
function is applied only once to each feature weight. 

Pseudo-ranking Approach 
A relevance feedback suggests some observations on the 
desired ranking of the cases. First, we would expect the 
group of relevant cases to be returned at the top of the case 
ranking. For instance, in our example presented in Figure 
8, relevant cases c1 and c5 should be the most highly 
ranked cases. Even if ranked first, it is impossible to 
determine a strict total ordering among the relevant cases 
solely based on their relevance value. Hence we considered 
that they should all have the same rank (rank 1).  

 
Figure 8: Relevance feedback as a pseudo-ranking 

In contrast, non-relevant cases should have lower 
similarities than those of the relevant group and be located 
at the bottom of the case ranking. For instance, c2 and c3 
should not precede c1 and c5.    

 This leaves the remaining group of cases for which 
we do not have a relevance feedback (c4 in our example). 
One option would be to ignore these “unknown” cases 
during the learning process. However we believe that some 
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valuable information resides in the fact that these cases are 
neither relevant nor non-relevant. We assume that the 
similarity of the “unknown” cases should be lower than 
those of the relevant group and higher than those of the 
non-relevant. This implies that they should be ranked as an 
intermediate group in-between relevant and irrelevant case.  

Given that a relevance feedback can be interpreted as a 
pseudo-ranking of three groups of cases (relevant, 
unknown and irrelevant), it becomes possible to apply a 
gradient descent algorithm to learn weights from relevance 
feedback. However, to do so, we need to refine the notion 
of error. A pseudo-ranking error occurs if:  
- Two cases do not have the same relevance feedback;  
- And the case with lower relevance has a higher 

similarity value than the other. 

Learning with Combined Feedback 
To learn weights when both types of feedback are provided 
by the user, we simply adopt a cascade of learners where: 
• Cases are ranked first based on the ranking feedback. 

Gradient descent is applied to establish this ranking. 
• The resulting weights are then updated using the 

modified Rocchio update function to take into account 
the relevance of the cases. 

This first step of this scheme ensures that a suitable set 
of weights is selected to respect the relative ranking 
desired by the user. This approach also offers the 
advantage that a pseudo-ranking optimization can be 
conducted if the user only provides some relevance 
feedback.  

The second step, where a relevance feedback update is 
applied to the ranking weights, aims to reduce further the 
global similarity of the non-relevant cases so that it would 
leave some opportunity to insert new cases in the retrieval 
results during successive search over the entire case base. 

Empirical Study 
To study the behavior of the proposed weight-learning 
scheme, we conducted experiments in an interactive setting 
to evaluate how user feedback were translated into feature 
weights. The training sessions made use of the travel case 
base1, a data set containing an interesting variety of feature 
types (numerical, categorical, ontological…). The training 
scheme and the learning algorithms described in the paper 
were implemented in Java. We also made use of jCOLIBRI 
[Recio-Garcia et al. 2008] as a CBR framework to perform 
case retrieval and to obtain the retrieval results needed by 
the weight learning algorithms.  

                                               
1 The travel case base contains 1024 cases defined with 7 problem 
features (holiday type, number of persons, region, transportation mean, 
duration, season, accommodation) and 2 solution features (hotel & price).  
This case base is available at http://www.cs.auckland.ac.nz/~ian/CBR/.  

 Each of our training sessions followed this procedure:  
1. The human trainer selects some features to 

determine the relevance and ranking of the cases. 
2. The trainer submits a query to the CBR system and 

analyzes the retrieval results. In our experiments, 
the 5 top-ranked cases were presented.  

3. The trainer formulates relevance and ranking 
feedback based on the features selected in step 1.  

4. The learning scheme updates the weights and stored 
them in the similarity configuration to be reused for 
other training episodes. In our experiments, we used 
a learning rate of 0.1, a scaling factor of 0.5, 

 and .  
5. Steps 2-4 are repeated with new queries until the 

ranking and relevance of the results are deemed 
satisfactory by the trainer.  

 
 The results presented in this section are the average 
values obtained over 5 different training sessions.  
 In our first experiment, we use a single feature (holiday 
type) to determine the relevance of a case. To be relevant, a 
case must have the same feature value as the query. We 
also use another feature (season) to establish the relative 
ranking of the cases. A ranking feedback corresponds to 
the cases ranked in decreasing order of similarity for this 
feature. The training results, presented in Figure 9, clearly 
indicates that the learning scheme recognizes, within 2 or 3 
user queries, the two features used to formulate the 
feedback. It is interesting to observe that most of the 
weight is assigned to the feature associated to relevance 
(holiday type). We also notice that the feature assigned to 
ranking feedback (season), is assigned sufficient weight by 
the learning scheme to act as a soft constraint.   

 
Figure 9: Weight learning results with relevance and ranking 

feedback determined using one feature each.  

 We repeated the same experiment using two features to 
determine the relevance of a case (holiday type and season) 
and one feature to establish case ranking (accommodation). 
Again the features used to establish case relevance were 
quickly recognized through learning and are assigned most 
of the global weight (see Figure 10). In practice, most of 
the recommendations become relevant after a few training 
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episodes. We also observed that the learning scheme 
assigns sufficient weight to the ranking feature 
(accommodation) to get a consistent case ordering in most 
situations. However we noticed during our training 
sessions that the gradient learner sometimes had difficulty 
to perform its optimization satisfactorily.  

Figure 10: Weight learning results for relevance and ranking 
feedback established from 3 features. 

Part of this problem is due to the error estimation 
function. If two cases have inverted ranks but also have the 
same global similarity score, the training scheme estimates 
that there is no error as the difference of similarity is null. 
In these conditions, weight learning does not get applied. 
This relates to the fact that ranking feedback corresponds 
to non-strict partial rankings. Other criteria to force 
optimization in these situations should be studied.  

Another problem occurs when some features get 
assigned a weight of 0. These features have no more 
influence on the ranking of the cases. It then becomes 
difficult in the following training episodes to reassign them 
some weight. As fewer features contribute to similarity 
estimation, the likelihood of having multiple cases with the 
same similarity score is increased - which brings us back to 
the problem with the error estimation function. 

Related Work 
Early work in this research direction was dedicated to the 
modification of feature weights when CBR is applied to 
classification tasks. [Wettschereck & Aha 1997] compared 
various learning algorithms based on a leave-one out 
evaluation of the cases to estimate the classification 
accuracy of a CBR retrieval component. In [Bonzano et al. 
1997], learning is used to update feature weights in order 
to optimize the problem-solving performance of a CBR 
system. [Branting 2003] proposed an approach to 
determine feature weights by looking at selections from a 
set of items. Feature weights are modified by 
adding/subtracting fixed values so that selected items are 
moved higher in the recommendation list. Our presentation 
of the gradient descent approach to learn weights from 
ranking feedback is inspired from the work of Armin Stahl 

[Stahl 2001]. The topic of user preferences has also been 
studied for recommender systems [Bridge et al. 2005] and 
conversational CBR [Aha et al., 2005]. Our research effort 
differs from previous work as it incorporates both 
relevance and ranking feedback to learn CBR feature 
weights. We also make use a modified formulation of 
Rocchio relevance feedback to update CBR feature 
weights. 

Conclusion
In this paper, we explored how CBR weight learning can 
be conducted for both ranking and relevance feedback. We 
proposed to combine techniques to consider both types of 
feedback simultaneously. Experiments conducted to 
evaluate the algorithms clearly indicate that the learning 
scheme can recognize within a few sessions the features 
used to formulate both types of feedback.  

As future work, we recommend to experiment with more 
complex learning schemes to estimate their benefits. For 
instance, stochastic gradient descent seems to be an 
interesting candidate. Other error estimation functions 
should be studied to force weight optimization when 
multiple cases have the same global similarity. Finally, to 
improve the robustness of the solutions, we would like to 
integrate past feedback into the learning scheme using 
some decay functions for preferences change over time. 
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