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Abstract
We propose a novel approach for performance predic-
tion of OWL reasoners that selects suitable, small on-
tology subsets, and then extrapolates reasoner’s perfor-
mance on them to the whole ontology. We investigate
intercorrelation of ontology features using PCA and dis-
cuss various error measures for performance prediction.

Introduction
An ontology is a machine-processable representation of
knowledge about a domain of interest. Ontologies are en-
coded in knowledge representation languages which are for-
mally based on logic. A common ontology language is the
Web Ontology Language (Horrocks, Patel-Schneider, and
Van Harmelen 2003), OWL. We consider only OWL ontolo-
gies. Since an ontology is essentially a set of logical formu-
lae, one can reason over it. As a result, one can derive infer-
ences, or entailments, encoding implicit knowledge. Tools
that implement reasoning services are called reasoners. A
standard service invoked by ontology engineers is ontology
classification, i.e. the computation of an inferred class hier-
archy.1 We focus on ontology classification.

Although there exist many reasoners, there is no sin-
gle reasoner that performs best on all given inputs. The
same ontology may take just several seconds to reason over
for some reasoners and require hours to process for oth-
ers (Gonçalves, Parsia, and Sattler 2012). Recent results of
the competition between 14 reasoners taking place at the
OWL Reasoner Evaluation Workshop, ORE 2013,2 show
that there is no single winner in all ontology categories. The
huge difference in performance of reasoners on a given input
often surprises ontology designers.

During ontology design and maintenance, reasoning per-
formance may vary significantly and in surprising ways: ax-
iom additions or removals may cause a significant increase
or decrease of classification time, often in contrast to intu-
itive expectations (Gonçalves, Parsia, and Sattler 2012). Re-
cent studies of performance variability suggest that there are

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Throughout, we use OWL terminology where a class is a
concept, a property is a DL role (Horrocks, Patel-Schneider, and
Van Harmelen 2003).

2http://ore2013.cs.manchester.ac.uk/competition/

ontologies which are performance homogeneous and others
are performance heterogeneous for a reasoner (Gonçalves,
Parsia, and Sattler 2012). An ontology O is performance
heterogeneous if classification time of O′ ⊂ O is not lin-
early correlated with its relative size. The latter suggests that
interaction effects come into play when certain axioms are
part of the ontology and, consequently, loose their impact on
reasoner’s performance when those axioms are removed.

These observations make performance prediction of a rea-
soner on a given input challenging and often impossible even
for experienced and skilled ontology engineers. However,
the ability to predict performance is attractive. Firstly, rea-
soner developers equipped with a predictor would be able
to find out which ontologies are harder for a reasoner. This
can speed up tests of reasoners and facilitate new optimiza-
tions. Secondly, an estimate of classification time might al-
low an ontology engineer to decide whether the reasoning
task is worth waiting for or not. As a practical example, the
progress bar of an ontology editor, such as Protégé 4,3 could
be made more reliable with a good performance predictor.
It could also supply auto-picking the fastest reasoner for a
given ontology from the list of available reasoners.

The contributions of this work are three-fold. Firstly, we
suggest an approach to analyse intercorrelation of ontology
features using PCA, given a corpus of ontologies, and ob-
serve that ontology features are highly intercorrelated so
that 57 features can be “faithfully” replaced by one or two
features. Secondly, we introduce a new method for perfor-
mance prediction which is competitive with existing perfor-
mance predictors. Thirdly, we discuss different prediction
accuracy measures. All details can be found in the technical
report (Sazonau, Sattler, and Brown 2013).

Feature Analysis
There exist recent attempts to apply supervised machine
learning to performance prediction of a reasoner on a given
ontology. In (Kang, Li, and Krishnaswamy 2012), the au-
thors define 27 ontology features, or metrics, of 4 types: on-
tology level (ONT), class hierarchy level (CH), anonymous
class expressions (ANE) and properties (PRO). A feature
vector xi is extracted from each ontology Oi, i = 1, ..., N
in the corpus. It is assigned a label yi = b(Oi,R), i =

3http://protege.stanford.edu/
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Figure 1: Comparing BioPortal and Tones using PCA

1 . . . N , which is the performance bin of Oi given a rea-
soner R. Kang et al. attempt to predict the performance bin
ŷ = b̂(O,R) for an ontology O based on its feature vector
x, or “profile”.4 To do so, they train a model using feature
vectors X of all training ontologies in the corpus with their
labels y = (y1, y2, ..., yN ) per reasoner, i.e. the “global”
corpus view [X | yT ]. We call such a technique a global ap-
proach. For basics of predicting algorithm runtime, we refer
the interested reader to a survey of machine learning meth-
ods for three NP-complete problems (Hutter et al. 2014).

As we will see, it is considerably hard or even impossi-
ble to define the “ideal” set of ontology features for perfor-
mance prediction of reasoners. Nonetheless, we need to take
features of different scales into account, e.g. EOG and SOV,5
used by Kang et al. Competing approaches exist in machine
learning to address this problem (Tuv, Borisov, and Torkkola
2006). Another problem that should be noticed is that a cor-
pus of ontologies should be selected carefully. A corpus, sig-
nificantly biased towards easy ontologies, may cause mis-
leading generalizations. Although dealing with such bias is
generally difficult due to the lack of hard ontologies, we
need to take this into account.

We skip some features from Kang et al. and add our
own features. The inferred SubClass relationships are not in-
cluded because this requires classification and, thus, makes
little sense for performance prediction. Overall, we consider
d = 57 ontology features including 33 new features. Intu-
itively, more features should allow us to capture more in-
formation about the object. However, a smaller set of fea-
tures can produce a more accurate model in practice (Guyon
and Elisseeff 2003). It can be achieved either by eliminating
weakly useful features from the original set, hence, select-
ing features, or by transforming the features into a lower
dimensional space minimizing information loss, known as
constructing features (Guyon and Elisseeff 2003). A com-
mon feature construction method is Principal Component
Analysis, PCA (Jolliffe 2002). In a nutshell, PCA helps to

4Not to be confused with OWL profiles such as OWL 2 EL
5http://www.csse.monash.edu/∼yli/metrics perf/

identify the presence of intercorrelation of features and pro-
vides a new, smaller set of uncorrelated features.

We have chosen the NCBO BioPortal6 as an ontology cor-
pus for experiments since it is a natural set of ontologies
primarily maintained by biomedical domain experts. We ex-
clude empty ontologies, duplicates, multiple versions of the
same ontology, and ontologies with loading errors. As a re-
sult, we obtain the BioPortal corpus of 357 ontologies of var-
ious sizes. We also examine an additional corpus, the Tones
Ontology Repository.7 We filter it out via exactly the same
procedure. As a result, we obtain the Tones corpus of 196
ontologies.

Given a data set [X | yT ], PCA deals only with a set of
feature vectors X and ignores labels y. It produces a set of
PCs, PCj , with respective variances, λj . We apply PCA to
BioPortal and obtain a set of PCs, PCB

j . To check our find-
ings, we also apply PCA to Tones, which induces another
set of PCs, PCT

j , and compare the results. We use PCX
j

to denote both PCB
j and PCT

j . As a result, we found out
that the first 3 out of 57 components explain ≈99% of all
variance for both data sets. Hence, we can hypothesize that
the original 57 features are highly intercorrelated. Another
important thing to notice is that PCB

1 explains ≈ 87% and
PCT

1 explains ≈ 96% of total variance for BioPortal and
Tones, respectively.

An additional advantage of PCA is that it allows us to
visualise a data set in a lower dimensional space. Since
just few components have significant variances, we can
reasonably visualise the corpora in two dimensional space
(PCX

1 , PC
X
2 ) and explore their spread in the projection

space. This way, we preserve ≈ 94% of total variance for
BioPortal and ≈ 98% of total variance for Tones. As Fig-
ure 1 shows, ontologies of both corpora are mainly spread
along the first coordinate with smaller deviations along the
second coordinate and even smaller along others.

BioPortal has more outliers, i.e. ontologies which differ
from the main cluster of similar ontologies. There are 9 evi-
dent outliers out of 357 ontologies. They include 9 out of 10
biggest ontologies in the corpus. In addition, these outliers
are amongst the computationally hardest ontologies for all
three reasoners. None of them are the heterogeneous ontolo-
gies from (Gonçalves, Parsia, and Sattler 2012). It is impor-
tant to note that the outliers have been identified without any
performance measurements.

It is worth noticing that the same 6 original features are
the only ones that contribute significantly to PCX

1 for both
corpora. Moreover, these features have similar contribution
coefficients for both corpora. This implies that PCB

1 is ap-
proximately equal to PCT

1 . Exploring feature vectors, we
observe that these features significantly correlate with on-
tology size.8 Hence, one can be interested how PCX

1 is af-
fected by it. To measure this, we calculate the correlation
coefficient between the first component and ontology size. It
turns out that the first component correlates surprisingly well
with ontology size and no other components do. As a conse-

6http://bioportal.bioontology.org/
7http://owl.cs.manchester.ac.uk/repository/
8In the following, ontology size is the number of axioms

662



quence, one can ask an interesting question: is ontology size
a good performance indicator? Can we predict performance
better with 57 features or with size alone? We will answer
these questions below.

A Local Approach to Performance Prediction
Here we sketch an approach for predicting performance of
a reasoner on a given ontology, given classification time of
that reasoner on some of the ontology subsets, ideally few
and small, which we call samples. We call such a technique
a local approach.

A reasonable way to construct samples is to represent an
ontology as a directed graph G = (V, E), where V is a set of
vertices and E is a set of directed edges. Each vertice v ∈ V
is labelled with some set of axioms, called a clump. Edges E
represent relationships between clumps. From such a repre-
sentation we can assemble sets of clumps in many possible
ways and use these sets as samples for predictions.

Obviously, the quality of such performance prediction de-
pends on our notion of clumps, their relations, and the as-
sembling mechanism used. For example, a trivial way is to
take small arbitrary ontology subsets as samples without any
relations between them. However, they are not suitable per-
formance indicators because they can be so only by chance,
which is low, given that the size of an ontology is sufficiently
large. A more informed way to define clumps is Atomic De-
composition, AD (Del Vescovo 2013). In this case, we en-
sure cohesion of samples.

Given G = (V, E), sampling starts from a single atom. A
next sample is constructed by extending the current sample
with a new atom. A sensible way of choosing a next atom
can cause significant increases of classification time of a
sample. The sampling algorithm is described in (Sazonau,
Sattler, and Brown 2013). It produces a set of samples with
their classification times per ontology.

This local data is then used to make predictions for
the whole ontology via regression analysis. Thus, where a
global approach gathers data from many ontologies and in-
terpolates for unseen ontologies, a local approach collects
data only from part of a given ontology and extrapolates
to its full size. In contrast to a global approach, it does
not rely on the global view of a corpus to exploit similar-
ities/dissimilarities between ontologies and it uses no fea-
tures except sample sizes.

Performance Prediction Experiments
In this work, we investigate three commonly used reason-
ers: Hermit 1.3.8 (Motik, Shearer, and Horrocks 2007), Pel-
let 2.3.0 (Sirin et al. 2007), and JFact 1.0.0, a Java version
of FaCT++ (Tsarkov and Horrocks 2006). In addition to the
performance bins specified by Kang et al., we add one more
bin E in order to distinguish the hardest ontologies with
classification times longer than 1,000 seconds. Thus, we
consider the following 5 bins: A ∈ (0s, 1s), B ∈ [1s, 10s),
C ∈ [10s, 100s), D ∈ [100s, 1, 000s), E ∈ [1, 000s,+∞).
The performance statistics on BioPortal is shown in Table 1,
where the “Exception” bin means that a reasoner raises an
exception on those ontologies and does not finish its job.

Bins JFact Hermit Pellet
A 250 222 247
B 50 53 48
C 16 21 21
D 11 13 11
E 23 16 28
Exception 7 32 2

Table 1: Performance statistics on BioPortal (number of on-
tologies per bin)

We aim to test a global and local performance predic-
tor and compare them. Consequently, we need a procedure
to evaluate a performance predictor. The first possibility is
based on performance bins. The model predicts a bin for
each ontology from the testing set. Whenever it predicts a
wrong bin for an ontology, this is counted as an error. Once
the model is tested on all ontologies, an average error is cal-
culated which we call the average classification error, ACE.
Kang et al. use the classification accuracy, 1−ACE, to eval-
uate a model. When predicting performance bins, we sug-
gest to additionally consider a more precise way of evalua-
tion - the confusion matrix (Fawcett 2006), which is espe-
cially useful for unbalanced data sets. It essentially counts
the number of ontologies of actual bin b which are classified
to bin b̂ for each possible pair (b, b̂).

A third way to assess a model is to measure raw differ-
ences between the actual and predicted classification time
for each testing ontology. The mean absolute error, MAE,
is a common measure that can be used for this purpose.
Nonetheless, hard ontologies, which are rare, can contribute
more to MAE than all remaining ontologies together. Thus,
all aforementioned measures have their disadvantages, no
single measure is enough for predictor evaluation, and we
should rather consider them all.

We conduct two performance prediction experiments for
the global approach. In the first one, we extract all 57 fea-
tures from each ontology in BioPortal and train a model,
Glob.57f, using the resulting data set. In the second one, we
record the ontology size (in number of axioms) per ontology
and use it as the only feature to train a model, Glob.1f. The
latter is based on our earlier observations and PCA results.
For the local approach we construct samples per ontology as
explained above. We restrict samples to have relative sizes
≤ 10% of the full ontology considering the following trade-
off: higher size limits should give more accurate predictions
but take longer to compute. Prediction results of the global
and local approach are gathered in Table 2.

As Table 2 shows, the local approach delivers better pre-
diction accuracy than the global one in all cases, for both
ACE and MAE (the lowest errors are in bold). Extracting
57 ontology features makes surprisingly little sense, espe-
cially for bin predictions (ACE): the differences in errors
between Glob.57f and Glob.1f are small. One can also notice
that Pellet is harder to predict than others for all approaches
via either ACE or MAE. It is also worth mentioning that all
reasoners are mostly linearly predictable.

The confusion matrices, the one for JFact is given by Ta-
ble 3, show that Glob.57f and Glob.1f are slightly more accu-
rate than the local approach on the easiest bin A, while the
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Reasoner ACE
Glob.57f Glob.1f Local

JFact 0.230 (0.048) 0.211 (0.045) 0.169
Hermit 0.231 (0.053) 0.237 (0.047) 0.224
Pellet 0.301 (0.048) 0.301 (0.048) 0.250

MAE, sec
JFact 61 (24) 69 (18) 43
Hermit 70 (25) 89 (23) 42
Pellet 106 (31) 127 (27) 69

Table 2: Comparison of global and local approaches on Bio-
Portal (error deviations are in brackets where appropriate)

Real Predicted bin
bin A B C D E
A 245/242/232 4/7/16 0/0/1 0/0/0 1/1/1
B 31/23/15 19/27/28 0/0/7 0/0/0 0/0/0
C 2/0/0 9/9/0 3/2/11 0/0/3 2/5/2
D 1/1/0 2/2/0 3/4/1 0/0/6 5/4/4
E 2/2/1 5/4/1 4/5/3 0/3/4 12/9/14

Table 3: Confusion matrix for bin predictions of JFact on
BioPortal (Glob.57f/Glob.1f/Local)

latter is more correct on all harder bins B,C,D,E; espe-
cially on bins C,D. If easy ontologies (bin A) are excluded,
it turns out that the remaining ontologies cause extremely
higher errors of performance predictions for all approaches.

Discussion of Results and Future Work
To conclude, we have observed that performance prediction
of reasoners is a hard and interesting problem. In this work,
we propose a novel approach, called local, to solve it. It is
based on carefully selecting ontology samples, ideally small,
and then using them to predict reasoning performance on the
full ontology. The AD, as an ontology graph, is useful to
construct such samples: samples of sizes ≤ 10% allow us to
obtain good predictions via simple extrapolations. In com-
parison to a global approach, a local approach gives more
accurate performance predictions, does not rely on an ontol-
ogy corpus and, therefore, cannot be biased by it. Moreover,
a local approach reveals interesting information about rea-
soners’ behaviour: linear/nonlinear predictability on the cor-
pus. However, it requires reasoning over samples to make a
prediction.

Although selecting an unbiased corpus remains a difficult
problem (Matentzoglu, Bail, and Parsia 2013), we definitely
need to acknowledge the bias and interpret observations cor-
rectly. Moreover, the error measures for evaluating predic-
tors should be chosen carefully because there is no single
best measure. A reasonable way is to use several measures
evaluating different aspects of prediction accuracy.

One of our main findings is that, for both BioPortal
and Tones, multiple ontology features are efficiently rep-
resented by ontology size. Predictions using ontology size
alone are comparable to predictions using all 57 ontology
features. Therefore, ontology features for performance pre-
diction should be defined and used cautiously. Firstly, we
should not mix features of different scales in the feature

vector because low-scale features can be “hidden” by oth-
ers. Nonetheless, if these features are informative, suitable
techniques, able to handle different scales, must be used.
Secondly, we have to investigate intercorrelation of features
because the features may turn out to carry little useful infor-
mation and even degrade the accuracy.

As future work, we consider local approach improve-
ments. The maximal sample size can be estimated for each
ontology separately because 10% samples are not indicative
enough to make good predictions for some ontologies. In
addition, there may exist more suitable regression models
for extrapolation. One can also study appropriate methods to
cope with ontology features of different scales with respect
to performance prediction, e.g. ensemble learning. Finally,
we can work on assembling “good” corpora using dimen-
sionality reduction techniques such as PCA.
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