
Finite Model Reasoning in Horn Description Logics

Yazmı́n Ibañez-Garcı́a
KRDB Research Centre for Knowledge and Data,

Free University of Bozen-Bolzano, Italy
{ibanezgarcia@inf.unibz.it}

Carsten Lutz and Thomas Schneider
Fachbereich Informatik

Universität Bremen, Germany
{clu, tschneider}@informatik.uni-bremen.de

Abstract

We study finite model reasoning in expressive Horn descrip-
tion logics (DLs), starting with a reduction of finite ABox
consistency to unrestricted ABox consistency. The reduction
relies on reversing certain cycles in the TBox, an approach
that originated in database theory, was later adapted to the
inexpressive DL DL-LiteF , and is shown here to extend to
the expressive Horn DL Horn-ALCFI. The model construc-
tion used to establish correctness makes the structure of finite
models more explicit than existing approaches to finite model
reasoning in expressive DLs that rely on solving systems of
inequations over the integers. Since the reduction incurs an ex-
ponential blow-up, we then develop a dedicated consequence-
based algorithm for finite ABox consistency in Horn-ALCFI
that implements the reduction on-the-fly rather than executing
it up-front. The algorithm has optimal worst-case complexity
and provides a promising foundation for implementations. We
next show that our approach can be adapted to finite (pos-
itive existential) query answering relative to Horn-ALCFI
TBoxes, proving that this problem is EXPTIME-complete in
combined complexity and PTIME-complete in data complex-
ity. For finite satisfiability and subsumption, we also show that
our techniques extend to Horn-SHIQ.

1 Introduction
Many popular expressive description logics (DLs) include
both inverse roles and some form of counting such as func-
tionality restrictions. This combination is well-known to re-
sult in a loss of the finite model property (FMP) and, con-
sequently, reasoning w.r.t. the class of finite models (finite
model reasoning) does not coincide with reasoning w.r.t. the
class of all models (unrestricted reasoning). On the one hand,
this distinction is gaining importance because DLs are in-
creasingly used in database applications, where finiteneness
of models and databases is a central assumption. On the other
hand, finite model reasoning is rarely used when DLs are
applied in practice, mainly because for many DLs that lack
the FMP, no algorithmic approaches to finite model reasoning
are known that lend themselves towards efficient implemen-
tation.

Among the most widely-known DLs that include both in-
verse roles and counting are ALCFI, ALCQI , SHIF , and

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

SHIQ, which are prominent fragments of the OWL2 DL
ontology language. While finite model reasoning in these
DLs is known to have the same complexity as unrestricted
reasoning, namely EXPTIME-complete (Lutz, Sattler, and
Tendera 2005), the algorithmic approaches are rather differ-
ent when only finite models are admitted. For unrestricted
reasoning, there is a wide range of applicable algorithms such
as tableau and resolution calculi, which often perform rather
well in practical implementations. For finite model reason-
ing, all known approaches rely on the construction of some
system of inequations (Calvanese 1996; Lutz, Sattler, and
Tendera 2005) and then solve this system over the integers;
the crux is that the system of inequations is of exponential
size in the best case, and consequently it is far from obvi-
ous how to come up with efficient implementations. This is
also true for the two-variable fragment of first-order logic
with counting quantifiers (C2), into which the mentioned
DLs can be embedded (Pacholski, Szwast, and Tendera 2000;
Pratt-Hartmann 2005), that is, all known approaches to finite
model reasoning in C2 rely on solving (at least) exponentially
large systems of inequations.

Interestingly, the situation is quite different on the other
end of the expressive power spectrum. While SHIQ et al. be-
long to the family of expressive DLs, DL-LiteF is a compara-
bly inexpressive DL that emerged from database applications,
but also includes both inverse roles and functionality restric-
tions and thus lacks the FMP. Building on a technique that
was developed in database theory by Cosmadakis, Kanellakis,
and Vardi to decide the implication of inclusion dependen-
cies and functional dependencies over finite databases (1990),
Rosati has shown that finite model reasoning in DL-LiteF
can be reduced in polynomial time to unrestricted reasoning
in DL-LiteF (2008). The reduction is conceptually simple
and relies on completing the TBox by finding certain cyclic
inclusions and then ‘reversing’ them. For example, the cycle
∃r− v ∃s ∃s− v ∃r (funct r−) (funct s−)

that consists of existential restrictions in the ‘forward direc-
tion’ and functionality statements in the ‘backwards direction’
would lead to the addition of the reversed cycle
∃s v ∃r− ∃r v ∃s− (funct r) (funct s).

As a consequence, finite model reasoning in DL-LiteF does
not require new algorithmic techniques and can be imple-
mented as efficiently as unrestricted reasoning. The reduction

288

Proceedings of the Fourteenth International Conference on Principles of Knowledge Representation and Reasoning

also makes explicit the logical consequences of finite models;
in a sense, it can be viewed as an explicit axiomatization of
finiteness.

Given that DL-LiteF is only a very small fragment
of ALCFI and SHIQ, this situation raises the ques-
tion whether the cycle reversion technique extends also
to larger fragments of these DLs. In particular, DL-LiteF
is a ‘Horn DL’, and such logics are well-known to be
algorithmically much more well-behaved than non-Horn
DLs such as ALCFI (Baader, Brandt, and Lutz 2005;
Calvanese et al. 2007). Maybe, then, this is the reason why
cycle reversion works for DL-LiteF?

In this paper, we show that the cycle reversion technique of
Cosmadakis et al. extends all the way to the expressive DLs
Horn-ALCFI and Horn-ALCQI. These logics, as well as
their extensions Horn-SHIF and Horn-SHIQ, are popular
in ontology-based data access (Hustadt, Motik, and Sattler
2007; Ortiz, Rudolph, and Šimkus 2011; Eiter et al. 2012;
Bienvenu, Lutz, and Wolter 2013) and properly extend DL-
LiteF and other relevant Horn DLs such as ELIF (Kris-
nadhi and Lutz 2007). We start with showing that finite ABox
consistency in Horn-ALCFI can be reduced to unrestricted
ABox consistency in Horn-ALCFI by cycle reversion; it
follows that the same is true for finite satisfiability, finite
subsumption, and finite instance checking. While the reduc-
tion technique is conceptually similar to that for DL-LiteF ,
the construction of a finite model in the correctness proof
is more demanding. In comparison to approaches to finite
model reasoning that rely on solving systems of inequations,
though, they make the structure of finite models considerably
more explicit.

Another crucial difference to the DL-LiteF case is that,
when completing Horn-ALCFI TBoxes, the cycles that have
to be considered can be of exponential length, and thus the
reduction is not polynomial. Consequently, when used in
a naive way it can neither be expected to perform well in
practice nor be used to (re)prove tight complexity bounds. To
address these shortcomings, we develop a dedicated calculus
for finite ABox consistency in Horn-ALCFI that implements
the reduction on-the-fly rather than executing it up-front. The
calculus is an extension of a consequence-based procedure
for unrestricted satisfiability in Horn-SHIQ that was intro-
duced by Kazakov in (2009) and implemented in the highly
performant reasoner CB, first to classify the notoriously diffi-
cult Galen ontology. Many other state-of-the art reasoners for
Horn-DLs are also based on consequence-based procedures,
including ELK (Kazakov, Krötzsch, and Simančı́k 2011a)
and CEL (Baader, Lutz, and Suntisrivaraporn 2006). Our al-
gorithm shares the main feature of other consequence-based
procedures to carefully avoid considering ‘types’ (conjunc-
tions of concept names) that are irrelevant for deciding the
problem at hand. We therefore believe that it provides a very
promising basis for efficient implementations of finite model
reasoning in Horn-ALCFI. It also (re)proves the optimal up-
per EXPTIME complexity bound for finite ABox consistency
in this DL. Via a reduction, the cycle reversing reduction and
the consequence-based algorithm can be applied also to finite
satisfiability and subsumption in Horn-ALCQI.

We then consider the paradigm of ontology-based data

access (OBDA), extending our results from finite ABox con-
sistency to answering positive existential queries (PEQs),
relative to Horn-ALCFI TBoxes over finite models. In par-
ticular, we show that the reduction based on cycle reversion
developed for ABox consistency also works in the case of
PEQ answering. The construction of (counter)models in the
correctness proofs, however, becomes yet more difficult and
technical, and proceeds in two stages. First, we carefully
modify the models constructed for finite ABox consistency
so that there are no unintended matches of acyclic conjunc-
tive queries (CQs). And second, we take a product with a
finite group of high girth to eliminate unintended matches
of cyclic CQs. Based on this result, we then prove that finite
PEQ entailment (the Boolean version of PEQ answering) in
Horn-ALCFI is EXPTIME-complete regarding combined
complexity and PTIME-complete regarding data complexity.
Previously, it was only known that finite CQ answering in
(non-Horn) ALCQI is decidable and in CONP regarding
data complexity (Pratt-Hartmann 2009).

Some proof details are deferred to the appendix in the long
version: http://tinyurl.com/kr14fmr

2 Preliminaries
We introduce the DLs Horn-ALCFI and Horn-ALCQI, as
well as the reasoning tasks studied in this paper. The origi-
nal definition of these DLs is based on a notion of polarity
and somewhat unwieldy (Hustadt, Motik, and Sattler 2007);
alternative and more direct definitions have been proposed
later, see for example (Lutz and Wolter 2012). For brevity, we
directly introduce Horn-ALCQI TBoxes in a normal form
that is convenient for our purposes and disallows syntactic
nesting of operators. It is a minor variation of the normal
form proposed in (Kazakov 2009).

Let NC, NR, and NI be countably infinite and disjoint sets
of concept names, role names, and individual names. A role
is either a role name r or an inverse role r−. A Horn-ALCQI
TBox T is a set of concept inclusions (CIs) that can take the
following forms:

K v A K v ⊥ K v ∃r.K ′

K v ∀r.K ′ K v (6 1 r K ′) K v (> n r K ′)

where K and K ′ denote a (possibly empty) conjunction of
concept names, A a concept name, r a (potentially inverse)
role, and n ≥ 2. Throughout the paper, we will deliberately
confuse conjunctions of concept names and sets of concept
names. The empty conjunction is abbreviated by>. As usual,
we allow to easily switch between role names and their in-
verse by identifying (r−)− and r. A Horn-ALCFI TBox is
a Horn-ALCQI TBox that does not include CIs of the form
K v (> n r K ′).

The semantics of Horn-ALCQI is based on interpretations
as usual, see (Baader et al. 2003) for details. We write T |=
C v D if the concept inclusion C v D is satisfied in all
models of the TBox T , and T |=fin C v D if the same holds
for all finite models. A concept nameA is (finitely) satisfiable
w.r.t. a TBox T if T has a (finite) model I with AI 6= ∅. If
T |= A v B (resp. T |=fin A v B) with A and B concept
names, then we say that B is (finitely) subsumed by A.

289

An ABox is a finite set of concept assertions A(a) and role
assertions r(a, b) where A is a concept name, r a role name,
and a, b are individual names. For simplicity, we make the
standard names assumption, that is, every interpretation I
interpretes all individuals as themselves; for example I satis-
fies A(a) if a ∈ AI . The standard names assumption implies
the unique name assumption (UNA). The results in this pa-
per, however, do not depend on any of these assumptions.
Throughout the paper, we sometimes write r−(a, b) ∈ A for
r(b, a) ∈ A and use Ind(A) to denote the set of all individual
names that occur in A.

We write A, T |= A(a) if the ABox assertion A(a) is sat-
isfied in all common models of the ABox A and the TBox T ,
and A, T |=fin A(a) if the same holds for all finite models.
We then say that a is a (finite) instance of A inA w.r.t. T . An
ABox A is (finitely) consistent w.r.t. T if there is a (finite)
model I of T that satisfies all assertions in A.

The above notions give rise to four decision problems stud-
ied in this paper, which are finite satisfiability (of a concept
name w.r.t. a TBox), finite subsumption (between two con-
cept names w.r.t. a TBox), finite ABox consistency (w.r.t. a
TBox) and finite instance checking (of an ABox individual
and a concept name, w.r.t. an ABox and a TBox). There are
easy polynomial time reductions from satisfiability to sub-
sumption to instance checking to ABox consistency, which
work both in the finite and in the unrestricted case.

The following examples show that, in Horn-ALCFI, finite
and unrestricted reasoning do not coincide.
Example 1
T = { A v ∃r.B, B v ∃r.B,

B v (6 1 r− >), A uB v ⊥ }
A is satisfiable w.r.t. T , but not finitely satisfiable. In fact,
when d ∈ AI in some model I of T , then there must be
an infinite chain r(d, d1), r(d1, d2), . . . with d ∈ AI , and
d2, d3, · · · ∈ BI . Since d cannot be in BI and r is inverse
functional, no two elements on the chain can be identified.

T ′ = { A1 v ∃r.A2, A2 v ∃r.(A1 uB),

> v (6 1 r− >) }
The reader might want to verify that T ′ 6|= A1 v B, but
T ′ |=fin A1 v B.
It follows form the observations in (Kazakov 2009) that,
for the purposes of deciding satisfiability of concepts in un-
restricted models, the normal form for TBoxes introduced
above can be assumed without loss of generality because
every Horn-ALCQI TBox T can be converted in polyno-
mial time into a TBox T ′ in the above form such that every
model of T ′ is a model of T and, conversely, every model
of T can be converted into a model of T ′ by interpreting the
concept names that were introduced during normalization. It
follows that normal form can be assumed w.l.o.g. both for
unrestricted reasoning and for finite model reasoning, and for
all reasoning problems considered in this paper.

3 From Finite Models to Unrestricted Models
We show that finite ABox consistency in Horn-ALCFI can
be reduced to unrestricted ABox consistency by reversing

certain cycles in the TBox. The reduction exhibited in this
section provides a novel decision procedure for finite ABox
consistency in Horn-ALCFI and Horn-ALCQI (as well as
for finite satisfiability, finite subsumption, and finite instance
checking) and is the basis for developing a consequence-
based procedure in Section 4. It also highlights the logical
consequences of finite models in Horn-ALCFI. The material
in this section is an extended and improved version of the
workshop paper (Ibáñez-Garcı́a, Lutz, and Schneider 2013).

Reversing Cycles
Let T be a Horn-ALCFI TBox. A finmod cycle in T is
a sequence K1, r1,K2, r2, . . . , rn−1,Kn, with K1, . . . ,Kn

conjunctions of concept names and r1, . . . , rn−1 (potentially
inverse) roles such that Kn = K1 and, for 1 ≤ i < n:

T |= Ki v ∃ri.Ki+1 and T |= Ki+1 v (6 1 r−i Ki).

By reversing a finmod cycleK1, r1,K2, r2, . . . , rn−1,Kn in
a TBox T , we mean to extend T with the following concept
inclusions, for 1 ≤ i < n:

Ki+1 v ∃r−i .Ki and Ki v (6 1 ri Ki+1).

The completion Tf of a TBox T is obtained from T by ex-
haustively reversing finmod cycles. Note that, although there
may be infinitely many finmod cycles, only finitely many
CIs can be added by cycle reversion (exponentially many in
the size of the original TBox, in the worst case). For finding
these finitely many CIs, it clearly suffices to consider finmod
cycles in which all triples (ri,Ki+1, ri+1) are distinct. Also
note that finding finmod cycles requires deciding unrestricted
subsumption, which is decidable and EXPTIME-complete.
Example 2 The TBox T ′ from Example 1 entails (in unre-
stricted models)

A1 uB v ∃r.A2, A2 v ∃r.(A1 uB),

A2 v (6 1 r− A1 uB), A2 uB v (6 1 r− A1).

Thus, A1, r, A2, r, A1, is a finmod cycle in T ′, which is re-
versed to

A2 v ∃r−.A1, A1 v ∃r−.A2,

A2 v (6 1 r A1), A1 v (6 1 r A2).

From A1 v ∃r−.A2, A2 v ∃r.(A1 u B), and A2 v (6
1 r A1), we obtain T ′f |= A1 v B, in correspondence with
T ′ |=fin A1 v B. Note that T ′ also contains another finmod
cycle, which is (A1 uB), r, A2, r, (A1 uB).
The following result shows that TBox completion provides a
reduction from finite ABox consistency to unrestricted ABox
consistency.
Theorem 3 Let T be a Horn-ALCFI TBox andA an ABox.
Then A is finitely consistent w.r.t. T iff A is consistent w.r.t.
the completion Tf of T .
The “only if” direction of Theorem 3 is an immediate conse-
quence of the observation that all CIs added by cycle rever-
sion are entailed by the original TBox in finite models.
Lemma 4 Let K1, r1, . . . , rn−1,Kn be a finmod cycle in T .
Then T |=fin Ki+1 v ∃r−i .Ki and T |=fin Ki v
(6 1 ri Ki+1) for 1 ≤ i < n,.

290

Proof. We have to show that if K1, r1, . . . , rn−1,Kn is a
finmod cycle in T and I is a finite model of T , then KIi ⊆
(6 1 ri Ki+1)

I and KIi+1 ⊆ (∃r−i .Ki)
I for 1 ≤ i < n. We

first note that, by the semantics of Horn-ALCFI, we must
have |KI1 | ≤ · · · ≤ |KIn |, thus Kn = K1 yields |KI1 | =
· · · = |KIn |. Fix some i with 1 ≤ i < n. Using |KIi | =

|KIi+1|, KIi ⊆ (∃ri.Ki+1)I , and KIi+1 ⊆ (6 1 r−i Ki)
I

, it
is easy to verify that KIi ⊆ (6 1 ri Ki+1)

I and KIi+1 ⊆
(∃r−i .Ki)

I , as required. o

We now prove the “if” direction of Theorem 3, which is much
more demanding as it requires to explicitly construct finite
models.

Constructing Finite Models
Assume that A is consistent w.r.t. Tf . Our aim is to construct
a finite model I of A and Tf (and thus also of T). Before we
give details of the construction, we introduce some relevant
preliminaries.

Let CN(T) denote the set of concept names used in T (or,
equivalently, in Tf). A type for Tf is a subset t ⊆ CN(T)
such that there is a (potentially infinite) model I of Tf and a
d ∈ ∆I such that tpI(d) = t, where

tpI(d) := {A ∈ CN(T) | d ∈ AI}

is the type realized at d in I . We use TP(Tf) to denote the set
of all types for Tf . For t, t′ ∈ TP(Tf) and r a role, we write
• t →r t

′ if Tf |= t v ∃r.t′ and t′ is maximal with this
property;

• t→1
r t
′ if t→r t

′ and Tf |= t′ v (6 1 r− t);
• t 1↔1

r t
′ if t→1

r t
′ and t′ →1

r− t.
Note that when

t1 →1
r1 t2 →

1
r2 · · · →

1
rn−1

tn = t1 (∗)

then t1, r1, . . . , rn−1, tn is a finmod cycle in Tf and the fact
that it has been reversed means that all ‘→1’ in (∗) can be
replaced with 1↔1. Types related by 1↔1

r are connected very
tightly by the TBox Tf and are best considered together when
building finite models. This is formalized by the notion of
a type class, which is a non-empty set P ⊆ TP(Tf) such
that t ∈ P and t 1↔1

r t
′ implies t′ ∈ P , and P is minimal

with this condition. Note that the set of all type classes is
a partition of TP(Tf). We set P ≺ P ′ if there are t ∈ P
and t′ ∈ P ′ with t′ (t. Let ≺+ be the transitive closure of
≺. A proof of the following observation can be found in the
appendix.
Lemma 5 ≺+ is a strict partial order.
We construct the desired finite model I of A and Tf by start-
ing with an initial interpretation that essentially consists of
the ABoxA and then exhaustively applying three completion
rules denoted with (c1) to (c3), where (c1) is given prefer-
ence over (c2). Completion repeatedly introduces elements
whose existence is required by CIs K v ∃r.C, carefully
distinguishing several cases to ensure that no functionality
restrictions are violated. We will prove that rule application
terminates after finitely many steps, producing a finite model.

During the construction of I, we will make sure that the
following invariants are satisfied:

(i1) tpI(d) ∈ TP(Tf) for all d ∈ ∆I ;

(i2) if (d, d′) ∈ rI \ (Ind(A) × Ind(A)), then we have
tpI(d)→r tpI(d′) or tpI(d′)→r− tpI(d);

(i3) if Tf |= K v (6 1 r K ′), then I |= K v (6 1 r K ′).

The initial version of I is defined by introducing an element
for every ABox individual, and an element dt for each t ∈
TP(Tf). In detail, we set

∆I = Ind(A) ∪ { dt | t ∈ TP(T)f }
AI = { a ∈ Ind(A) | A ∈ tpA(a) } ∪ {dt | A ∈ t }
rI = { (a, b) | r(a, b) ∈ A }

where

tpA(a) := {A ∈ CN(T) | A, Tf |= A(a)}.

The completion rules are described in detail below.

(c1) Choose a d ∈ ∆I such that tpI(d) →1
r t, t 6→1

r− tpI(d),
and d /∈ (∃r.t)I . Add a fresh domain element e, and mod-
ify the extension of concept and role names such that
tpI(e) = t and (d, e) ∈ rI .

(c2) Choose a type class P that is minimal w.r.t. the order ≺+,
a λ = s 1↔1

r s
′ with s ∈ P , and an element d ∈ sI \

(∃r.s′)I .

For each λ = s 1↔1
r s
′ with s ∈ P , set

XIλ,1 = sI \ (∃r.s′)I XIλ,2 = s′
I \ (∃r−.s)I .

Take (i) a fresh set ∆s for each s ∈ P such that
|
⊎
s∈P ∆s| ≤ 2|T | · |∆I | and (ii) a bijection πλ between

XIλ,1 ∪∆s and XIλ,2 ∪∆s′ for each λ = s 1↔1
r s
′ with

s, s′ ∈ P and r a role name (the concrete construction is
detailed below). Now extend I as follows:

– add all domain elements in
⊎
s∈P ∆s;

– extend rI with πλ, for each λ = s 1↔1
r s
′ with s, s′ ∈

P and r a role name;
– interpret concept names so that tpI(d) = s for all d ∈

∆s, s ∈ P .

(c3) Choose a d ∈ ∆I such that tpI(d) →r t, tpI(d) 6→1
r t,

and d /∈ (∃r.t)I . Add the edge (d, dt) to rI , where dt is
the element introduced for type t in the initial version of I .

To complete the description of the rules, we have to show
that, in (c2), the sets ∆s and bijections πλ indeed exist. Let
nmax = max{|sI | | s ∈ P}. For each s ∈ P , set ∆s :=
{ds,i | |sI | < i ≤ nmax} and define the set of s-instances
Is := sI∪∆s. For each λ = s 1↔1

r s
′ with s, s′ ∈ P , define

Rλ := {(d, e) ∈ rI | d ∈ sI and e ∈ s′I}.

We first note that it is a consequence of invariant (i3) that

(∗) the relation Rλ is functional and inverse functional.

291

In fact, (d, e1), (d, e2) ∈ Rλ implies (d, e1), (d, e2) ∈ rI ,
d ∈ sI , and e1, e2 ∈ s′

I . By λ, Tf |= s v (6 1 r s′).
Thus, (i3) yields e1 = e2. Inverse functionality can be shown
analogously.

Let R1
λ be the domain of Rλ, and let R2

λ be its range.
By (∗), we have |R1

λ| = |R2
λ|. By definition of the sets ∆s,

we have |Is| = |Is′ |. Moreover, R1
λ ⊆ Is and R2

λ ⊆ Is′ .
We can thus choose a bijection πλ between Is \ R1

λ and
Is′ \ R2

λ, which is as required since Is \ R1
λ = XIλ,1 ∪∆s

and Is′ \R2
λ = XIλ,2 ∪∆s′ . The construction of the sets ∆s

clearly ensures that their union has the required cardinality.

The following theorem summarizes the statements that
remain to be proved in order to show that the construction of
I is well-defined and yields a finite model of A and Tf .
Theorem 6

1. Applying (c1) to (c3) preserves invariants (i1) to (i3);
2. Application of (c1) to (c3) terminates;
3. I is a model of A and Tf .

Proof. We refer to the appendix for full proofs and only
sketch the central idea in the proof of Point 2 here, going
back to (Cosmadakis, Kanellakis, and Vardi 1990). The main
issue in the termination proof is to show that no infinite
role chain r0(d0, d1), r1(d1, d2), . . . is generated in which
all the elements di are pairwise distinct. Since every appli-
cation of a completion rule generates only finitely many ele-
ments, any such chain must be generated by infinitely many
rule applications. As there are only finitely many types, we
must find elements di and dj with tpI(di) = tpI(dj) and
such that di and dj were generated by different rule appli-
cations. It can be shown that, w.l.o.g., we can assume that
the elements on the chain are ordered so that if j > i, then
dj was not generated by an earlier rule application than di.
Analysing the completion rules, it is easy to see that this im-
plies tpI(di) →1

ri tpI(di+1) →1
ri+1

· · · →1
rj−1

tpI(dj).

Since tpI(di) = tpI(dj), this is a finmod cycle, which
has been reversed when constructing Tf , and thus all arrows
→1
ri+`

can be replaced with 1↔1
ri+`

. By definition of the com-
pletion rules, this means that all of di, . . . , dj were introduced
in the same application of (c2), which is a contradiction to di
and dj being generated by different rule applications. o

4 Consequence-Driven Procedure
While completing TBoxes with reversed cycles yields a re-
duction of finite model reasoning to infinite model reasoning,
it blows up the TBox exponentially and is thus not suited for
direct implementation. In this section, we build on the results
from the previous section to devise a calculus for ABox con-
sistency in Horn-ALCFI that does not require TBox com-
pletion to be carried out up-front, but instead reverses cycles
‘on the fly’; moreover, the calculus implicitly groups together
cycles that are closely related, potentially reversing a very
large number of cycles in only a few steps (see Example 7
below). Our calculus belongs to a family of algorithms that
are known as consequence-driven procedures and underly
modern and highly efficient reasoners for Horn DLs such as

R1
K uA v A

R2
K v >

R3
K v Ai uAi v C

K v C
R4

K v ∃r.K′ K′ v ∀r−.A
K v A

R5
K v ∃r.K′ K v ∀r.A

K v ∃r.(K′ uA)
R6

K v ∃r.K′ K′ v ⊥
K v ⊥

R7

K v ∃r.K1 K v ∃r.K2 K1 v A

K v (6 1 r A) K2 v A

K v ∃r.(K1 uK2)

R8

K v ∃r.K′ K′ v ∃r−.K1 K v A

K′ v (6 1 r− A) K1 v A

K v A1 for any A1 ∈ K1

R9

Ki v ∃ri.Ki⊕n1

Ki⊕n1 v (6 1 r−i Ai) Ki v Ai
i < n

K1 v ∃r−0 .K0 K0 v (6 1 r0 A1)

Figure 1: Inference Rules

CEL, CB, and ELK (Baader, Lutz, and Suntisrivaraporn 2006;
Kazakov 2009; Kazakov, Krötzsch, and Simančı́k 2011b). It
thus establishes a promising foundation for actual implemen-
tations of finite-model reasoning in Horn-ALCFI and, via
the reduction in Section 6, in Horn-ALCQI. For simplicity,
we start with a calculus for finite satisfiability and finite sub-
sumption. An expansion to finite ABox consistency (and thus
to finite instance checking) is sketched afterwards.

The calculus starts with a given TBox T and then ex-
haustively applies a set of inference rules. To ease their
presentation, we assume that T is in a normal form that
is slightly stricter than the one introduced in Section 2: in
CIs K v ∀r.K ′ and K v (6 1 r K)′, K ′ must be a concept
name A. The inference rules are displayed in Figure 1. They
preserve the normal form and are applied in the sense that,
if the concept inclusions in the precondition (above the line)
are already present, then those in the postcondition (below
the line) are added. Recall that K stands for a conjunction
of concept names, which we read here modulo commutativ-
ity. Rule R1 is applied only if K u A occurs in the current
(partially completed) TBox, that is, there is a CI of the form
K uA v C or K ′ v ∃r.(K uA). The same is true for rule
R2 with K in place of K uA. In rule R9, ⊕n means addition
modulo n.

We point out that rules R1 to R8 are minor variations
of the corresponding rules in the calculus presented by
Kazakov (2009), the main difference being that our language
does not include role hierarchies. Rule R9 is novel and deals
with reversing cycles on the fly. Note that only the ‘first edge’
of each cycle is reversed, and that this is sufficient because
the cycle can be rotated to make any edge the ‘first’ one.

292

Example 7 Consider the TBox
T = {A v ∃r.(A uA1 u · · · uAn), (1)

A v (6 1 r− A) }. (2)
Cycle reversion from Section 3 reverses all of the exponen-
tially many cycles K, r,K with K ⊆ S := {A,A1, . . . , An}
and A ∈ K, adding K v ∃r−.K and K v (6 1 r K)
for all such K. In contrast, the calculus avoids introducing

‘irrelevant’ conjunctions K and instead jointly reverses all
these cycles by generating A v ∃r−.S and A v (6 1 r A):
S v A from R1 (3)
A v A from R1 (4)
S v ∃r.S from (1), (3),R3 (5)
S v (6 1 r− A) from (2), (3),R3 (6)
S v ∃r−.S and (7)
S v (6 1 r A) from (3), (5), (6),R9 (8)
A v Ai from (1), (3), (4), (6), (7),R8 (9)
A v ∃r−.S from (7), (9),R3 (10)
A v (6 1 r A) from (8), (9),R3 (11)

Note that avoiding to introduce ‘irrelevant’ conjunctions K
as illustrated by Example 7 is a main feature of consequence-
based procedures which enables the excellent practical per-
formance typically observed for this class of calculi.

The algorithm terminates after at most exponentially many
rule applications since there are only exponentially many
different concept inclusions that use the concept and role
names of the original TBox. Each rule application can be
performed in polynomial time, which is easy to see for the
rules R1–R8. For R9, the crucial observation is that it suffices
to consider all conjunctions K0,K1 and to check whether
they are involved in any cycle. The latter can easily be done
by a variation of directed graph reachability, where the nodes
of the graph are the conjunctions that occur in the current
TBox and the edges come from inclusions K v ∃r.K ′.

The following theorem, which is the main result of this
section, states that the calculus is sound and complete.

Theorem 8 Let T be a Horn-ALCFI TBox, T̂ be obtained
by exhaustively applying Rules R1–R9, and let A0 be a
concept name. Then A0 is finitely satisfiable w.r.t. T iff
A0 v ⊥ /∈ T̂ .
While Theorem 8 is formulated only for finite satisfiability,
the algorithm can of course also be used to decide finite
subsumption via the usual reduction to finite satisfiability.
The following continues Example 7.
Example 9 Let T be the TBox from Example 7 and

T ′ = T ∪ { A v ∃r.(A uX1), (12)
A v ∃r.(A uX2), (13)

X1 uX2 v ⊥ } (14)
The calculus derives A v ⊥, thus A is finitely unsatisfiable
w.r.t. T ′:1

AuXi v A from R1 (15)
A v ∃r.(AuX1uX2) from (11)–(13), (15),R7 (16)
A v ⊥ from (14), (16),R6 (17)

1A is obviously satisfiable w.r.t. T ′ in unrestricted models.

We now prove Theorem 8. The “only if” direction (soundness)
is straightforward by verifying that each rule is sound in finite
models. In contrast, the “if” direction (completeness) turns
out to be surprisingly subtle to establish. The proof strategy
is as follows. Assume that A0 v ⊥ /∈ T̂ . We construct a
(possibly infinite) model Î of T̂ with AÎ0 6= ∅ and show that
Î is actually a model of Tf . By Theorem 3, it follows that A0

is finitely satisfiable w.r.t. T . From now on, assume w.l.o.g.
that A0 actually occurs in T .

To construct Î, let KON(T̂) denote the set of all conjunc-
tions K such that K occurs in T̂ (in the sense explained
above) and K v ⊥ /∈ T̂ . The domain ∆Î consists of finite
words d = K1K2 · · ·Kn ∈ KON(T̂)∗, and we use tail(d) to
denote Kn. Define Î by starting with

∆Î = KON(T̂)

AÎ = {K ∈ KON(T̂) | K v A ∈ T̂ }
rÎ = ∅

Observe that sinceA0 occurs in T̂ andA0 v ⊥ /∈ T̂ , ∆Î con-
tains the conjunction K = A0 and thus AÎ0 6= ∅. We finish
the construction of Î by exhaustively applying the follow-
ing rule: if there is some d ∈ ∆Î with tail(d) v ∃r.K ′ ∈ T̂ ,
K ′ maximal with this property, and d 6∈ (∃r.K ′)Î , then add
a fresh element e = dK ′ to ∆Î , add (d,K ′) to rÎ , and add
dK ′ to AÎ whenever K ′ v A ∈ T̂ .

We first show that Î is a model of T̂ , which amounts to
a case distinction over the forms of CIs that can be present
in T̂ , in each case relying on the fact that T̂ is closed under
the rules of the calculus. Details are provided in the appendix.

Lemma 10 Î |= T̂ .

It remains to show that Î is a model of Tf , which is signif-
icantly more difficult to prove than Lemma 10 due to the
fact that Tf is obtained by reversing all cycles in T whereas
the calculus is more careful to reverse only the ‘relevant’
ones, as explained above. We start with the observation that,
when constructing Tf , it suffices to close only maximal cycles.
More precisely, a cycle K1, r1,K2, . . . ,Kn in a TBox T is
maximal if Kj+1 is maximal with T |= Kj v ∃rj .Kj+1, for
1 ≤ j < n. Let T max

f be the variation of Tf that is obtained
by reversing only maximal cycles.

Lemma 11 Tf is equivalent to T max
f .

To finish the proof of Theorem 8, let T 0
f , T 1

f , . . . be the
sequence of TBoxes obtained by starting with T 0

f = T and
then exhaustively closing maximal cycles, that is, T max

f is the
limit of this sequence. In the appendix, we prove by induction
on i that Î is a model of each T if , thus of Tf .

We now briefly consider an extension of our algorithm to
ABox consistency, with Figure 2 showing the additional rules.
Instead of starting with only a TBox T , the algorithm now
begins with a set T ∪A, where T is a TBox and A an ABox,
and then exhaustively applies rules R1 to R12. In rules R10

293

R10
K(a) K v A

A(a)
R11

K(a) r(a, b) K v ∀r.K′

K′(b)

R12

K1(a) K2(a) r(a, b) K(b) K1 v (6 1 r A)

K2 v ∃r.K′ K v A K′ v A

K′(b)

Figure 2: Additional Inference Rules

to R12, K(a) is an abbreviation for A1(a) · · · Ak(a) when
K = {A1, . . . , Ak}. Recall that rules R1 and R2 only apply
when the conjunction in their precondition occurs in the par-
tially completed TBox. For the extension with ABoxes, an
additional way for K to occur is that, for some ABox indi-
vidal a, K = {A | A(a) is in the partial completion}. It is
easy to see that rule application still terminates after exponen-
tially many steps. Let Γ be the set of concept inclusions and
ABox assertions finally generated. The algorithm is sound
and complete in the sense that A is finitely inconsistent w.r.t.
T iff there is an ABox individual a and a conjunctionK such
that Γ contains both K(a) and K v ⊥. To prove this, one
updates the construction of Î by starting with an initial in-
terpretation defined by setting ∆Î = Ind(A), rÎ = {(a, b) |
r(a, b) ∈ A}, and AÎ = {a ∈ Ind(A) | A(a) ∈ Γ}. The rest
of the construction of Î is as before. It is not hard to adapt
the proof of Lemma 10 to show that Î satisfies all inclusions
and assertions in Γ. As in the case of finite satisfiability, it
thus remains to prove that Î is a model of Tf . Fortunately, the
proof of goes through without modification.

Apart from providing a basis for practical implementations,
our algorithm also yields an EXPTIME upper bound for finite
ABox consistency in Horn-ALCFI. This result is known
from (Lutz, Sattler, and Tendera 2005), where it is shown
that ABox consistency in the non-Horn version of ALCQI
is in EXPTIME. A matching lower bound can be derived
from (Baader, Brandt, and Lutz 2008) where an EXPTIME
lower bound is established for unrestricted subsumption in
(the ELI fragment of) Horn-ALCFI; the proof can easily
be adapted to finite satisfiability.

Theorem 12 Finite satisfiability and finite ABox consistency
in Horn-ALCQI are EXPTIME-complete.

5 Query Answering in the Finite
In the ontology-based data access (OBDA) paradigm, the cen-
tral reasoning problem is answering database-style queries
over ABoxes in the presence of a DL TBox. In this section,
we study the finite model version of this problem, assuming
that queries are positive existential queries (PEQs) and that
TBoxes are formulated in Horn-ALCFI. We show that, as in
the case of ABox consistency, finite PEQ answering can be
reduced to unrestricted PEQ answering by reversing finmod
cycles in the TBox. This result enables the use of algorithms
for unrestricted PEQ answering also in the finite case. It

also allows us to show that finite PEQ answering w.r.t. Horn-
ALCFI TBoxes is EXPTIME-complete regarding combined
complexity, and PTIME-complete regarding data complexity.

We start with a brief introduction of positive existential
queries and of query answering. For simplicity, we concen-
trate on Boolean queries, that is, queries without answer
variables. It is, however, easy to adapt all techniques estab-
lished in this section to the case of queries with answer vari-
ables. A (Boolean) positive existential query (PEQ) q takes
the form ∃xϕ(x) where ϕ is built from atoms of the form
A(x) and r(x, y) using conjunction and disjunction, with
x, y variables from x, A a concept name, and r a role name.
Let I be an interpretation and q = ∃xϕ a PEQ. A match
of q in I is a mapping π : x → ∆I such that ϕ evaluates
to true unter the valuation that assigns true to an atom A(x)
in ϕ iff π(x) ∈ AI and true to an atom r(x, y) in ϕ iff
(π(x), π(y)) ∈ rI . We write I |= q if there is a match of
q in I. For an ABox A and a TBox T , we write A, T |= q
(resp. A, T |=fin q) if I |= q for all models (resp. finite
models) I of T and A. We then say that A, T entails (resp.
finitely entails) q. The problem that we are interested in is
finite query entailment, that is, given an ABox A, a TBox T ,
and a query q, to decide whether A, T |=fin q. We will study
both the combined complexity and the data complexity of this
problem. When studying combined complexity, all of A, T ,
and q are considered an input. In the case of data complexity,
T and q are assumed to be fixed and q is the only input.

The main result of this section is the following theorem,
where Tf is the TBox obtained from T by exhaustively re-
versing finmod cycles, exactly as in Section 3.
Theorem 13 Let T be a Horn-ALCFI TBox and A an
ABox that is finitely consistent w.r.t. T . For any PEQ q,

A, T |=fin q iff A, Tf |= q

The proof of the “⇐” direction is trivial. Indeed, if
A, T 6|=fin q, then there is a finite model I of A and T such
that I 6|= q. Since every finite model of T is also a model
of Tf by Lemma 4, it follows that A, Tf 6|= q.

For the proof of the “⇒” direction, we use a well-known
(infinite) canonical model U of A and Tf , constructed by
starting with the following initial interpretation

∆U = Ind(A)

AU = {a ∈ Ind(A) | A, Tf |= A(a)}
rU = {(a, b) | r(a, b) ∈ A}

and then exhaustively applying the following completion
rule: for all d ∈ ∆U such that Tf |= tpU (d) v ∃r.t′, where
t′ is maximal with this property and d /∈ (∃r.t′)U , add a
fresh element d′ to ∆U , the edge (d, d′) to rU , and d′ to the
interpretation AU of all concept names A ∈ t′.

The following properties of U are well-known and the
reason for why U is called canonical (Krisnadhi and Lutz
2007; Eiter et al. 2008; Ortiz, Rudolph, and Šimkus 2011).
Lemma 14

1. U is a model of A and of Tf ;
2. For any PEQ q, we have that A, Tf |= q iff U |= q.

294

By Point 2 of Lemma 14, we can establish the “⇒” direc-
tion of Theorem 13 by showing that A, T |=fin q implies
U |= q. The proof makes intense use of homomorphisms. For
interpretations I1, I2, a homomorphism from I1 to I2 is a
function h : ∆I1 → ∆I2 such that

1. h(a) = a for all a ∈ NI;

2. d ∈ AI1 implies h(d) ∈ AI2 for all concept names A;

3. (d, e) ∈ rI1 implies (h(d), h(e)) ∈ rI2 for all (possibly
inverse) roles r.

For n > 0, an n-substructure of an interpretation I is an
interpretation I ′ obtained from I by selecting a domain
∆I
′ ⊆ ∆I with at most n elements and restricting I to ∆I

′
.

To show that A, T |=fin q implies U |= q, it suffices to
establish the following.

Proposition 15 For every n0 > 0, there is a finite model
Jn0

ofA and T such that there is a homomorphism from any
n0-substructure of Jn0 to U .

In fact, A, T |=fin q implies Jn0 |= q and thus there is an n0-
substructure J of Jn0 with J |= q, where n0 is the number
of variables in q. The latter is witnessed by a match π. By
Proposition 15, there is a homomorphism h from J to U and
thus a match of q in U can be found by composing π with h.

We construct the model J from Proposition 15 by mod-
ifying the finite model I constructed in Section 3. For two
reasons, the finite model I constructed in Section 3 need not
satisfy the condition formulated for Jn0 in Proposition 15.

1. I can contain paths of length ≤ n0 that do not exist in U .

2. I can contain cycles that do not exclusively consist of
ABox elements, while no such cycles are present in U .

Let us start with Problem 1 above. There are, in turn, two
sources for paths in I that we cannot reproduce in U .

(i) Application of (c3) can generate a path (d1, d) ∈ rI ,
(d, d2) ∈ sI such that tpI(d1) →r tpI(d) s← tpI(d2)
and d is not identified by an ABox element. Such situa-
tions are not necessarily reproducible in U . As a concrete
example, consider

A = { B1(a), B2(b) }
T = { B1 v ∃r.A, B2 v ∃r.A }.

The problematic path is (a, dt) ∈ rI , (dt, b) ∈ (r−)I with
t = {A}.

(ii) Application of (c2) can result in similar a situation as
above, but where the middle element d is replaced with a
sequence of elements e0, . . . , ek such that (ei, ei+1) ∈ rIi
for all i < k (for some roles r0, . . . , rk−1) and

tpI(e0) 1↔1
r1 · · ·

1↔1
rk−1

tpI(ek). (18)

For a very simple example, take

A = { B1(a), B2(b) }

and assume that T is such that B1
1↔1

r B2. Then an
application of (c2) will simply add r(a, b), an edge that
does not exist in U .

To obtain the desired model Jn0 from Proposition 15, we
first solve Problems (i) and (ii) above, and then Problem 2. To
make precise what we mean by this, we introduce bounded
simulations, a weakening of homomorphisms. A bounded
simulation of I1 in I2 is a relation ρ ⊆ ∆I1 × N×∆I2 such
that for all (d, i, e) ∈ ρ, the following conditions are satisfied:

1. if d ∈ AI1 , then e ∈ AI2 ;

2. if i > 0 and (d, d′) ∈ rI1 for some (possibly inverse)
role r, then there is an e′ ∈ ∆I2 with (e, e′) ∈ rI2 and
(d′, i− 1, e′) ∈ ρ.

We write (I1, d) �k (I2, e), for d ∈ ∆I1 and e ∈ ∆I2 ,
if there is a bounded simulation of I1 in I2 such that
(d, k, e) ∈ ρ and for all a ∈ NI ∩∆I1 , we have (a, k, a) ∈ ρ.
Then I1 �k I2 denotes that for every d ∈ ∆I1 , there is
an e ∈ ∆I2 with (I1, d) �k (I2, e). We write (I1, d) ∼k
(I2, e) if (I1, d) �k (I2, e) and vice versa.

With solving Problems (i) and (ii), we mean to establish
the following intermediate result.

Proposition 16 For every n0 > 0, there is a finite model In0

of A and T such that In0 �n0 U .

To remove the undesired paths illustrated in (i) above, we
modify the construction of I by replacing the elements dt,
t ∈ TP(Tf), that are introduced at the beginning of the con-
struction of I and used as ‘targets’ for role edges introduced
by applications of (c3). In the modified construction, we
instead introduce one (c3)-target for each n0-bounded simu-
lation type, which is an equivalence class of ∼n0

on the set
of all pointed interpretations (I1, d). In the example given
in (i) above, the result is that the two existential restrictions
would no longer be witnessed by the same dt because the
1-simulation type of the witnesses are different (one has an
r-predecessor inB1, the other inB2). Since simulations need
only to consider symbols that occur in the (fixed) ABox
A and (fixed) TBox T , there are only finitely many n0-
simulation types and thus finiteness of I is not compromised.

Undesired paths of type (ii) are avoided by modifying the
(c2) rule so that the sequences (18) are of length exceed-
ing n0 and thus the highlighted problem which involves both
ends of the sequence is not ‘visible’ in n0-substructures. We
also include an initial piece of the canonical model U for A
and Tf of depth n0 in the initial version of I to avoid the
undesired ‘shortcuts’ between ABox elements illustrated by
the example given in (ii) above.

The construction is spelled out in full detail in the appendix.
We have actually omitted some aspects in the overview above
for the sake of a clearer exposition, such as the fact that
we first exhaustively apply rules (c1) and (c2), followed by
exhaustive application of (c3) (the latter two in their modified
versions), and that we actually cannot include in the initial
I all n0-bounded simulation types, but must select only the
‘relevant’ ones. This finishes the proof of Proposition 16.

To solve Problem 2 above and thus obtain the model Jn0

stipulated by Proposition 15, we have to eliminate all non-
ABox-cycles of size at most n0 in the model In0

delivered by
Proposition 16. This is achieved by taking the product with a
suitable finite group of high girth, a technique championed

295

by Otto (2012). Details are provided in the appendix. This
finishes the proof of Theorem 13.

Apart from enabling the use of algorithms for unrestricted
PEQ answering also in the finite case, Theorem 13 yields
tight complexity bounds for finite PEQ entailment.

Theorem 17 Finite PEQ entailment in Horn-ALCFI is de-
cidable, EXPTIME-complete in combined complexity, and
PTIME-complete in data complexity.

Proof.(sketch) For the unrestricted case, an EXPTIME lower
bound is in (Baader, Brandt, and Lutz 2008) and a PTIME
one in (Calvanese et al. 2006). Both results can easily be
adapted to the finite case. The upper bounds can be proved
using the following straightforward algorithm for PEQ en-
tailment, which resembles existing algorithms such as those
presented in (Krisnadhi and Lutz 2007; Eiter et al. 2008;
Calı̀, Gottlob, and Lukasiewicz 2009; Ortiz, Rudolph, and
Šimkus 2011). Assume that an input ABox A, TBox T , and
PEQ q are given, and let n0 be the number of variables in q.
As a consequence of Theorem 3, finite satisfiability w.r.t. T
coincides with unrestricted satisfiability w.r.t. Tf . Using our
algorithm for computing finite satisfiability in Horn-ALCFI
in EXPTIME, we can thus compute the set TP(Tf) of types
for Tf without computing Tf or explicitly reasoning w.r.t. this
exponentially large TBox. Let A′ be the extension of A with
assertions {A(at) | A ∈ t} for each t ∈ TP(A). Now com-
pute an initial piece U ′ of the canonical model U ofA′ and Tf ,
namely its restriction to depth n0. Similar to the computation
of TP(Tf) above, we can do this by using finite subsumption
w.r.t. T instead of unrestricted subsumption w.r.t. Tf . It is not
difficult to prove that U ′ |= q iff U |= q. To check whether
U ′ |= q within the desired time bounds, we can simply enu-
merate all possible maps of variables in q to elements of U ′
and check whether any such map is a match. o

Note that decidability of PEQ entailment in Horn-ALCFI
was expected given a result by Pratt-Hartmann which states
that finite CQ answering for the two-variable guarded frag-
ment of first-order logic extended with counting quantifiers is
decidable (Pratt-Hartmann 2009). We assume that his proof
can be extended to unions of conjunctive queries (UCQs),
thus to PEQs. Pratt-Hartmann also analyses the data com-
plexity of finite CQ answering in his logic, but finds it to be
CONP-complete. He does not analyse combined complexity.
Theorem 17 suggests that PEQ entailment in Horn-ALCFI
has the same complexity in finite and in unrestricted mod-
els. For the unrestricted case, PTIME-completeness in data
complexity follows from the results in (Hustadt, Motik, and
Sattler 2007), and EXPTIME-completeness in combined com-
plexity is proved in (Eiter et al. 2008) for UCQs. We assume
that the techniques in that paper extend to PEQs.

6 From Horn-ALCFI to Horn-ALCQI
Our results for finite satisfiability and finite subsumption
(the reasoning tasks that do not involve ABoxes) extend in
a straightforward way from Horn-ALCFI to Horn-ALCQI.
In particular, we can convert a Horn-ALCQI TBox T into a
Horn-ALCFI TBox T ′ such that finite (un)satisfiability is
preserved by replacing each CI K v (> n r K ′) in T with

the following inclusions, for 1 ≤ i < j ≤ n:

K v ∃r.Bi, Bi v K ′, Bi uBj v ⊥ (∗)

While an easy unraveling argument can be used to prove that
this reduction is correct in the presence of infinite models,
more care is required in the finite case (see appendix).

Proposition 18 T is finitely satisfiable iff T ′ is finitely satis-
fiable.

It follows from Proposition 18 and Theorem 3 that a Horn-
ALCQI TBox T is finitely satisfiable iff (T ′)f is satisfiable.
Actually, it is not hard to see that this is the case iff Tf (the re-
sult of applying cycle reversion directly to the Horn-ALCQI
TBox, ignoring all inclusions A v (> n r C)) is satisfiable
because if any of the existential restrictions in T ′ \ T is in-
volved in a finmod cycle, then a simple semantic argument
shows that both Tf and (T ′)f are unsatisfiable. Proposition 18
also enables the use of our consequence-based procedure for
deciding finite satisfiability in Horn-ALCQI.

It is not immediately obious how to extend (∗) and Propo-
sition 18 to ABox consistency and instance checking. We
believe, though, that it is not too hard to modify the proof
of Theorem 3 for Horn-ALCQI, to adapt the consequence-
based procedure to allow a direct treatment of Horn-ALCQI
TBoxes without prior reduction to Horn-ALCFI, and to ex-
tend all model constructions underlying our results about
PEQ entailment to Horn-ALCQI . In particular, such a direct
approach should yield EXPTIME/ PTIME upper bounds for
PEQ entailment in Horn-ALCQI even when the numbers in
at least restrictions are coded in binary (note that, in this case,
the translation (∗) incurs an exponential blowup).

7 Future Work
As future research, it would be interesting to extend the re-
sults in this paper to Horn-SHIQ, that is, to add role hier-
archies and transitive roles. Reducing out role hierarchies
does not seem easily possible in the finite,2 so they would
have to be built directly into all constructions. For query
entailment, we expect transitive roles to cause significant
additional challenges, see for example (Eiter et al. 2009;
Mosurovic et al. 2013). In particular, transitive roles result in
an additional way in which the finite model property is lost,
illustrated by the TBox T = {A v ∃r.A, trans(r)} and the
conjunctive query q = ∃x r(x, x). We have {A(a)}, T 6|= q,
but {A(a)}, T |=fin q although neither counting nor in-
verse roles are present (the TBox T is formulated in the
DL ELtrans). Finite model reasoning in versions of Datalog±
that extend ELtrans has recently been studied in (Gogacz and
Marcinkowski 2013b; 2013a).

In this paper, we have not analyzed the size of finite mod-
els. It is, however, easy to prove a double exponential lower
bound on the size of finite models for satisfiability in Horn-
ALCFI by enforcing a tree of exponential depth in which
no two elements can be identical. A matching upper bound
follows from Pratt-Hartmann’s result that every finitely sat-
isfiable formula in first-order logic with two variables and

2In contrast to what we have claimed in the workshop predeces-
sor of this paper (Ibáñez-Garcı́a, Lutz, and Schneider 2013).

296

counting quantifiers has a model of at most double exponen-
tial size (Pratt-Hartmann 2005). Analyzing the size of finite
(counter)models for query entailment is left as future work.

Acknowledgements Carsten Lutz was supported by the
SFB/TR8 Spatial Cognition.

References
Baader, F.; Calvanese, D.; McGuinness, D.; Nardi, D.; and
Patel-Schneider, P., eds. 2003. The Description Logic Hand-
book: Theory, Implementation, and Applications. Cambridge
University Press.
Baader, F.; Brandt, S.; and Lutz, C. 2005. Pushing the EL
envelope. In Proc. of IJCAI-05, 364–369.
Baader, F.; Brandt, S.; and Lutz, C. 2008. Pushing the EL
envelope further. In Proc. OWLED-08 DC, volume 496 of
CEUR-WS.org.
Baader, F.; Lutz, C.; and Suntisrivaraporn, B. 2006. CEL –
a polynomial-time reasoner for life science ontologies. In
Proc. IJCAR-06, volume 4130 of LNCS, 287–291. Springer.
Bienvenu, M.; Lutz, C.; and Wolter, F. 2013. First-order
rewritability of atomic queries in Horn description logics. In
Proc. of IJCAI-13. IJCAI/AAAI.
Calı̀, A.; Gottlob, G.; and Lukasiewicz, T. 2009. A general
datalog-based framework for tractable query answering over
ontologies. In PODS, 77–86.
Calvanese, D.; Giacomo, G. D.; Lembo, D.; Lenzerini, M.;
and Rosati, R. 2006. Data complexity of query answering in
description logics. In Proc. KR-06, 260–270. AAAI Press.
Calvanese, D.; Giacomo, G. D.; Lembo, D.; Lenzerini, M.;
and Rosati, R. 2007. Tractable reasoning and efficient query
answering in description logics: The DL-Lite family. J. Au-
tom. Reasoning 39(3):385–429.
Calvanese, D. 1996. Finite model reasoning in description
logics. In Proc. of KR-96, 292–303. Morgan Kaufmann.
Cosmadakis, S.; Kanellakis, P.; and Vardi, M. 1990.
Polynomial-time implication problems for unary inclusion
dependencies. J. ACM 37(1):15–46.
Eiter, T.; Gottlob, G.; Ortiz, M.; and Simkus, M. 2008. Query
answering in the description logic Horn-SHIQ. In Proc.
JELIA-08, volume 5293 of LNCS, 166–179. Springer.
Eiter, T.; Lutz, C.; Ortiz, M.; and Simkus, M. 2009. Query
answering in description logics with transitive roles. In Proc.
IJCAI-09, 759–764.
Eiter, T.; Ortiz, M.; Šimkus, M.; Tran, T.-K.; and Xiao, G.
2012. Towards practical query answering for Horn-SHIQ.
In Proc. DL-12, volume 846 of CEUR-WS.org.
Gogacz, T., and Marcinkowski, J. 2013a. Converging to
the chase - a tool for finite controllability. In Proc. LICS-13,
540–549. IEEE Computer Society.
Gogacz, T., and Marcinkowski, J. 2013b. On the BDD/FC
conjecture. In Proc. PODS-13, 127–138. ACM.
Hustadt, U.; Motik, B.; and Sattler, U. 2007. Reasoning in
description logics by a reduction to disjunctive datalog. J.
Autom. Reasoning 39(3).

Ibáñez-Garcı́a, Y. A.; Lutz, C.; and Schneider, T. 2013. Finite
model reasoning in Horn-SHIQ. In Proc. DL-13, volume
1014 of CEUR-WS.org, 234–245.
Kazakov, Y.; Krötzsch, M.; and Simančı́k, F. 2011a. Unchain
my EL reasoner. In Proc. DL-11, volume 745 of CEUR-
WS.org.
Kazakov, Y.; Krötzsch, M.; and Simančı́k, F. 2011b. Con-
current classification of el ontologies. In Proc. ISWC-11 (1),
volume 7031 of LNCS, 305–320. Springer.
Kazakov, Y. 2009. Consequence-driven reasoning for Horn-
SHIQ ontologies. In Proc. IJCAI-09, 2040–2045.
Krisnadhi, A., and Lutz, C. 2007. Data complexity in the
EL family of DLs. In Proc. DL-07, volume 250 of CEUR-
WS.org.
Lutz, C., and Wolter, F. 2012. Non-uniform data complexity
of query answering in description logics. In Proc. KR-12.
AAAI Press.
Lutz, C.; Sattler, U.; and Tendera, L. 2005. The complexity
of finite model reasoning in description logics. Information
and Computation 199:132–171.
Mosurovic, M.; Krdzavac, N.; Graves, H.; and
Zakharyaschev, M. 2013. A decidable extension of
SROIQ with complex role chains and unions. J. Artif.
Intell. Res. (JAIR) 47:809–851.
Ortiz, M.; Rudolph, S.; and Šimkus, M. 2011. Query answer-
ing in the Horn fragments of the description logics SHOIQ
and SROIQ. In Proc. IJCAI-11, 1039–1044. IJCAI/AAAI.
Otto, M. 2012. Highly acyclic groups, hypergraph covers,
and the guarded fragment. J. ACM 59(1):5.
Pacholski, L.; Szwast, W.; and Tendera, L. 2000. Complexity
results for first-order two-variable logic with counting. SIAM
J. Comput. 29(4):1083–1117.
Pratt-Hartmann, I. 2005. Complexity of the two-variable
fragment with counting quantifiers. J. of Logic, Language
and Information 14(3):369–395.
Pratt-Hartmann, I. 2009. Data-complexity of the two-variable
fragment with counting quantifiers. Inf. Comput. 207(8):867–
888.
Rosati, R. 2008. Finite model reasoning in DL-Lite. In Proc.
ESWC-08, volume 5021 of LNCS, 215–229. Springer.

297

