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Abstract 
As robots become more common, it becomes increasingly 
useful for them to communicate and effectively share 
knowledge that they have learned through their individual 
experiences.  Learning from experiences, however, is often-
times embodiment-specific; that is, the knowledge learned is 
grounded in the robot’s unique sensors and actuators.  This 
type of learning raises questions as to how communication 
and knowledge exchange via social interaction can occur, as 
properties of the world can be grounded differently in 
different robots.  This is especially true when the robots are 
heterogeneous, with different sensors and perceptual 
features used to define the properties.  In this paper, we 
present methods and representations that allow 
heterogeneous robots to learn grounded property 
representations, such as that of color categories, and then 
build models of their similarities and differences in order to 
map their respective representations.  We use a conceptual 
space representation, where object properties are learned 
and represented as regions in a metric space, implemented 
via supervised learning of Gaussian Mixture Models.  We 
then propose to use confusion matrices that are built using 
instances from each robot, obtained in a shared context, in 
order to learn mappings between the properties of each 
robot.  Results are demonstrated using two perceptually 
heterogeneous Pioneer robots, one with a web camera and 
another with a camcorder. 

Introduction   

As autonomous robots become increasingly common, it is 
likely that there will be multiple robots that each learn 
through experience, that is via embodied interaction with 
the world.  This type of grounded learning, however, 
ignores social aspects of development and learning.  With 
multiple robots, it is crucial for the robots to be able to 
share knowledge either through explicit communication or 
implicit means such as imitation.  Such knowledge sharing 
speeds up learning significantly and can reduce the need 
for costly human teaching.  Experienced robots can also 
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guide other robots through specific developmental 
trajectories in a way that attempts to optimize learning.  It 
also allows one robot to be the teacher of another robot, 
reducing need for costly human interaction. 
Several problems can prohibit effective sharing of 
knowledge, however.  Knowledge learned via exploration 
of the world is often embodiment-specific.  It is quite 
common to have some degree of heterogeneity among 
robots, however, and there can be slight perceptual 
differences even among two robots of the same model.  For 
example, the camera color models may differ slightly.  It is 
an even greater problem when different types of robots are 
used.  Currently, there is a plethora of robotic systems in 
use in home environments (e.g. the Roomba and lawn 
mowing robots), research labs, and in various domains 
where task allocation to differing robots is necessary. 
Symbols are often used to abstract raw sensory readings, 
and facilitate communication via language.  However, even 
assuming that these symbols are grounded (Harnad, 1990) 
within each robot, there is the problem of achieving a 
common grounding among multiple robots, an issue that 
has been raised as the social symbol grounding problem 
(Vogt and Divina, 2007).  Approaches that ground symbols 
jointly in the environment by multiple robots at the same 
time exist (Jung and Zelinsky, 2000), but require that the 
robots learn in the same environment and under the same 
conditions. 
In order to allow knowledge sharing among such 
heterogeneous robots, we posit that the robots can first 
autonomously build models of their differences and 
similarities, and map symbols from each robot’s 
representation to the other.  Note that in order for this to be 
useful, there must be some similarity between the two 
robots; i.e. if the two robots can only sense non-
overlapping features of objects (e.g. sound versus vision), 
then meaningful communication between them will be 
much more difficult.  The point is to leverage whatever 
similarity exists between the robots, and to be cognizant 
when the differences are too substantial for effective 
knowledge sharing.  Mappings between the robots’ 
representations can be built after each robot has learned its 
respective representations.  The building of the models can 
be performed by leveraging similarity to deal with 
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heterogeneity, specifically by establishing a physically 
shared context.  We have demonstrated such mechanisms 
in previous work, for example, for learning parameterized 
models of low-level sensing differences (Kira and Long, 
2007).  In this paper, we show how data obtained from a 
shared context at the object level can be used to learn 
mappings between symbols, representing properties of 
objects such as color or texture that may be grounded 
differently in each robot.  In this paper we manually select 
images from the same context; future work will integrate 
those methods with techniques for building mappings of 
differences in this paper, leading to an entirely autonomous 
process. 
We use conceptual spaces to anchor sensory data to 
learned object properties (e.g. color, texture, shape) and 
concepts (e.g. object categories or specific objects) 
(Gärdenfors, 2000).  Conceptual spaces are geometric 
spaces that utilize similarity measures and concept 
prototypes as the basis of categorization.  This geometric 
form of representation has several advantages.  It has also 
been elaborated upon and extended in several other works 
(e.g. (Aisbett and Gibbon, 2001)), and discussed and 
implemented to a limited degree in robotic systems 
(Balkenius and Gärdenfors, 2000),(LeBlanc and Saffiotti, 
2007).  Most importantly, understanding how different 
properties and concepts can be mapped between different 
agents can be intuitively visualized in these spaces. 
In this paper, we focus on object properties, specifically 
color and texture.  We represent such color properties as 
Gaussian Mixture Models in RGB or HSV color space or a 
metric space representing the output of Gabor filters, and 
show how they can be learned in a supervised manner.  We 
demonstrate that directly transferring such color properties 
cannot effectively be done across robots that differ in their 
video sensing, even if the same space is used.  A method 
for learning mappings between properties across different 
embodiments, represented as confusion matrices, is 
proposed.  We show that these models can be built using 
sensory data pairs obtained from shared contexts.  Results 
are demonstrated via experiments using video data from 
real robots with differing video sensors. 

Related Work 

The key issue in this paper is related to social symbol 
grounding, that is finding common symbols for similar 
concepts across a population of agents.  This is related to 
language formation and has been studied extensively in 
linguistics and evolutionary or artificial life (Vogt and 
Divina, 2007),(Steels and Kaplan, 1999).  For example, 
work done by Luc Steels and his colleagues in the area of 
shared vocabulary development used shared attention to 
synchronize the two robot’s symbols (Steels and Kaplan, 
1999).  This is a similar concept to ours, although they did 
not  explicitly deal with the issue of robot heterogeneity 
where robots may have different feature spaces.   
Another example of this in robotics includes work by Jung 
and Zelinsky, who studied two robots that perform the 

same task (vacuuming) but had different capabilities or 
roles; one robot swept small pieces and reached into 
corners, while the other could only vacuum the larger piles 
and could not reach corners (Jung and Zelinsky, 2000).  In 
that case, a shared ontology was developed by establishing 
a physically shared context during learning: The two robots 
followed each other around the room and agreed on 
symbols for specific locations in the environment.  In a 
similar vein, Billard and Dautenhahn have looked at a 
situation involving two homogeneous robots where one 
teacher attempts to share its symbols with another robot via 
imitation, namely following (Billard and Dautenhahn, 
1998).  
Conceptual spaces, the representation used here, have been 
used in robotics in several works.  LeBlanc and Saffiotti 
have looked into the fusion of properties into a single 
domain, but have so far focused on spaces with identical 
dimensions (LeBlanc and Saffiotti, 2007).  Overall, little 
work in robotics and elsewhere has focused on sensor 
heterogeneity, and bridging resulting conceptual 
differences.  This paper presents the first step, namely 
determining what properties can be mapped from one 
existing representation to another, across spaces that can 
differ in their regions and dimensions. 

Property Representation and Learning 

Abstracting Sensory Data 
Sensory data is often abstracted in order to improve 
learning or to enable communication.  In this paper, we use 
Gärdenfors’ conceptual spaces (Gärdenfors, 2000) in order 
to bridge lower-level representations and symbols.  The 
most basic primitive of the representation is a dimension 
(also referred to as quality or attribute), which takes values 
from a specific range of possible values (a domain in the 
mathematical sense, although it is not to be confused with 
the notion of a domain used in the next paragraph).  For 
example, the hue of an object can be specified as an angle 
in the range [0, 1].  The values of these dimensions come 
from perceptual features processed from sensor data.  For 
example, a camera sensor measures physical properties of 
the world (light), converting them into a digital 
representation consisting of multiple pixels in the form of 
an RGB space.  A perceptual feature detector can convert 
regions of the image into an HSV space, and the H (hue) 
value can make up a dimension.  The feature detector 
returns a set of these, one for each region of the image that 
it determines is salient.   
Gärdenfors posits that there are integral dimensions that 
cannot be separated in a perceptual sense.  For example, 
the HSV color space can be argued to consist of three 
integral dimensions.  Another example used is pitch and 
volume that is perceived by the auditory system.  A set of 
such integral dimensions is referred to as a domain.  A 
domain defines a space that consists of all possible values 
of the integral dimensions.  It is useful to abstract and 
divide these values into specific regions, which define a 
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property.  For example, “blue” can be a property that 
corresponds to some region of the color space.  The 
regions can be arbitrary shapes, although Gärdenfors 
defines what he calls natural properties consisting of 
regions with certain characteristics such as convexity.  
Note that a property corresponds to a region in a single 
domain.   
We can now define a conceptual space K as made up of a 
set of domains.  A specific concept in the conceptual space 
is a set of regions from the domains },...,,{ 21 ndddD =  in 
the conceptual space.  A point in the conceptual space is 
called a knoxel >=< nkkkk ,...,, 21

, and specifies instances 
of the concept in the form of vectors.  A knoxel can specify 
points in some of the domains, while leaving others 
unspecified, in the form of a partial vector.  Note that a 
property is a specific type of concept that utilizes only one 
of the domains from the conceptual space.  In this paper, 
we focus on mapping properties, possibly located in 
different domains, and hence will not go into how 
properties are combined to form concepts. 
In order to facilitate communication, symbols are attached 
to properties and concepts.  Each robot maintains a set of 
symbols Χ , each of which is grounded to a property (or in 
general, a concept) via the representation.  Symbols 
correspond to labels or strings, which will be randomly 
assigned by the robot.  A representation can be described 
as a function that returns the degree to which a specific 
knoxel k can be categorized as having the corresponding 
property represented by symbol Χ∈x ; i.e. 

]1,0[),(: →xkR .  Each property has a prototype for in 
the form of a knoxel, denoted as pk .  The implementation 
of properties within the framework of GMMs is described 
in the next section. 

Learning of Properties from Instances 
In order to learn a representation for object properties, we 
will scaffold the robot’s learning by first providing it with 
multiple instances of data that contain a property.  Note 
that no labels are given, and the robot creates its own 
random labels.  Each scene, which can contain multiple 
properties and concepts, results in a set of knoxels K  
calculated from the output of the robot’s perceptual feature 
detectors.  In this paper, it is assumed that it is known 
which domain is to be trained for a set of instances.  For 
each property 

ip , we use a Gaussian Mixture Model 
(GMM) to characterize the regions, denoted as iG .   
Specifically, each property can be modeled as: 

�
=

�=
1

),|()|(
j

jjiji pPwpP μθ    (1) 

where 
jw  is known as the mixing proportions and θ  is a 

set containing all of the mixing proportions and model 
parameters (mean μ  and standard deviation � ).  In this 
paper, we use a maximum of three clusters per property, as 
determined by a minimum description length criteria, 

learned via the Expectation Maximization (EM) algorithm 
(Bilmes, 1998).  Once models are learned, they are used to 
determine membership in a property.  Specifically, given 
sensory data, the membership for a property is the 
Gaussian distance function to the nearest property cluster.  

Mapping Properties Across Differing 
Embodiments 
As mentioned properties are regions in domains, in our 
case represented as Gaussian clusters.  The same property 
can be represented as clusters with different characteristics 
(for example, different standard deviations) or even 
domains from different sensors (for example, the width of 
an object as detected by a camera or laser).  Given these 
clusterings of a domain, the problem is to find associations 
between clusters from each robot (which cluster(s) in one 
robot belongs to which cluster(s) in another robot).   
In order to do this, we use instances from each robot while 
viewing the same scene and compare properties that they 
see.  This can be established using interaction such as 
following behaviors that are perceptually driven (assuming 
robots can detect each other, and determine pose 
information such as heading) (Kira and Long, 2007).  In 
this paper, this is done manually and in a looser sense; 
manual selection of images is performed such that both 
robots see the same object, although not necessarily from 
the same perspective.  Future work will incorporate these 
behaviors, resulting in a fully autonomous system.  Given a 
scene, each robot processes its sensory data to produce a 
set of knoxels where property memberships in relevant 
domains can be calculated.  For each pair of properties 
(one from each robot), statistics described below are 
maintained in order to determine whether they represent 
similar physical properties. 

Confusion Matrices 
The problem of finding mappings between clusters is 
closely related to comparing different clusterings, which 
has been dealt with in statistics and machine learning 
communities (e.g. Fowlkes and Mallows, 1983).  This line 
of research attempts to create measures of similarity 
between two clusterings.  A major representation used in 
the creation of some of these metrics is the confusion 
matrix, which is a matrix with k  rows (one for each cluster 
in the first clustering) and 'k  columns (one for each cluster 
in the second clustering).  Each entry contains the 
proportion of points that (for the same instance) belong to 
the cluster represented by the row (in the first clustering) 
and that belong to the cluster represented by the column (in 
the second clustering).  In other words, it is the intersection 
of the clusters kC  and kC′ .  For the problem of comparing 
clusterings, the confusion matrix is used to calculate 
metrics for comparing different clusterings. 
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In our case, we seek to map individual clusters to each 
other, not determine overall similarity between clusterings 
of the entire space.  Hence, instead of calculating such 
metrics we utilize the confusion matrix to determine pairs 
of properties that may potentially represent the same 
physical property.  Suppose that there are two clusterings 

A
iG  and B

jG   defining regions corresponding to properties 
A
ip  and B

jp  for robot A and B, respectively.  Also, each 
clustering for robot A and B has  A

in  and 
B
jn  clusters, 

respectively.  Finally, suppose that we have a set of 
instances I  from each robot (obtained using its own 
sensing) with a sufficiently high membership defined by a 
threshold for property A

ip .  The confusion matrix   
BAPC ,   is then updated with: 

      �=
I

i
A
j

B
k

A
jBA

kj
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pispis
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)),(),,(min(
,

),(
      (2) 

Here, s(i,p) is the Gaussian membership function of 
instance i in property p.  The min function is used to 
represent the intersection of property memberships, as is 
used commonly in fuzzy sets.  For each property of a 
robot, the highest values in the corresponding property’s 
row or column will be taken and it will be considered 
potentially corresponding to the respective property of the 
other robot.  A threshold may be placed on this as well, 
although we do not in this paper. 
In the context of machine learning and statistics literature 
discussed above, the clusterings that are being compared 

are always in the same space.  In other words, they both 
utilize the same data, and the data uses the same 
dimensions.  In our case, we are attempting to compare 
clusters between spaces, where the axes (the dimensions) 
may differ.  Hence, there is an additional correspondence 
problem in terms of whether an instance in one space 
corresponds to the same instance in another space.  Data 
gathered in a random context from each robot will be 
difficult to analyze because of confounding variables such 
as differences in the environment or perspective.  This is 
why, as discussed previously, some shared context must be 
established first. 

Experimental Results 

We now describe experiments that have been carried out 
using image data obtained on two Pioneer 2DX robots, 
seen in Figure 1.  The first robot had odometry, sonar 
sensors, and a Quickcam Express web camera.  The second 
robot had odometry, laser sensors, and a DCR-HC40 Sony 
Handycam camcorder.  It also had sonar sensors, but data 
was not recorded from these sensors.  The experiments 
serve to show that direct data transfer across differing 
embodiments is ineffective and that robots can model their 
differences in terms of properties using confusion matrices 
built using data obtained from a shared context. 
In order to train color and texture properties, the robots 
were driven around a laboratory environment for 2-3 runs, 
resulting in a large amount of stored sensor data.  Six to 
eight objects from the environment per color category were 
chosen for training.  For texture, a single empirically-
chosen Gabor filter was used, with the mean and standard 
deviation of its output comprising the space.  Examples of 
objects include a blue recycling bin, a smaller black trash 
can, and a blue Sun computer, all of which can be seen in 
the images on the right portion of Figure 1.  In order to 
avoid bias, property numbers were randomly assigned to 
the actual color or texture that was used during training.  It 
is important to note that symbolic labels were not given to 
the robots, they are only added by the authors for 
clarification of the figures.  For each property, all that is 
given is the domain to be trained, a set of data instances, 
and segmentation of the target object.  In other words, the 

 Brown 
Objects 

Black 
Objects 

Blue 
Objects 

Gray 
Objects 

White 
Objects 

Symbol: 
Robot  
A 

Ap1  Ap2  Ap3  Ap4  Ap5  

Symbol:  
Robot  
B 

Bp1  Bp3  Bp5  Bp2  Bp4  

Black 
(Trash Can)

Figure 1 – Pioneer 2DX robots used in the experiments (left) and images of the same scene from each robot 
(middle and right).  The middle image is from the robot with the web camera, while the image on the right is 
from the robot with the camcorder. 

Blue 
(Recycling Bin)

Table 1 – Table of arbitrary property symbols 
assigned to color categories. 
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robots could not simply compare labels to determine which 
of their properties mapped.  Table 1 shows the assignments 
that were given to both robots.  Knowledge of this 
mapping is not used by the algorithms, and is what must be 
learned by the robots given instances from a shared 
context. 
Out of all of the images recorded, 45 were chosen per 
category containing an approximately equal number of 
instances from each object in the category, resulting in a 
total of 225 images.  150 of these were randomly chosen 
for training, while the rest were used in testing the 
categorization and building the confusion matrices.  The 
same images were used for training of texture properties.  
The objects were segmented manually in the images; future 
work will look into automatic segmentation based on color 
and texture.  All processing was performed offline in 
Matlab, although this is not due processing requirements. 

Property Learning, Testing, and Direct Transfer 
Figure 2 shows the resulting property regions for both 
robots and two color spaces (RGB and HSV).  As can be 
seen, despite being trained on the same objects, the 
representations are quite different.  After training the 
properties using supervised learning, the accuracy of 
categorizing the color of different views and instances of 
the objects was tested.  The left side of Table 2 shows the 
resulting accuracy results for both robots, average over five 
runs (standard deviations are shown).  They both achieved 
a relatively high accuracy given the existence of object 
brightness changes due to changes in perspective.  
Interestingly, the results for robot A (that had a cheap web 
camera) performed similarly to the second robot that had a 
more expensive camcorder.  Overall, the camcorder 
resulted in colors that were duller and less bright, as can be 
seen from the results in Figure 2. 
 In order to show that direct transfer or comparison of 
properties may not be possible across heterogeneous 
robots, we directly transferred the learned GMM models 
from robot A to robot B, and vice-versa, for the same RGB 
color space.  We then tested the resulting categorization 
success in the same manner as before.  In other words, 
robot A used robot B’s learned representation on its own 

data in order to categorize the testing set.  As can be seen 
from the right side of Table 2, the results were dramatically 
worse and close to random guessing.  Even with training 
sets consisting of the same objects, the properties of the 
two robots were incompatible due to sensor heterogeneity. 

Table 2 – Color categorization accuracy. 

Robot Own Representation Transferred 
Representation 

 #(/ 75) Percent #(/ 75) Percent 
Robot A 60.6 80.8 ± 5.0 14.4 19.2 ± 0.7 
Robot B 59.8 79.7 ± 2.9 16.4 21.9 ± 2.6 

Mapping Properties 
We now describe the results of building the confusion 
matrices based on data instances from the same object.  In 
all of these experiments, we used an RGB color space for 
robot A and HSV color space for robot B.  Table 3 shows 
the confusion matrix from robot A’s perspective.  For 
intuition, each value BA

kjPC ,
),(  in the matrix is modified for 

each instance in which property j has the largest 
membership according to robot A’s property models.  The 
amount that it is updated by depends on the property 
membership ascribed to an instance in the same context by 
robot B.  Note that the two matrices may differ (as they do 
in this case), since the first robot decides which instances 
to use to update a particular property based on whether its 
memberships is the highest compared to the other 
properties.  
As can be seen, in both matrices the correct mapping 
between properties of robot A and properties of robot B 
can be inferred by their maximal value (in bold).  This can 
be verified using Table 1; for example, in BAPC ,  the 
highest value for row Ap2  is in the column corresponding 
to Bp3  (0.49), which is correct.  In some cases, there are 
other values in the same row that are relatively high.  Some 
of this can be attributed to correlations between properties 
on the same robot.  For example, when Bp4  (corresponding 
to white) had a large membership, Bp2  (corresponding to 
gray) did as well.  This is because some gray objects were 
light gray and some white objects were dirty or not purely 

Figure 2 – Color properties, represented as a Gaussian Mixture Model, after training with multiple objects with five 
colors.  Results are shown for two color spaces (RGB and HSV) and the two heterogeneous robots.  The resulting 
models are significantly different for each robot, arising due to heterogeneity in training and sensing. 
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white.  If these correlations are divided out by combining 
both of the robot’s learned confusion matrices, the 
resulting matrix differentiates the mapped properties more 
profoundly.  This can be seen in Table 4.  Similar results 
were obtained for texture properties, where all of the 
correct mappings were inferred.  These results are not 
shown due to space limitations. 

Making Use of the Mappings 
Although beyond the scope of this paper, the properties 
mentioned here can and have been combined in a fuzzy 
manner to describe entire objects (e.g. the blue trash can), 
as proposed by (Rickard, 2006).  The confusion matrices 
learned here can then be used in many ways.  For example, 
two robots can determine if two concepts are similar by 
first determining how many underlying properties are 
shared and then aligning the concept representations using 
the mappings.  Future work will investigate the use of 
these representations to enable effective knowledge 
sharing. 

          Table 3 - Confusion Matrix BAPC ,  

 Bp1
 Bp2

 Bp3
 Bp4

 Bp5
 

Ap1
 0.48 0.00 0.00 0.00 0.05 

Ap2
 0.00 0.09 0.49 0.00 0.04 

Ap3
 0.00 0.08 0.00 0.00 0.60 

Ap4
 0.10 0.29 0.00 0.09 0.16 

Ap5
 0.17 0.31 0.00 0.43 0.07 

  Table 4 – Combined confusion matrix 

 Bp1
 Bp2

 Bp3
 Bp4

 Bp5
 

Ap1
 0.29 0.00 0.00 0.00 0.00 

Ap2
 0.00 0.01 0.37 0.00 0.00 

Ap3
 0.00 0.02 0.00 0.00 0.32 

Ap4
 0.03 0.14 0.00 0.01 0.05 

Ap5
 0.03 0.04 0.00 0.27 0.00 

Conclusions 

This paper has introduced the groundwork for reasoning 
upon properties of objects and ways in which they can be 
mapped across different robots.  We have shown that 
robots that differ in their sensing may not be able to 
directly transfer knowledge in the form of property 
regions, but that they can learn correct mappings between 
each robot’s properties using instances obtained from a 
shared context, for both color and texture properties.  In 
this paper, we manually selected images from similar 
contexts, although one can use behaviors for establishing 
such shared context (Kira and Long, 2007).   
In future work, these two parts will be integrated to allow 
two robots to build models of their differences in a fully 

autonomous manner.  In doing so, several challenges such 
as the segmentation of objects from sensory data and 
ambiguity will have to be dealt with.  It would also be 
interesting to add sensory modalities, such as sonar or laser 
range finders, and combine the various properties derived 
from multiple domains in order to represent objects as a 
whole.  Such combination of properties to represent 
concepts is the ultimate goal, and the mappings learned in 
this paper can be used in various types of knowledge 
transfer.  For example, robots may be able to infer which 
concepts are transferable between the robots based on 
which of their properties are shared. 
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