
The Well-Founded Semantics Is the Principle of Inductive Definition, Revisited

Marc Denecker
Department of Computer Science

K.U. Leuven
3001 Heverlee, Belgium

marc.denecker@cs.kuleuven.be

Joost Vennekens
Campus De Nayer | K.U. Leuven
Department of Computer Science

2860 Sint-Katelijne-Waver, Belgium
joost.vennekens@cs.kuleuven.be

Abstract
In the past, there have been several attempts to explain logic
programming under the well-founded semantics as a logic of
inductive definitions. A weakness in all is the absence of
an obvious connection between how we understand various
types of informal inductive definitions in mathematical text
and the complex mathematics of the well-founded semantics.
In this paper, we close this gap. We formalize the induction
process in the most common principles and prove that the
well-founded model construction generalizes them all.

Introduction
Ever since the well-founded semantics was first defined (Van
Gelder, Ross, and Schlipf 1991), researchers have referred
to the concept of an inductive definition, as we know it from
mathematics, to explain the intuitions behind this formal se-
mantics. This link was made explicit in several publications
(Denecker 1998; Denecker, Bruynooghe, and Marek 2001;
Denecker and Ternovska 2008), where we gave various ar-
guments that, under the well-founded semantics, each rule
in a set of rules can be seen as an (inductive or base) case of
an inductive definition. A weakness in all is the absence of
an obvious connection between how we understand various
types of informal inductive definitions in mathematical text
and the complex mathematics of the well-founded seman-
tics. This paper aims to close this gap.

To open the discussion, let us consider two prototypical
examples illustrating the two most common forms of induc-
tive definitions: the monotone inductive Definition 1 of the
transitive closure of a graph and the Definition 2 of the satis-
faction relation of propositional logic by induction over the
sub-formula order.
Definition 1. The reachability graph R of a directed graph
G is defined inductively:
• (x, y) ∈ R if (x, y) ∈ G;
• (x, y) ∈ R if there exists a vertex z such that

(x, z), (z, y) ∈ R.
Definition 2. Given a propositional vocabulary Σ, the satis-
faction relation |= between Σ-structures and Σ-formulas of
propositional logic is defined by induction over the structure
of formulas:

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

• I |= P if P is a propositional symbol and P ∈ I .

• I |= α ∧ β if I |= α and I |= β.

• I |= α ∨ β if I |= α or I |= β (or both).

• I |= ¬α if I 6|= α.

(Inductive) definitions serve to define formal objects, but
they are not formal objects themselves. As such, we will
refer to them as informal definitions. They are commonly
phrased in natural language as collections of informal rules,
possibly with an induction order. They define a set (or more
than one, in case of simultaneous induction) in terms of
other sets, which we will call parameters. E.g., Definition 1
has graph G as a parameter and Definition 2 the vocabu-
lary Σ. Informal inductive definitions are broadly used in
mathematics, broadly understood and, despite their informal
nature, they are of mathematical precision. The set defined
by it can be characterized in two quite different ways: “non-
constructively”, as the least set closed under rule application,
and “constructively”, as the set obtained by iterated rule ap-
plication. By Tarski’s cherished result on the least fixpoint
of monotone operators, both principles coincide.

It comes as a surprise to many but the last statement is
only half true. Def. 2 is non-monotone due to its 4th rule,
and Tarski’s result does not apply for it. There are infinitely
many minimal sets that are closed under these rules and
some are just weird: e.g., in some of them {P} |= ¬P holds
(See Example 1). What this shows is that the constructive
principle is the more fundamental of the two. An induc-
tive definition defines a set by describing how to construct it
through an induction process. This process starts from the
empty set, proceeds by applying rules till the set is closed
under the rules. In case of induction over a well-founded or-
der, rules must be applied “along” the specified order. This
is the intuition that we guess all of us share and that will be
formalized below.

The precision of informal inductive definitions makes
them an ideal target for a formal empirical study. This is
what we do in the next section, We define a simple formal,
rule-based syntax with atomic heads and first order logic
(FO) bodies. This leads to the following representation of
the above informal definitions.{

∀x∀y(R(x, y)← G(x, y))
∀x∀y(R(x, y)← ∃z(R(x, z) ∧R(z, y))

}

22

Proceedings of the Fourteenth International Conference on Principles of Knowledge Representation and Reasoning

∀i∀p(Sat(i, p)← Atom(p) ∧ In(p, i))
∀i∀f∀g(Sat(i, And(f, g))← Sat(i, f) ∧ Sat(i, g))
∀i∀f∀g(Sat(i, Or(f, g))← Sat(i, f) ∨ Sat(i, g))
∀i∀f(Sat(i,Not(f))← ¬Sat(i, f))

These two sets of rules, denoted respectively ∆TC and ∆|=,
will serve as examples throughout the paper. We then for-
malize several semantic aspects of informal inductive defi-
nitions: the induction process, the induction order, two sorts
of inductive definitions and their generalization, etc. This
study reveals several unexpected but fundamental aspects of
inductive definitions. After that, we are on mathematical
ground and we will prove that the set defined by a definition
is its well-founded model.

The main contributions of the paper are then as follows.
First, we provide a number of definitions from first principles
that formalize intuitions and implicit conventions regarding
informal inductive definitions. We do this for monotone
inductive definitions, definitions by induction over a well-
founded order as well as for their generalization, iterated
inductive definitions. Second, we prove the equivalence of
formal rule sets under the formalized semantics and the well-
founded semantics.

Due to space restrictions, proofs are omitted.

Formal definitions and natural inductions
A vocabulary Σ consists of a set of non-logical predicate,
function, constant and variable symbols. As usual, terms
are built from the function, constant and variable symbols of
Σ, and formulas are built from atomic formulas (a predicate
symbol applied to a tuple of terms), the logical symbols t
(true), f (false), = (identity), connectives ∧,∨,¬ and quan-
tifiers ∃,∀.

An occurrence of a variable x in a formula ϕ is free if
it does not occur in a sub-formula ∃xψ or ∀xψ of ϕ. The
set free(ϕ) is the set of all variables with a free occurrence
in ϕ. A sentence is a formula ϕ with free(ϕ) = ∅. An
occurrence of a sub-formula ϕ in ψ is called positive in ψ
if it occurs in the scope of an even number of negations,
otherwise it is called negative. A formula ϕ is positive with
respect to a set σ of predicate symbols if there are no atoms
P (t̄) with P ∈ σ that have a negative occurrence in ϕ.

Σ-structures A consist of a domain DA and an assign-
ment of appropriate values τA to symbols τ ∈ Σ. The value
PA of a predicate symbol P/n is a function from (DA)n to
{t, f} (hence the characteristic function of a set of n-tuples).
Let D be a domain. A domain atom of D is a pair (P, ā)
with P/n a predicate symbol and ā ∈ Dn. Abusing nota-
tion, we write domain atoms as atoms P (ā), Q(b̄). We use
A,B,C as mathematical variables for domain atoms. We
define P (ā)

A
= PA(ā). For a given set σ of predicate sym-

bols, we denote the set of domain atoms with predicates in
σ by AtσD. There is a one-to-one correspondence between
subsets of AtσD and σ-structures with domain D. We often
exploit this correspondence in our notations by treating σ-
structures as such sets. E.g., ∅ stands for the structure A with
PA = ∅, for every P ∈ σ. We write P (ā) ∈ A to denote that
PA(ā) = t, and A ⊆ B to denote that P (ā)A ≤ P (ā)B, for
every P (ā) ∈ AtσD. This order based on f < t is sometimes

called the truth order.
Definition 3. A (formal) definition over Σ is a set of defini-
tion rules of the form

∀x̄ (P (t̄)← φ)

where φ is a FO formula and P (t̄) is an atomic formula over
Σ such that P is not =.

We call P (t̄) the head of the rule, and φ the body. The
connective ← is called definitional implication. Rules of
this kind are similar in nature to and generalize productions
in (Martin-Löf 1971). A predicate appearing in the head
of a rule of a definition ∆ is called a defined predicate of
∆; all other non-logical symbols in ∆ are called parameters
of ∆. The sets of defined predicates and parameters of ∆
are denoted by def(∆) and pars(∆), respectively. We as-
sume without loss of generality that every rule is of the form
∀x̄ (P (x̄) ← φ) where x̄ is a tuple of distinct variables. In-
deed, every rule ∀x̄ (P (t̄)← φ) can be put into that form as
∀ȳ (P (ȳ) ← ∃x̄(ȳ = t̄ ∧ φ)). Below, a domain atom P (ā)
of a defined predicate of ∆ is called a defined domain atom.
Note that this formal notion of definition does not (yet) in-
clude an induction order.

A definition is always evaluated in a context providing
values for its parameters. We formalize this.
Definition 4. We call a pars(∆)-structure O a context of
∆.

Example 1. The definition ∆|= of Sat formalizes the in-
formal Definition 2 of satisfaction. Its parameter symbols
are Atom, In,And,Or and Not. We view ∆|= as a many-
sorted definition, with two sorts for structures and formulas.
Any set S of propositional symbols induces a context OS
which is the pars(∆)-structure defined as follows:

• DOS = PropF (S)∪Struct(S), where PropF (S) is the
set of propositional formulas over S and Struct(S) is the
set of propositional S-structures.

• AndOS is the function that maps pairs of formulas
(ψ, φ) ∈ PropF 2 to ψ ∧ φ. The functions OrOS and
NotOS are defined in a similar vein.

• Finally, InOS is {(I, p)|I ∈ Struct(S), p ∈ I}.
As an example, defined domain atoms for S = {P} are of
the form Sat({P}, P), Sat({}, P∧¬P), The value tOs

of the term t = And(P,Not(P)) is the formula P ∧ ¬P .

From here till the end of this section, we assume the pres-
ence of a definition ∆, and a context O for ∆ with domain
D. The induction process associated with ∆ in context O
will be a sequence of def(∆)-structures A with domain D.
By O ◦ A, we denote the structure B with domain D and
such that PB = PA if P ∈ def(∆) and τB = τO if
τ ∈ pars(∆). In the sequel, we frequently evaluate for-
mulas with respect to structures O ◦ A. Because O is given
and fixed, we take the liberty to write only the “variable”
part and write e.g., A |= ϕ instead of O ◦ A |= ϕ, or AA

instead of AO◦A, etc.
The next definitions are formalizations of the concept of

an element being derivable from a definition, and a set being
closed or saturated under a definition.

23

Definition 5. Given a context O, we say that P (ā) is deriv-
able from rule ∀x̄(P (x̄) ← ϕ) in (O◦)A if ϕA[x̄:ā] = t. We
say that P (ā) is ∆-derivable in A if it is derivable from a
rule of ∆ in A. Below, we denote this by A `∆ P (ā).
Definition 6. Given a contextO, we say that A is closed (or
saturated) on a set S of defined domain atoms under ∆ inO
if for every A ∈ S, O ◦ A `∆ A implies A ∈ A. In general,
A is closed (or saturated) under ∆ (in O) if it is closed on
At

def(∆)
D under ∆ in O.

Example 2. Let ∆ev be the following non-monotone defini-
tion: {

Even(0)←
∀x(Even(x+ 1)← ¬Even(x))

}
(1)

It can be viewed as the formalization of an informal def-
inition of the even numbers by induction over the standard
order of numbers: 0 is even; if n is not even then n+1 is even.
This definition is structurally equivalent to the first and last
rule of Definition 2. For succinctness, we abbreviate Even
often to Ev.

The contextO is the structure of the natural numbers, with
the standard interpretation of 0, 1 and +. Consider the fol-
lowing sets, for every N ∈ N:

{Ev(0), Ev(2), Ev(4), . . . }
{Ev(0), Ev(2), . . . , Ev(2N), Ev(2N + 1), Ev(2N + 3), . . . }

Each of these sets is closed under ∆ev . None has a subset
that is closed. Thus, the defined set is not the least set closed
under the rules. A similar phenomenon arises for Defini-
tion 2.

The main concept of this paper is that of the induction
process. It is formalized as follows.
Definition 7. A natural induction N of ∆ in O (with do-
main D) is an increasing sequence (Aα)0≤α≤β of def(∆)-
structures with domain D such that:
• A0 is the empty structure ∅.
• For each successor ordinal i + 1 ≤ β, for each domain

atom A ∈ Ai+1 \Ai, A is derivable from ∆ in Ai (Ai `∆

A). We say that A is derived at i and define ‖A‖N := i,
the rank of A in N .

• For each limit ordinal λ ≤ β, Aλ =
⋃
α<λ Aα.

A natural induction is called terminal if Aβ is closed under
∆ (in O).

Natural inductions will be denoted compactly as a se-
quence of the (disjoint) sets of atoms that are derived at each
step. E.g.,

→ {A1, . . . , An} → {B1, . . . , Bm} → . . .

derives the Ai’s in step 0 and the Bj’s in step 1. If such a set
is a singleton we drop the brackets.
Example 3. Consider the formal definition ∆TC formal-
izing the transitive closure Definition 1. Take context O
such that D = {a, b, c}, GO = {(a, a), (b, c), (c, b)}.
All terminal natural inductions converge to
{(a, a), (b, c), (c, b), (b, b), (c, c)}. E.g.,
→ T (a, a)→ T (b, c)→ T (c, b)→ T (b, b)→ T (c, c)

→ {T (c, b), T (b, c)} → T (c, c)→ T (b, b)→ T (a, a)

The example illustrates some basic points about infor-
mal inductive definitions. They indeed define the concept
in terms of the parameters, by describing how to construct it
through iterated rule application. The description of the con-
struction process is however highly non-deterministic: rules
can be applied in many orders. From a practical point of
view, it is all-important that such induction sequences con-
verge to the same fixpoint, otherwise the definition would
be ambiguous. For a monotonic informal definition, such
as Definition 1, the order of rule application is not impor-
tant, because—given the graph G—all sequences converge
to the intended set, which is the least relation that is closed
under the rules. In the above framework of natural induction
sequences, this can be proven formally. First we propose a
formalization of the notion of monotone inductive definition.

Definition 8. We call ∆ monotone in O if for all pairs of
def(∆)-structures A ⊆ B, for all defined domain atoms A,
if A `∆ A then B `∆ A.

Proposition 1. Each terminal natural induction of a mono-
tone ∆ in O converges to the least def(∆)-structure A that
is closed under ∆ in O.

This proposition is not difficult to prove but follows from
the general Theorem 3 below.

The convergence property does not hold for non-
monotone definitions. The problem is that the body of a
non-monotone rule may eventually become false, after it has
already been true. Natural inductions that apply a rule dur-
ing the “window” where its body holds will derive its head,
whereas natural inductions that miss this window may not.

Example 4 (Continuation of Example 1). Consider defini-
tion ∆|= in the context of the structure OS for the singleton
vocabulary S = {P}. There are only two structures for the
vocabulary S, namely, ∅ and {P}. Below is an initial seg-
ment of a stepwise natural induction that derives a wrong
fact.

→ Sat({P},¬P)→ Sat({P}, P)→ . . .

In the first step, with A0 = ∅, all instances of the rule
for negation are applicable. Here, we use it to derive
Sat({P},¬P). However, the next step applies the base rule
to derive Sat({P}, P), thus falsifying the condition of the
rule that was applied in the first step.

We realize that the role of the induction order in informal
definitions is to delay the application of rules until it is safe
to do so, that is, until later rule applications cannot longer
falsify the premise of a rule that has been applied before.
We now formally define the notion of definition by induction
over a well-founded order. For brevity, we call it an ordered
definition.

Definition 9. Given is a domain D. An ordered definition
is a pair (∆,≺) with ∆ a definition and ≺ a strict well-
founded order on Atdef(∆)

D .

Recall that a strict order is irreflexive, transitive and asym-
metric. A strict order ≺ is well-founded if it has no infinite
descending chains x0 � x1 � x2 �

24

Example 5. The induction order of informal Definition 2 is
the sub-formula order. In the context of definition ∆|= and a
structure OS , it corresponds to a strict well-founded order
≺ on domain atoms, where Sat(I, ψ) ≺ Sat(J, φ) if I = J
and ψ is a strict sub-formula of φ.

The induction order provided with an informal definition
serves to constrain the order of rule application in natural
inductions. How does this work? Intuition says that no rule
should be applied to derive a fact as long as there are deriv-
able but not yet derived facts that are strictly smaller. E.g.,
assume that at some point in the induction process I |= ϕ is
derivable. We are allowed to do so only if there is no strict
subformula φ of ϕ for which I |= ϕ is derivable but was not
yet derived. In general, we can derive P (ā) if the current
set Ai is saturated on atoms preceding P (ā) in the induction
order. This is formalized in the following definition.

Recall that the rank ‖A‖N of A in a natural induction N
is the ordinal i such that A ∈ Ai+1 \ Ai.
Definition 10. A natural induction N respects ≺ (w.r.t. ∆
and O) if for any domain atom A with ‖A‖N = i, Ai is
saturated on {B | B ≺ A} (under ∆ in O).

We say that N follows ≺ if for every A and B derived by
N , A ≺ B implies ‖A‖N < ‖B‖N .

Example 6. The natural induction of Example 4:

→ Sat({P},¬P)→ Sat({P}, P)→ . . .

does not respect the subformula order. The atom
Sat({P},¬P) is derived in the first step, when the empty
set is not saturated in {A | A ≺ Sat({P},¬P)} since
Sat({P}, P) is derivable.

In general the induction process is highly underspecified,
even if an induction order is given.

Example 7. (Example 5 continued). Natural inductions of
the informal Definition 2 will derive I |= ϕ only after the
satisfaction of all sub-formulas has been derived. This con-
strains the order of rule application, but much freedom is
left. There are infinitely many such natural inductions. A
few non-terminal ones are:

→ Sat({P}, P)→ Sat({P}, P ∧ P)→ Sat({P},¬¬P)

→ Sat({P}, P)→ Sat({P},¬¬P)→ Sat({P}, P ∨ P)

Note that both natural inductions respect the sub-formula
order and follow it. Intuition suggests that these sequences
can be extended to converging terminal natural inductions,
and this will be proven below.

Given our experience with informal definitions, we expect
some “good” properties of natural inductions that respect the
induction order ≺: (1) that they all converge, (2) that such
a natural induction follows the induction order, (3) that once
an element is derived, it remains derivable, and (4) that in
the limit, the defined set is the intended one. However, none
of these properties hold right now.

The major question is related to (1). It is essential that
all natural inductions that respect ≺ converge. However, it
is straightforward to see that this is not the case. Take the
empty induction order ∅ for the definition ∆|= in context

OS . This order is a strict well-founded order and all natural
inductions respect it in a trivial way. As we saw in Exam-
ple 4, not all of these natural inductions converge.

As for (2), a counterexample is below.
Example 8. Consider the order P ≺ Q and definition:{

Q← t
P ← Q

}
Here is a terminal natural induction:

→ Q→ P

It obviously does not follow ≺ since P ≺ Q. However, it
respects≺. In the first step, when Q is derived, the structure
A0 = ∅ is saturated on {A | A ≺ Q} = {P}, since P
is not derivable. In the second step, A1 = {Q} is trivially
saturated on {A | A ≺ P} = {}.

A counterexample for (3) and (4) is given below.
Example 9. We reconsider ∆ev and O from Example 2.{

Even(0)←
∀x(Even(x+ 1)← ¬Even(x))

}
(2)

Let≺ be the order induced by the standard order on the nat-
ural numbers. That is, Ev(n) ≺ Ev(m) if n < m. This is
a total order, and the unique terminal natural induction that
respects and follows it constructs the set of even numbers:

→ Ev(0)→ Ev(2)→ Ev(4)→ . . .→ Ev(2n)→ . . .

Now take the following non-standard induction order:

Ev(1) ≺ Ev(0) ≺ Ev(2) ≺ Ev(3) ≺ . . .

Also this is a total strict well-founded order. The unique
terminal natural induction that respects ≺ is:

→ Ev(1) → Ev(0) → Ev(3) → Ev(5) → . . .

Note that Ev(1) is not longer derivable after step 2. Also, it
clearly does not define the intended set.

In non-monotone informal definitions, we impose a well-
founded induction order to obtain convergence of the induc-
tion process. However, it is clear from the above examples
that in selecting the induction order, great care is required. In
general, imposing an unsuitable induction order w.r.t. ∆ and
O may have a number of undesired effects as just shown.

Something clearly wrong with the second induction order
in the above example is that it does not match the structure
of the given rules. In particular, Ev(1) is defined in terms of
Ev(0), even though Ev(0) is strictly larger than Ev(1) in
the proposed induction order. This would be unacceptable
in an informal definition.

The above examples expose one of the implicit conven-
tions of informal inductive definitions. This is that the in-
duction order should “match” the structure of the rules of
a definition. Intuitively, this means that defined facts may
only “depend” on facts that are strictly smaller in the induc-
tion order. We now formalize this.

First we formalize the notion of dependency relation. Be-
low, for binary relation ∝, A|∝A denotes A∩{B | B ∝ A}.

25

Definition 11. A binary relation ∝ on Atdef(∆)
D is a depen-

dency relation of ∆ in O if ∝ is transitive and for all A and
all A,B, if A|∝A = B|∝A then A `∆ A iff B `∆ A.

If ∝ is a dependency relation, then for any defined atom
A, the set {B | B ∝ A} is (a superset of) the set of atoms
on which A depends. Indeed, in any pair of structures that
coincide on this set, A is derivable in both or in none.

That an induction order “matches” the rules of a definition
simply means that ≺ is a dependency relation.
Definition 12. We say that ≺ strictly orders ∆ in O if ≺ is
a strict well-founded order and a dependency relation of ∆
in O.
Example 10. In case of definition ∆ev of even numbers and
the structure O of Example 2, we see that the first order

Ev(0) ≺ Ev(1) ≺ Ev(2) ≺ Ev(3) ≺ . . .
strictly orders ∆ev , while the second order

Ev(1) ≺ Ev(0) ≺ Ev(2) ≺ Ev(3) ≺ . . .
does not. E.g., ∅ and {Ev(0)} are identical on {B | B ≺
Ev(1)} = ∅, but ∅ `∆ Ev(1) while {Ev(0)} 6`∆ Ev(1).

Natural inductions that respect an order ≺ that strictly or-
ders ∆ in O satisfy all the good properties (1-4) above, as
shown by the following two propositions.
Proposition 2. If ≺ strictly orders ∆ then any natural in-
duction N that respects ≺ also follows ≺.
Proposition 3. If (∆,≺) is an ordered definition in context
O and ≺ strictly orders ∆ in O, then all terminal natural
inductions that respect ≺ converge. Moreover the limit is
independent of≺. (It is the ultimate well-founded fixpoint of
∆ in O - see Definition 19).

Also this proposition follows from the stronger Theo-
rem 3.

This theorem shows that an ordered definition in which≺
strictly orders ∆ unambiguously defines a set. The definition
of an ordered definition can now be refined as follows.
Definition 13. A definition ∆ is a definition by well-founded
induction over≺ inO (or briefly, an ordered definition) if≺
strictly orders ∆ inO. The structure defined by it is the limit
of any terminal natural induction that respects ≺.

Interestingly, the convergence property states that the
limit is independent of the selected order. Sometimes this
phenomenon can be seen in mathematical text.
Example 11. We defined the satisfaction relation |= over
the subformula order but it is not uncommon to define it over
alternative induction orders. For example, we could define
|= by induction on the size of formulas. Formally, we define
Sat(I, ψ) ≺ Sat(J, φ)) if I = J and the size of ψ (the
number of nodes in its parse tree) is strictly less than the
size of φ. Alternatively, we may define |= by induction on
the depth of formulas, i.e., the length of the longest branch
in the parse tree of φ. The three orders lead to three variants
of Definition 2. Intuition suggests that they are equivalent.

It is indeed easy to verify that each of them strictly orders
∆|= inOS: for each rule instance, the body refers to formu-
las that are strict subformula’s, and have smaller size and

depth than the formula in the head. Hence, it follows from
the proposition that these definitions are indeed equivalent.

This does not mean that they have the same natural induc-
tions. E.g., reconsider the natural induction of Example 7:
→ Sat({P}, P)→ Sat({P},¬¬P)→ Sat({P}, P ∨ P)

This one respects and follows the subformula order and the
size order. However, it does not respect the depth order, since
A1 is not saturated on {B | B ≺ Sat({I},¬¬P)}. For
instance, Sat({P}, P ∨ P) is derivable but not derived and
P ∨ P has strictly smaller depth than ¬¬P .

Generalizing monotone and ordered definitions. There
is an obvious similarity between Propositions 1 and 3. How-
ever, the former is not a generalization of the latter, because
not all monotone definitions are ordered. For instance, there
is no ≺ that strictly orders definition ∆TC of transitive clo-
sure. Due to the transitivity rule, all defined domain atoms
depend on each other; the only dependency relation is the
total one and this is not a strict order. In this section, we
define the more general class of iterated inductive defini-
tions, which encompasses all ordered definitions as well as
all monotone definitions. We will then prove a theorem for
this more general class, which generalizes both of the earlier
results.

The general idea of iterated inductive definitions is that
they admit a dependency ∝ that is not a strict order. How-
ever, if atom A,B depend on each other (that is, A ∝ B ∝
A), then they depend monotonically on each other: deriving
B may make A derivable and vice versa.

We define A ≺∝ B if A ∝ B and B 6∝ A. Since ∝ is
transitive, ≺∝ is a strict order. ≺∝ divides the set of domain
atoms into a set of strictly ordered “layers” such that, for all
A,B, if A ≺∝ B, then A is in a strictly lower layer than B,
and if A ∝ B ∝ A, they are in the same layer.

Natural inductions of an iterated inductive definition pro-
ceed along the order ≺∝. Just as for an ordered definition,
an atom A may be derived at step i only if Ai is saturated on
{B | B ≺∝ A}. In this way, a natural induction closes layer
by layer, and starts a new monotone induction in the next
layer as soon as a layer is saturated. The following defini-
tion will serve to ensure that the “sub-inductions” that take
place inside a single layer are monotone.
Definition 14. A relation ∝ monotonically orders ∆ in O if
≺∝ is a strict well-founded order and for all defined A, for
all A,B such that A|≺∝A = B|≺∝A and A|∝A ⊆ B|∝A, if
A `∆ A then B `∆ A.
Proposition 4. If ∝ monotonically orders ∆ in O then ∝ is
a dependency relation of ∆ in O.
Definition 15. We say that a natural induction N respects
(follows) a dependency relation∝ if it respects (follows)≺∝
according to Definition 10.
Proposition 5. If a natural induction N respects a relation
∝ that monotonically orders ∆ in O, then N follows ∝.
Proposition 6. Assume that ∝ monotonically orders ∆ in
O. Then all terminal natural inductions that respect ∝ con-
verge. Moreover, the limit is independent of ∝. (It is the
ultimate well-founded fixpoint of ∆ in O.)

26

Again, this proposition follows from Theorem 3.
We have already defined the concept of a monotone and

ordered definition in context O. Now, we also define the
concept of an iterated inductive definition (in O).
Definition 16. A definition ∆ is a definition by iterated in-
duction over ∝ in O if ∝ monotonically orders ∆ in O. Its
defined structure is the limit of any terminal natural induc-
tion.

Now we can show that iterated inductive definitions gen-
eralize monotone and ordered definition. For a monotone
definition, the entire set of all domain atoms can serve as
a single layer. Let ∝t denote the total binary relation on
At

def(∆)
∆ . Note that <∝t

= ∅.
Proposition 7. A definition ∆ is monotone in O iff ∆ is
a definition by iterated induction over ∝t in O. A natural
induction of ∆ in O (trivially) respects ∝t.
Proposition 8. For a binary relation ∝, a definition ∆ is
a definition by well-founded induction over ∝ in O iff ∆ is
by iterated induction over ∝ in O and ∝ is irreflexive and
asymmetric (hence, a strict order).

As a consequence, Prop. 6 is a generalization of both
Prop. 1 and Prop. 3.

Informal iterated inductive definitions are quite common
in mathematical text although they are only very rarely for-
mulated as sets of informal rules. To phrase them, formal
scientists use other tools from their toolbox, for example fix-
points of operators. A well-known iterated inductive defini-
tion is the alternating fixpoint definition of the well-founded
model in (Van Gelder 1993). In this theory, a (stable) op-
erator A is defined on structures by defining A(A) as the
least fixpoint of a monotone operator λxT (x,A). This sta-
ble operator is anti-monotone. The well-founded fixpoint
is then characterised as the limit of an alternating fixpoint
construction using A. This is iterated induction in the sense
that each of the steps involves itself a monotone inductive
construction.

A rare case where iterated induction is explicitly available
in rule form is in the definition of stable theory (Marek 1989)
which is the set of modal propositional formulas closed un-
der the standard inference rules and two additional ones:

` ψ
` Kψ

6` ψ
` ¬Kψ

The second is a non-monotone rule. The set is computed
by iterated induction for increasing modal nesting depth of
modal formulas.

In knowledge representation, there are many applications
of iterated inductive definitions that have a natural represen-
tation as rule sets. This is for instance the case in representa-
tions of dynamic systems with ramifications (Denecker and
Ternovska 2007).

Summary of informal definitions. The above theory ex-
poses several important issues of informal definitions. First,
that the “non-constructive” characterization is incorrect in
case of non-monotone (ordered) definitions. Second, that the
induction process is highly non-deterministic, and therefore

that convergence is all-important. In mathematical practice,
we typically take this property for granted. In fact, it is not
trivial at all. It is a fundamentally important property of in-
ductive definitions.

Third, in mathematical texts, we have a certain degree of
freedom when it comes to choosing the induction order for
an inductive definition. Nevertheless, the order is far from
arbitrary and needs to match the structure of the rules. Our
exposition clarifies the role and nature of the induction order,
and how it constrains the order of rule application.

Finally, as shown by Proposition 6, the choice of the in-
duction order is irrelevant as long as it matches the rules.
The order does not affect the semantics of the definition.

In view of this, one may wonder why an induction order is
specified at all in mathematical text? One possible explana-
tion is that it serves to help the reader better understand the
definition. Moreover, the specified order may help him/her
as a kind of parity check of the soundness of the definition.
Indeed, not all sets of informal rules form sensible defini-
tions (far from). The induction order helps in verifying that
the (informal) rules indeed form a sensible definition (see
also the “parity check” discussion following Corollary 1).

Developing a logic of definitions. In the mathematical
logic of ordered and iterated induction (IID) presented in
(Buchholz et al. 1981), an iterated inductive definition is ex-
pressed via SO formula’s that express a definition ∆ and,
independently, an induction order ≺. They use this logic
system to study proof-theoretic strength and expressivity of
iterated definitions. From a representational point of view
however, we see two problems with an approach in which
the induction order is explicitly expressed. First, expressing
an induction order in logic might be as complex as express-
ing the definition itself, if not more. It is a needless com-
plication of the knowledge representation process. Second,
it also makes the knowledge representation process more
error-prone. Even though the logic of (Buchholz et al. 1981)
imposes strong additional constraints on the induction pro-
cess so that convergence can be guaranteed, it is still possi-
ble to express combinations of a definition and an induction
order that will converge to the wrong limit. For example,
one can encode the definition ∆ev with the non-matching
order Ev(1) ≺ Ev(0) ≺ Ev(2) ≺ . . . , in which case the
unintended set {Ev(1), Ev(0), Ev(3), Ev(5), . . . } will be
constructed.

It is preferable to design a logic of definitions in which
only the rules need to be represented and the order is left
implicit. Indeed, Proposition 6 gives us license to do this,
because it shows that all induction orders that fit the struc-
ture of the rules of ∆ produce the same unique limit of their
terminal natural inductions.

Designing a logic in which all and only iterated inductive
definitions can be expressed is impossible. A logic’s syntax
should be decidable, while it is easy to see that it is unde-
cidable whether a rule set is a monotone, ordered or iterated
definition in a structure O. One option out is by imposing
syntactical constraints. For monotone definitions, we could
impose the simple syntactic criterion that only rules with

27

positive bodies are allowed. Beyond monotone definitions,
however, this seems unfeasible. One issue is that whether a
rule sets admits a ∝ that strictly or monotonically orders ∆
in O may depend on the context O.

Example 12. The definition ∆ev is an ordered induc-
tive definition over the standard order in the natural num-
bers, but does not admit an induction order in the con-
text O with domain {0, 1}, 0O = 0, 1O = 1,+O =
{(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 1)}. Indeed, in this struc-
ture, the two instances of the inductive rule are: even(1)←
¬even(0) and even(1)← ¬even(1). The least dependency
relation is even(0) ∝ even(1) ∝ even(1), but ∝ does not
strictly or monotonically order ∆ev in O. Similarly, defi-
nition ∆|= is not a legal definition in contexts where NotO
contains cycles.

Requiring syntactic stratification is a possibility but it
would eliminate interesting cases such as definition ∆|=. A
more refined condition like local stratification (Przymusin-
ski 1988) offers more liberty but it applies only to conjunc-
tive rule bodies, in Herbrand contexts, is also undecidable
and moreover is very brittle. Simple equivalence preserv-
ing transformations may transform a locally stratified rule
set into one that is not. For instance, transforming rules
∀x̄(P (t̄)← ϕ) to ∀ȳ(P (ȳ)← ∃x̄(t̄ = ȳ ∧ ϕ)) breaks local
stratification. This is not a good idea.

The alternative option is to waive any syntactic restriction
but to design a “partial” semantics that assigns the “right”
values to the defined predicates if ∆ is a sensible inductive
definition in O and otherwise does not assign a value. It
is here that the well-founded semantics comes in. It will
help us to cope with the absence of an explicit induction
order in two ways. First, if this semantics assigns a value,
then we can be certain that the definition is correct and that
the assigned value is indeed the intended one. Second, as
we will see, this semantics also provides mathematical tools
that we can use to understand the workings of an inductive
definition, without making reference to a specific induction
order.

Well-founded inductions
The goal of this section is to show that the well-founded
semantics allows us to perform the natural induction along
some induction order, without actually knowing this order
up front. There exist many formalizations of the well-
founded semantics, but they all have in common that they
construct a sequence of three-valued structures of increas-
ing precision. This is quite different from a natural induc-
tion, which is an increasing sequence of two-valued struc-
tures. The following observation gives a clue as to how such
sequences might be related.

Consider a (stepwise) natural induction of ∆ in contextO
that respects ≺∝.

→ A1 → A2 → . . .→ Aβ

At each i, the structure Ai = {A1, . . . , Ai} already provides
the following partial information about the limit Aβ :

• A ∈ Aβ if A ∈ Ai;

• A 6∈ Aβ if Ai 6`∆ A and Ai is saturated in {B|B ∝
A}. Indeed, since Ai is saturated on {B|B ∝ A}, it is
saturated on every {B | B ∝ C} ⊆ {B | B ∝ A}. As a
consequence, no atoms C ∝ A will ever be derived in the
future. Since A is not derivable now, it will never become
derivable.

• It is unknown whether A ∈ Aβ otherwise.
This tells us how to construct from each Ai a three-valued
structure Ii that “approximates” the defined set Aβ . As
such, a natural induction implicitly specifies a sequence
of three-valued structures of increasing precision, that con-
verges to Aβ . Let us explore this in a few of the examples.
Example 13. The transitive closure definition ∆TC in con-
text O of Example 3 is an iterated inductive definition over
the total dependency relation ∝t (≺∝t

= ∅). This induces a
unique layer consisting of all domain atoms. Consider the
following terminal natural induction:

→ R(a, a)→ R(b, c)→ R(c, b)→ R(b, b)→ R(c, c)

The intermediate structures Ai (i < 5) in this sequence
are not saturated and no negative information is available.
Hence, for each i < 5, all atoms not in Ai are unknown in
Ii. However, the limit A5 = R is saturated, and only then it
can be derived that all atoms not in A5 are false.
Example 14. The definition ∆ev in context O of Example 2
is by induction over the standard order. The unique natural
induction is:

→ Ev(0)→ Ev(2)→ . . .→ Ev(2n)→ . . .

At each step i, one can verify that Ai is saturated on
{Ev(j) | j ≤ 2i − 1}. It follows that, for 0 ≤ j ≤ i,
Ii |= ¬Ev(2j − 1). The following sequence describes the
derivation of positive and negative information during this
natural induction:

→ {} → Ev(0)→ ¬Ev(1)→ Ev(2)→ ¬Ev(3)→ . . .

Thus, natural inductions correspond to sequences of
three-valued structures 〈Ii〉0≤i≤β . As we have seen, how-
ever, building a correct natural induction requires an induc-
tion order ≺∝. We will now show that we can exploit the
additional information that is present in three-valued struc-
tures to construct Ii+1 from Ii, without using the induction
order at all.

In the discussion below, we assume without loss of gener-
ality that a (finite) ∆ contains exactly one rule ∀x̄(P (x̄) ←
ϕ) per defined predicate P (we can bundle finitely many
multiple rules in one using a disjunction). We denote the
body ϕ of this unique rule as ϕP . Below, when A = P (ā),
we write ϕA

A as a shorthand for ϕA[x̄:ā]
P .

We first recall the formalization of the parametrized well-
founded semantics of (Denecker and Vennekens 2007). We
consider three-valued structures on def(∆) on domain D.
For each P/n ∈ def(∆), P I is a function Dn → {t, f ,u}.
The precision order on the three-valued structures is the
point-wise extension of the partial order u≤p t, u≤p f . If
U is a set of domain atoms, then I[U : f] is identical to I
except that every atom A ∈ U is false; likewise for I[U : t].

28

Rules are evaluated using a three-valued truth function
ϕI , defined for formulas ϕ and three-valued structures I
that interpret all free symbols of ϕ. At this moment, this
truth function is generic. All we require here is that it sat-
isfies two properties: (1) if I1≤p I2 then ϕI1 ≤p ϕ

I2 (≤p-
monotonicity) and (2) if A is a (two-valued) structure, ϕA is
the standard truth value of ϕ in A.

Definition 17. Given is a definition ∆ and context O. We
say that I ′ is a ∆-refinement of I (inO) if there is a set U of
unknown domain atoms in I such that one of the following
conditions is satisfied:

• for each A ∈ U , ϕAI = t and I ′ = I[U : t]; or

• for each A ∈ U , ϕAI
′

= f and I ′ = I[U : f].

As before, we used ϕI as a shorthand for ϕO◦I .

Note the asymmetry: to derive A, its body must be true in
I itself; but to derive ¬A, it suffices that its body is false in
I[U : f], i.e., we are free to assume that atoms are f , as long
as this prophecy turns out to fulfill itself. One recognizes
the familiar concept of unfounded set in the second sort of
refinement (Van Gelder, Ross, and Schlipf 1991).

Definition 18. A well-founded induction of ∆ in (context)O
is a sequence 〈Ii〉0≤i≤β of three-valued def(∆)-structures
with domain D such that I0 is u (the mapping of all de-
fined domain atoms to u), for each ordinal i, Ii+1 is a ∆-
refinement of Ii inO, and for limit ordinals λ, Iλ is the ≤p-
limit of 〈Ii〉i<λ. We call a well-founded induction terminal
if its limit Iβ has no strictly more precise ∆-refinement.

A well-founded induction increases in precision, and
hence, it has a ≤p-limit.

Theorem 1 ((Denecker and Vennekens 2007)). All well-
founded inductions inO can be extended to a terminal well-
founded induction in O. All terminal well-founded induc-
tions in O converge.

Definition 19. The well-founded model of ∆ relative to O
(and the selected truth function) is the limit of any terminal
well-founded induction of ∆ in O.

We explain our intuition underlying well-founded induc-
tions. It not only constructs elements of the defined set but
also non-elements. Given such a partial set Ii at intermedi-
ate stage i, a new elementA can be derived if what is known
of the defined set, suffices to ascertain that A is derivable,
that is ϕAIi = t. This explains the first refinement Ii[U : t].
A non-elementAmay be derived likewise, if it is certain that
its condition does not hold, that is if ϕAIi = f . However,
this is not enough. For example, in a positive definition such
as ∆TC , if we wait till ϕAIi = f to derive that A is a non-
element, we are waiting forever. A principle is needed that
“looks ahead”; a principle that finds out that there are no
more options to derive one or more domain atoms through
natural induction from the current state. If U is such that
Ii[U : f] falsifies the premise ϕA of every A ∈ U , then no
ways are left to construct suchA’s. This explains the second
refinement Ii[U : f].

The well-founded model is usually defined for normal
logic programs, which correspond to the fragment of our

rule based formalism that satisfies the following conditions:
∆ is a set of normal rules (i.e., conjunctions of literals in the
body), pars(∆) contains only constant and function sym-
bols (i.e., all predicates are defined), and O is the unique
Herbrand interpretation of pars(∆). If, in addition, we
choose the standard Kleene three-valued truth function as
our function ϕI , then we obtain precisely the standard well-
founded model of ∆.

An alternative three-valued truth function is the super-
valuation, defined by ϕI = glb≤p

{ϕA | I ≤p A and A is
two-valued } (van Fraassen 1966). It is more precise than
Kleene’s: e.g, for P I = u the supervaluation of P ∨ ¬P
is t while Kleene’s valuation is u. We can also construct
the well-founded model w.r.t. this truth function. This is the
ultimate well-founded model of ∆ relative to O (Denecker,
Marek, and Truszczyński 2004). The standard well-founded
model is less or equally precise than the ultimate one. This
implies that if it is two-valued (i.e., maximally precise), it is
also the ultimate well-founded model.

We are now ready to link well-founded and natural induc-
tions. Let ∆ be a definition by iterated induction over ∝ in
contextO with domainD. LetN be a natural induction that
respects ∝:

A0 → A1 → . . .→ Aβ

With N , we now associate the following sequence
WFI(N) of three-valued structures:

I0 → I0,1 → I1 → I1,2 → I2 → . . . Iβ → Iβ,β+1

which we define by induction:

• I0 = u (for all domain atoms A, AI0 = u).

• Ii,i+1 = Ii[U : f] where U = {A | AIi = u, Ai 6`∆ A
and Ai is saturated on {B | B ∝ A}}.

• Ii+1 = Ii,i+1[U : t] where U = Ai+1 \ Ai.
• Iλ is the≤p-limit of its predecessors, for limit ordinals λ.

For the following theorem, we select supervaluation as
three-valued truth function.

Theorem 2. Let ∆ be a definition by iterated induction over
∝ in O. If N is a terminal natural induction of ∆ in O that
respects ∝ then the sequence WFI(N) is a terminal well-
founded induction and Iβ,β+1 = Aβ .

It is on this theorem that the thesis of this paper rests. In-
deed, it has the following theorem as a corollary, from which
we directly obtain Proposition 6.

Theorem 3. Let ∆ be a definition by iterated induction over
∝ inO. For any terminal natural inductionN of ∆ inO that
respects ∝, its limit is the ultimate well-founded model of ∆
in O.

Arguably, the construction process of a well-conceived
formal or informal definition should result in a well-defined
set. In our setting, this mean that the well-founded model in
O should be two-valued. In this case we call ∆ total in O.

Corollary 1. If ∆ is a definition by iterated induction over
∝ in O, then ∆ is total in O.

29

Thus an iterated definition ∆ has the desirable property
of being total in O. While the induction order has no se-
mantical role in a definition, it gives insight in the structure
of the definition and it gives a “parity check” of the correct-
ness/totality of the definition.

From a technical point of view, Corollary 1 shows that
one way to prove that a rule set has a 2-valued well-founded
model is to prove that it has a dependency relation that
monotonically orders it. This generalizes a condition in (De-
necker and Ternovska 2008) and, to the best of our knowl-
edge, it is the most general such condition currently known.

A comparison of natural and well-founded inductions.
Below we write a well-founded induction as:

→ S1 → S2 → . . .

where Si is either the set of atoms U such that Ai =
Ai−1[U : t] or the set of negations ¬A of atoms A in the
set U such that Ai = Ai−1[U : f].
Example 15. For the natural induction N of Example 3:

→ R(a, a)→ R(b, c)→ R(c, b)→ R(b, b)→ R(c, c)

the corresponding well-founded induction WFI(N) is:

→ ∅ → R(a, a)→ ∅ → R(b, c)→ ∅ → R(c, b)→
∅ → R(b, b)→ ∅ → R(c, c)→ {¬R(x, y) | (x, y) 6∈ R}.

Example 16. The natural induction of Example 2:

→ Ev(0)→ Ev(2)→ . . .

has the corresponding well-founded induction WFI(N):

→ ∅ → Ev(0)→ ¬Ev(1)→ Ev(2)→ ¬Ev(3)→ . . .

Many definitions admit well-founded inductions that are
not natural inductions. Well-founded inductions can go dra-
matically “faster” than natural inductions.
Example 17. A well-founded induction of the satisfaction
definition ∆|= that does not respect the induction order, but
is nevertheless a correct well-founded induction is:

→ Sat({P}, P)→ {Sat({P}, P∨ϕ) | ϕ a formula over S}
Indeed, after the first step Sat({P}, P) is true in the three-
valued structure I1. Hence, we have [Sat({P}, P) ∨
Sat({P}, ϕ)]I1 = t for every ϕ. It follows that A1[U : t] is
a refinement of A1 for U = {Sat({P}, P ∨ ϕ)|ϕ a formula
over S}.

The well-founded induction in the example matches how
humans derive A |= ϕ ∨ ψ: if a disjunct ϕ is derived to be
satisfied, we jump to the conclusion that ϕ ∨ ψ is satisfied,
even if the value of ψ is unknown. Strictly speaking, here
we are violating the induction order! It is nevertheless safe:
any fact derived during a well-founded induction is correct.

The next example shows that there are sensible definitions
that are not iterated definitions.
Example 18. Let O be the natural number context of Ex-
ample 2 and ∆ev1 the following variant definition of even
numbers and an additional predicate Next:{ ∀x∀y(Next(x, y)← x = y + 1)

∀x(Even(x) ← x = 0∨
∃y(Next(x, y) ∧ ¬Even(y)))

}

The definition defines and uses Next as the successor pred-
icate. Its well-founded model A interprets Next as the suc-
cessor relation and Even as the set of even numbers, as ex-
pected. However, this definition is not an iterated induction.
Indeed, in any dependency relation of ∆ev1, it holds that
Ev(n) ∝ Ev(m) for all n,m ∈ N. This follows from the
fact that Ev(m) is derivable in the structure {Next(m,n)}
but not in {Next(m,n), Ev(n)}. However, as the same two
structures show, no such∝monotonically orders ∆ev1 inO.

The above example shows a disturbing brittleness of the
concept of a definition by iterated induction as defined in
Definition 16, that fortunately is not shared with the rule
formalism under the well-founded semantics.

To summarize, the concept of well-founded induction
seems to provide a superior formalization of the induction
process, one that is independent of the order, faster, more
like humans reason on informal definitions and more robust
under innocent syntactical variance.

Standard versus ultimate well-founded semantics. The
result of the previous section (the convergence of natural
and well-founded inductions) are formulated for the ultimate
well-founded semantics, the one derived using the superval-
uation. Here, we investigate to what extend the result holds
for the standard well-founded semantics.

The first observation is that if the standard well-founded
model is two-valued, it is the ultimate well-founded model.
It follows that if the standard well-founded model of an
iterated inductive definition is two-valued, it is the struc-
ture defined by this definition. In general however, an it-
erated inductive definition as defined here, may not have a
two-valued standard well-founded model. An example is
∆ = {P ← P ∨ ¬P}: it is monotone according to Defi-
nition 8 and its defined structure and ultimate well-founded
model is {P}. On the other hand, P is unknown in ∆’s stan-
dard well-founded model. Thus, the standard well-founded
semantics is too weak for this definition.

How serious is the gap? To address this, we make two
observations. First, standard and ultimate well-founded se-
mantics break apart only in quite specific circumstances:
when there is a case splitting involving one or multiple rule
bodies leading to a loop over negation (see above example).
This is a pattern that we never observe in our applications.
In practice, standard and ultimate semantics coincide.

The second observation might explain the first one. Al-
though our formal definitions of monotone, ordered and iter-
ated inductive definitions admit rule sets showing such a pat-
tern, the conventions of informal definitions seem to forbid
it. Consider, for instance, a variant of the informal definition
of satisfaction (Definition 2), that is obtained by replacing
its first rule by the following one:
• I |= P if either I |= P and P ∈ I , or if I 6|= P and
P ∈ I;

Or after splitting this rule:
• I |= P if I |= P and P ∈ I;
• I |= P if I 6|= P and P ∈ I;
One could argue that these new rules “obviously” are equiv-
alent to the original one by appealing to the fact that “I |= P

30

or I 6|= P ” is tautologically true. But the modified rules
mismatch the induction order and we think such a defini-
tion would not be accepted in mathematical text (we would
not). This suggests that an implicit convention of informal
definitions is not yet explicit in our theory: our definitions
are too liberal. We think that some conventions regarding
informal definitions remain to be discovered, and that their
formalization will preclude rule sets of the above form and
lead to a notion of iterated inductive definition that will have
a two-valued standard well-founded model. In other words,
we think that if one follows the conventions of informal in-
ductive definitions while expressing them as a formal rule
set, the standard well-founded model will be two-valued.

In summary, the computationally cheaper standard well-
founded semantics, in practice, almost always coincides
with the more expensive ultimate semantics. Moreover, in
cases where they differ, it is far from obvious that the rule
sets correspond to legal inductive definitions, and that the
answer provided by the ultimate semantics is better than that
of the standard well-founded model.

Conclusion. The paper is relevant from two angles. Infor-
mal (inductive) definitions are an important form of human
expert knowledge and have many applications in scientific
texts as well as in knowledge representation. In this paper
we studied the general knowledge representation problem of
representing informal definitions. From a very different an-
gle, this paper studies the old but unresolved problem of the
informal semantics of logic programming.

The first part of the paper was concerned with formalizing
familiar but implicit intuitions and conventions of informal
definitions. This was done by a series of definitions “from
first principles” (Definitions 3-16). The central concept is
our formalization of the induction process, the “natural in-
duction”. The analysis exposed non-trivial properties of in-
formal definitions: the all-importance of convergence of the
induction process, the role of the induction order, its tight
link with the rules and ultimately, its irrelevance. To the
best of our knowledge, our analysis provides the most de-
tailed semantical account of the studied forms of informal
definitions to date. The second part of the paper showed that
the well-founded inductions underlying the well-founded se-
mantics provide a natural, efficient and robust generalization
of natural inductions. Taken together, this provides, for the
first time, a direct argument why rule formalisms under the
well-founded semantics correctly formalize informal induc-
tive definitions.

We finish this paper with a speculation. Given that our
conscious understanding of inductive definitions is quite par-
tial, where does our proficiency to reason with them come
from? Indeed, it is not because someone consciously (and
erroneously) believes that the satisfaction relation is the least
set closed under the familiar rules, that he or she is not capa-
ble to correctly reason about it. Indeed, daily practice pro-
vides ample evidence to the contrary. Arguably, this shows
a gap between our conscious and subconscious understand-
ing of inductive definitions. However, in contrast to similar
gaps, e.g., in the context of reasoning on statistical informa-
tion (Kahneman 2011), it is here the (slow) conscious un-

derstanding that is erroneous, and the (fast) subconscious
reasoning that is correct (people do derive that {P} 6|= ¬P)!
The explanation that we see for this phenomenon is that the
principle(s) of inductive definition is not a primitive of hu-
man cognition, but is just a manifestation of a deeper com-
mon sense principle that is hard wired in the cognitive ma-
chinery of the human mind. As we have argued in several
papers in the past, we believe that this base cognitive prin-
ciple is that of causal reasoning: the induction process as a
causal process that creates the defined object.

References
Buchholz, W.; Feferman, S.; Pohlers, W.; and Sieg, W. 1981.
Iterated Inductive Definitions and Subsystems of Analysis
: Recent Proof-Theoretical Studies, volume 897 of Lecture
Notes in Mathematics. Springer.
Denecker, M., and Ternovska, E. 2007. Inductive situation
calculus. Artificial Intelligence 171(5-6):332–360.
Denecker, M., and Ternovska, E. 2008. A logic of nonmono-
tone inductive definitions. ACM Transactions on Computa-
tional Logic (TOCL) 9(2):14:1–14:52.
Denecker, M., and Vennekens, J. 2007. Well-founded se-
mantics and the algebraic theory of non-monotone inductive
definitions. In Baral, C.; Brewka, G.; and Schlipf, J. S., eds.,
LPNMR, volume 4483 of LNCS, 84–96. Springer.
Denecker, M.; Bruynooghe, M.; and Marek, V. W. 2001.
Logic programming revisited: Logic programs as induc-
tive definitions. ACM Transactions on Computational Logic
(TOCL) 2(4):623–654.
Denecker, M.; Marek, V. W.; and Truszczyński, M. 2004.
Ultimate approximation and its application in nonmonotonic
knowledge representation systems. Information and Com-
putation 192(1):84–121.
Denecker, M. 1998. The well-founded semantics is the prin-
ciple of inductive definition. In Dix, J.; del Cerro, L. F.;
and Furbach, U., eds., JELIA, volume 1489 of LNCS, 1–16.
Springer.
Kahneman, D. 2011. Thinking, fast and slow. Farrar, Strays
and Giroux.
Marek, W. 1989. Stable theories in autoepistemic logic.
Fundamenta Informaticae 12(2):243–254.
Martin-Löf, P. 1971. Hauptsatz for the intuitionistic theory
of iterated inductive definitions. In Fenstad, J., ed., Second
Scandinavian Logic Symposium, 179–216.
Przymusinski, T. C. 1988. On the declarative semantics
of deductive databases and logic programs. In Foundations
of Deductive Databases and Logic Programming. Morgan
Kaufmann. 193–216.
van Fraassen, B. 1966. Singular terms, truth-value gaps and
free logic. Journal of Philosophy 63(17):481–495.
Van Gelder, A.; Ross, K. A.; and Schlipf, J. S. 1991. The
well-founded semantics for general logic programs. Journal
of the ACM 38(3):620–650.
Van Gelder, A. 1993. The alternating fixpoint of logic pro-
grams with negation. Journal of Computer and System Sci-
ences 47(1):185–221.

31

