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Abstract

We study disambiguating of pronoun references in Winograd
Schemas, which are part of the Winograd Schema Challenge,
a proposed replacement for the Turing test. In particular we
consider sentences where the pronoun can be resolved to both
antecedents without semantic violations in world knowledge,
that means for both readings of the sentence there is a possi-
ble consistent world. Nevertheless humans will strongly pre-
fer one answer, which can be explained by pragmatic effects
described in Relevance Theory. We state formal optimization
criteria based on principles of Relevance Theory in a simpli-
fication of Roger Schank’s graph framework for natural lan-
guage understanding. We perform experiments using Answer
Set Programming and report the usefulness of our criteria for
disambiguation and their sensitivity to parameter variations.

Introduction
The Winograd Schema Challenge (Levesque, Davis, and
Morgenstern 2012) is an anaphora resolution task which was
proposed as a challenging but more reasonable alternative
for the Turing Test. The challenge has received interest in
the Artificial Intelligence community and beyond (Marcus
2013) as a chance to push forward natural language under-
standing capabilities of computers.

Winograd Schemas (WSs) are pairs of sentences that are
referential ambiguous, i.e., they can be semantically inter-
preted in at least two distinct ways. Only one of these inter-
pretations is correct and humans easily identify the correct
one.

There is [a gap]g in [the wall]w.
You can see the garden through itw,g?. (1)

There is [a gap]g in [the wall]w.
You can see the garden behind itw,g?. (2)

(1) and (2) show such a pair of sentences, where we denote
phrases with square brackets and coreference using sub-
scripts. Here the pronoun ‘it’ is ambiguous between noun
phrases ‘a gap’ and ’the wall’. In (1) the solution is ‘itw’ —
we can see the garden through the gap, in (2) the solution
is ‘itg’ — we can see the garden behind the wall. Note that
only a single word differs between (1) and (2). This WS can
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be disambiguated by reasoning over world knowledge such
as ‘walls are solid objects’, ‘solid objects are nontranspar-
ent’, and ‘one cannot see through nontransparent objects’.
An interesting challenge of WSs is that they seem to require
deep reasoning beyond the surface of the text, in particu-
lar beyond the current state of the art of (mostly statistical)
natural language processing technology.

Some schemas can be disambiguated using linguistic the-
ories of text structure, for example the following.

[Pete]p envies [Martin]m
because hep,m? is very successful. (3)

[Pete]p envies [Martin]m
although hep,m? is very successful. (4)

In (3) the word ‘because’ indicates that ‘hep,m? is very suc-
cessful’ is a plausible reason for ‘Pete envies Martin’. As a
result we can rule out the coreference ‘hep’ because Martin’s
success is a more plausible cause for Pete’s envy than Pete’s
success, hence the solution is ‘hem’.

Such reasoning is already challenging, however it is not
always sufficient: there are WSs where both possible coref-
erences correspond to a world where the sentence makes
sense — text structure and world knowledge are not suffi-
cient for tackling Winograd Schemas.

One example for such a schema is the following.

[Sam’s drawing]s was hung just above [Tina’s ∅]t and
its,t? did look much better with another one below it. (5)

[Sam’s drawing]s was hung just above [Tina’s ∅]t and
its,t? did look much better with another one above it. (6)

(The ‘∅’ indicates an omission (ellipsis) of ‘drawing’.)
In these sentences we can imagine a world where the

drawing ‘below it’ or ‘above it’ is a third drawing, neither
Sam’s nor Tina’s: then the pronoun can be either ‘its’ or ‘itt’.

Humans intuitively chose ‘its’ for (5) and ‘itt’ for (6), in-
tuitively because these readings of the sentences are much
more relevant and less far-fetched than their alternatives.

In this work we focus on the disambiguation of such
Winograd Schemas, schemas where we have to go beyond
semantics and text structure because they are not sufficient
for disambiguation.

We will approach this problem using Relevance The-
ory (Wilson and Sperber 2006), which measures relevance in
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terms of positive cognitive effect – intuitively defined as the
amount of inferences that are possible – minus the process-
ing effort of achieving that effect. Relevance Theory is based
on informal notions of human reasoning, hence integrating
this theory into formal reasoning is not straightforward.

We propose a method for disambiguating WSs based on
a formalization of criteria of Relevance Theory and present
the following contributions.
• We formally describe a knowledge graph data structure

which is a simplification of Roger Schank’s psychological
model of natural language understanding (Schank 1972).

• We formally describe a reasoning process that combines
an input knowledge graph with background knowledge
graphs, including constraints on certain intuitively neces-
sary graph properties.

• Based on notions from Relevance Theory we propose a
relevance fitness function on knowledge graphs.

• We report on experiments for evaluating parameters of
that fitness function using Answer Set Programming.

Preliminaries
Winograd Schemas (WSs) were described by Winograd
(1972), they are twin sentences with an ambiguous pronoun
(see Hirst (1981) for a survey) and a special word such that
exchanging this word with its alternate word changes the
reference to another entity in the sentence. For example in
the pair (1)/(2), the pronoun ‘it’ is ambigous between an-
tecedent noun phrases ‘a gap’ and ‘the wall’, the special
word is ‘through’ with its alternate word ‘behind’, the cor-
rect coreference is ‘itg’ for (1) and ‘itw’ for (2).

Levesque, Davis, and Morgenstern (2012) proposed the
Winograd Schema Challenge as an alternative for the Tur-
ing Test, arguing that disambiguating WS requires true un-
derstanding of text on the one hand, and is more practical
and more reasonable than the Turing Test on the other hand
because (i) it does not require deception by the computer,
(ii) does not require conversation, (iii) permits objective and
automatic scoring, and (iv) requires deep reasoning over the
input and the utilization of world knowledge.

They describe two important conditions on WSs used in
such a challenge: (1) it shall not be possible to disam-
biguate the coreference by selectional restrictions, i.e., both
antecedents must be of the same gender and number, more-
over straightforward statistical methods shall not allow a
clear disambiguation.1 Moreover, (2) untrained human sub-
jects shall identify the correct answer without effort.

The aim of the first condition is to require true text under-
standing to achieve success in the challenge, the second con-
dition aims at a strong methodology with repeatable tests.

The original proposal of the challenge contains sentence
pairs with a question, where the answer of the question asks
for the referent of the pronoun. We will omit that question
and instead check if the pronoun was resolved correctly.
Pragmatics is the linguistic field that analyses the effects of
context on utterances. Note that‘utterance’ in linguistics de-

1As an example, if the antecedents are ‘women’ and ‘pills’
and the special words are ‘pregnant’ and ‘carcinogenic’, then the
schema is too obvious to resolve, it is ‘not Google-proof’.

notes written, spoken, and signed natural language, similarly
‘speaker’ resp., ‘hearer’ denotes producers resp., consumers
of natural language in all modalities. Moreover ‘context’ de-
notes linguistic, historical, cultural, and situative context.

From the perspective of WSs, pragmatics can provide use-
ful insights about how the first part of a WS (the context)
influences anaphora resolution in the second part (where the
pronoun is located).

Relevance Theory (RT) is a popular theory within pragmat-
ics, developed by Wilson and Sperber (2006). Their Commu-
nicative Principle of Relevance states that every utterance
raises the expectation of its own optimal relevance, i.e., a
hearer may interpret an utterance under the assumption that
it is most relevant among all possible alternative utterances.

RT aims to ‘explain in cognitively realistic terms what
these expectations of relevance amount to, and how they
might contribute to an empirically plausible account of com-
prehension.’ This aim led to cognitive results that we will
carry over to terms of knowledge representation, automated
reasoning, and computation.

We will focus on three definitions of RT: relevance, pro-
cessing effort, and positive cognitive effect.

Relevance of an utterance depends on two factors: other
things being equal, (a) the greater the processing effort spent
on interpreting an utterance, the lower its relevance, and
(b) the greater the positive cognitive effects achieved by in-
terpreting an utterance, the greater its relevance.

Processing effort is defined as the effort spent on percep-
tion, memory, and inference. Different contexts have dif-
ferent levels of accessibility (salience) for certain concepts
such that processing effort for the same utterance can differ
greatly between contexts.

Positive Cognitive Effect is ‘a worthwhile difference to
the individual’s representation of the world’. Concretely it is
defined wrt. the knowledge that can be concluded by a hearer
using some mechanism of inference in human cognition.

According to RT, the most important cognitive effect is
contextual implication: knowledge inferred from context C
and utterance U that is not inferrable from C or U alone.
Further positive cognitive effects are strengthening, revision,
or abandonment of available assumptions.

Roger Schank’s Knowledge Representation (1972) aims
to provide a theory of human natural language understand-
ing based on a graph formalism of concepts and dependen-
cies that represent utterances and whole discourses.

A concept is either a nominal (e.g., ‘book’ or ‘John’), an
action (e.g., most verbs), or a modifier (e.g., adjectives). De-
pendencies can be of several types and directions, for exam-
ple ‘John↔ sleep’ means that John sleeps. They can be an-
notated with temporal information, e.g., ‘I↔p hit←o John’
means that John was hit by me (o indicates the object role
and p the past).

Reasoning is described as looking up graph snippets from
a library when encountering related input, a ‘conceptual pro-
cessor’ that connects graph snippets according to conceptual
rules, a ‘syntactic processor’ that ensures no syntactic con-
straints are violated. Later work by Schank (1980) makes
several of these ideas more concrete (in particular memory
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organization) but is still far away from a formal account of
how that reasoning is performed.

Related Work
Rahman and Ng (2012) proposed a machine-learning ap-
proach for tackling Winograd Schemas. They take into re-
gard features such as narrative chains, FrameNet informa-
tion, semantic compatibility, and polarity biases, and report
a correctness result of 73% compared to 55% obtained via
the state-of-the-art Stanford resolver (Lee et al. 2011). Some
of their features are related to biases in language cognition.

Such biases are described by Kehler et al. (2008) who de-
scribe that pronoun interpretation is influenced by which co-
herence relations are likely to appear and which expectations
about following entities are likely to occur. This is explained
in more detail by Hartshorne (2013): e.g., a pronoun in a ‘re-
sult’ clause will most likely refer to the previous clauses’ af-
fected entity, while a pronoun in an ‘explantory’ clause most
likely refers to entities that are causes.

As WSs are twin sentences, these biases should not make
disambiguation easier. However, note that this is not true, if
the word that evokes the bias is the special word itself (i.e.,
‘because’ and ‘although’ should not be special words).
Relevance Formalizations. Gärdenfors (1978) discusses a
logical account of relevance that formalizes whether some
piece of logical evidence can influence the truth value of
a sentence. Delgrande and Pelletier (1998) go a step fur-
ther and define relevance as a property of sentences in rela-
tion to conditionals in conditional logic (which allows non-
monotonic inferences). They state that relevance in a logi-
cal formalism must be defined on the meta-level instead of
within that formalism. We similarly apply our relevance fit-
ness function on a meta-level to evaluate the reasoning pro-
cess and its potential outcomes.

Understanding natural language requires taking assump-
tions and truly engaging in a process of interpreting a given
linguistic input. This makes natural language so efficient but
allows for complex misunderstandings. Relevance Theory,
and the notion of relevance we pursue in this work, aims to
pinpoint the correct assumptions a hearer has to make about
a linguistic input such that the hearer obtains the interpreta-
tion intended by the speaker. (E.g., a flight attendant can use
‘seat 3a’ to refer to a passenger or to the purchase of a pas-
senger at that seat.) Hence our notion of relevance is related
to Gärdenfors, Delgrande and Pelletier’s approaches but it is
about human interpretation rather than about logical truth.

Hobbs et al. (1993) interpret natural language by abduc-
ing as few as possible assumptions to explain as much as
possible observed input. The approach we introduce in the
following can be considered to be abduction, but we evalu-
ate relevance not only on the amount of abduced pieces of
knowledge but in a more holistic way that considers global
as well as local graph properties. Moreover our approach
considers how well background knowledge integrates into
the input during the reasoning process.
Textual Structure. As noted in the introduction, many
Winograd Schemas can be solved by identifying expecta-
tions evoked by the textual structure of the input, and verify-

ing if these expectations are violated by the semantic content
of one or the other reading of the input.

One theory explaining such expectations is Rhetori-
cal Structure Theory (RST) (Mann and Thompson 1988;
Taboada and Mann 2006) which describes text organization
as relations between parts of text, mostly between pairs of
adjacent text spans. Such relations can be explicit in an ut-
terance, e.g., the words ‘if’ or ‘because’, but they can be
implicit, which creates the challenge of detecting them.

RST argues with similar principles as Relevance Theory,
explaining textual structure as providing relevant knowledge
that can be integrated readily into context and also strength-
ening or justifying assumptions. Both theories are likely to
be necessary in a system that can disambiguate WSs.
Graph-Based Knowledge Representation. Important
works related to our graph knowledge representation are
knowledge bases and ontologies for natural language
processing such as the Component Library (Barker, Porter,
and Clark 2001), Generalized Upper Model (Bateman et
al. 2010), and YAGO (Suchanek, Kasneci, and Weikum
2007). These and similar ontologies use formal logic (often
Description Logics (Baader et al. 2003)) to categorize and
relate linguistic terms, they are systematically engineered to
cover a broad range of domains and applications. Contrary
to that we use a lightweight graph framework to represent
linguistic input and background knowledge, with the aim
of studying the formalization of relevance. We hope that
the results of this work can be applied also to these more
systematic ontologies, as they have natural representations
as graphs. As stated by Chaudhri, Dinesh, and Inclezan
(2013), to be useful in natural language processing an
ontology must be linguistically motivated.

Conceptual Blending (Pereira 2008) is an approach that
is structurally similar to our knowledge graphs, however
Blending has the goal to create creativity in AI systems. This
is achieved by ‘blending’ knowledge graphs using associa-
tions of concepts that have similar properties, giving rise to
‘metaphorical’ and ‘creative’ computational reasoning.

Relevance in Conceptual Blending is formulated as a
fitness with respect to a reasoning goal, for example the
‘horse’ and the ‘bird’ microtheory can be blended in dif-
ferent ways, and if we impose the goal ‘flying’ then a blend
that is compatibly with flying is more relevant.

Knowledge Graphs and Reasoning
Schank aimed to provide a psychological model of how hu-
man reasoning works for understanding text. We next de-
fine a graph framework inspired by this model and formalize
reasoning based on combining nodes of knowledge graphs
without violating certain constraints of these graphs.

We simplify the framework to a form that is sufficient for
our purposes. Most importantly we distinguish dependen-
cies only by label, not by drawing direction or arrow style.

Knowledge Graphs
We define the knowledge graph data structure based on two
vocabularies Ccont and Cdep which are the domains for labels
of nodes and dependencies in our knowledge graph, resp.
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mod
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subjmeta

mod
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vt vs ve

vo

C = {vt 6= vs, ve 6= vo, (vt = ve) ∨ (vs = ve)}

Figure 1: Knowledge graph structure corresponding to (5).

Example 1. Figure 1 shows as an example the knowledge
graph corresponding to input sentence (5) (we omit tempo-
ral information and interpret ‘X’s drawing’ as ‘the drawing
owned by X’). Node labels are from the set Ccont = {Tina,
Sam, drawing, entity, hang, appear, above, below, with,
much better}. Some intuitions about this graph: the obj de-
pendency between ve and ‘below’ denotes that ve is the ar-
gument of ‘below’; the ‘below ve’ concept modifies vo such
that vo denotes ‘an entity that is below ve’; moreover ve
has a subj role in ‘appear(ing)’ which is modified by ‘much
better’ and by ‘with vo’. The meta dependency denotes an
underspecified textual structure relation.

In the following we implicitly extend this vocabulary
as needed. The dependency vocabulary Cdep = {subj , obj ,
obj2 ,mod , poss, at ,meta} is fixed.

We define an oracle function compat : 2 Ccont →{0, 1} that
evaluates whether a subset C ⊆Ccont of the vocabulary con-
tains mutually compatible content. Intuitively compat ab-
stracts from a (possibly intricate) reasoning in an ontolog-
ical knowledge base that determines whether linguistically
distinct concepts can denote the same world concept. For
example, a drawing and an entity can be present in one con-
cept node, while a drawing and Sam cannot: they must stay
in separate concept nodes.

In Schank’s graphs, dependencies occur between nodes
and between dependencies, hence we reify dependencies:
we represent a dependency as a graph node and two edges.

Definition 1. A knowledge graph structure G=(V,E, lcont ,
ltype , C) on vocabularies Ccont and Cdep is a directed graph
with nodes V , edges E⊆V ×V , node labelling functions
lcont :V → 2 Ccont ∪Cdep and ltype :V → 2 {act,obj,mod,dep},
and a set of reasoning constraints C of two forms: inequali-
ties between vertices and disjunctions of equalities between
vertices.

Figure 1 depicts a knowledge graph structure. Here and
in the following we show nodes of type act, obj, and
mod, as ellipses, rectangles, and trapezes, respectively. De-
pendencies (nodes of type dep) are shown without frame,
and we omit arrows into such nodes unless they are meta-
dependencies. Note in particular the meta dependency be-
tween two subj dependencies.

Given a set C of reasoning constraints we denote by e(C)
the set of disjunctions of equalities and by n(C) the set

of inequalities in C. In our example, e(C)= {(vt = ve) ∨
(vs = ve)} and n(C)= {vt 6= vs, ve 6= vo}.

We next impose constraints on knowledge graph struc-
tures to define knowledge graphs. The constraints ensure
that knowledge graphs have certain properties, motivated
methodologically (e.g., nodes have only one type, depen-
dencies have only one incoming and one outgoing edge to
a concept node) or linguistically (e.g., a limitation of object
and possessor dependencies for concept nodes).

Equality constraints are inspired by constraints in Mini-
mal Recursion Semantics (Copestake et al. 2005) which is
a formalism for parsing natural language that allows am-
biguous representations for unresolved pronouns as in WSs.
Inequality constraints arise from syntactic principles of nat-
ural language, for example Principle B of Government and
Binding (Haegeman 1994) states that a pronoun must not be
bound within the same linguistic clause.

The following definition restricts each node v ∈V to have
exactly one type ltype(v). Using this restriction, we denote
by dep(V )= {v ∈V | ltype(v)= {dep}} the set of depen-
dency nodes and by con(V )= {v ∈V | ltype(v)∈{{act},
{obj}, {mod}}} the set of concept nodes.

Definition 2. A knowledge graph G=(V,E, lcont , ltype , C)
on vocabularies Ccont and Cdep is a knowledge graph struc-
ture such that
(A) for every v ∈V it holds that |ltype(v)|=1;
(B) for every v ∈dep(V ) it holds that lcont(v)⊆Cdep and
|lcont(v)|=1;

(C) for every v ∈ con(V ) it holds that lcont(v)⊆Ccont and
compat(lcont(v))= 1;

(D) for r∈{obj , obj2 , poss} and for every v ∈V it holds
that |{u∈V | (u, v)∈E and lcont(u)= {t}}|≤ 1.

(E) for every v ∈dep(V ) it holds that |{u∈ con(V ) | (u,
v)∈E}|≤ 1 and |{u∈ con(V ) | (v, u)∈E}|≤ 1.

(F) for every u∈ con(V ), it holds that there is at most one
pair (v, w), v ∈dep(V ), lcont(v)= {at}, w∈ con(V )
such that {(u, v), (v, w)}⊆E.

(G) there is no pair (u, v) with u∈ con(V ), v ∈dep(V ),
and {(u, v), (v, u)}⊆E.

(H) for every pair u, v ∈ con(V ), u 6= v it holds
that |{w∈V | {(u,w), (w, v)} ⊆ E}|≤ 1 and
|{w∈V | {(v, w), (w, u)} ⊆ E}|≤ 1.

Note that Figure 1 is a knowledge graph.
These conditions become useful next where we define a

reasoning task that combines nodes in knowledge graphs.
(A) ensures single types for nodes. (B) ensures that depen-
dency nodes have a singleton content from Cdep . (C) ensures
that concept nodes have as content a subset of the vocabu-
lary that can refer to the same object or activity or modifier
in the world. (D) ensures that a node can have only a single
dependency from an object (obj ) second object (obj2 ) and
possessor (poss). This requirement is related to a linguis-
tic principle known as ‘theta criterion’ which states that if a
word assigns theta roles (types of arguments) then each role
must be filled by a unique object (for example the word ‘be-
tween’ requires two arguments of type obj and obj2 for tan-
gible or numerical entities). (E) ensures that a dependency
node has no more than one incoming and no more than one
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Figure 2: Background Knowledge Graphs related to (5).

Input G1

Background
G2, . . . , Gn

Gmix Gres

activate
knowledge

combine
knowledge

Figure 3: Reasoning with Knowledge Graphs

outgoing edge from (resp., to) a concept node. This causes
dependency nodes to be like arcs between concept nodes (as
visible in the figure) with the additional possibility of de-
pendencies to dependencies. (F) ensures that a concept is at
a single location only. (G) ensures that no concept depends
on itself. (H) ensures that two concept nodes are never con-
nected via more than one distinct dependency (in each di-
rection). This avoids redundancies which will become im-
portant for realizing relevance in knowledge graphs.

From here on we leave vocabularies implicit.

Reasoning
We next define a notion of reasoning based on activating
background knowledge graphs and combining them by col-
lapsing subsets of nodes into single nodes. In the next sec-
tion we define criteria for comparing all possible graphs re-
sulting from such reasoning, yielding only those graphs that
are most relevant wrt. principles of Relevance Theory.
Example 2. Figure 2 depicts two knowledge graphs that
are background knowledge related to our example. The left
graph expresses that ‘entity v1 doing something above en-
tity v2’ is interrelated with ‘entity v1 being above v2’. The
right graph expresses that ‘entity v3 being below entity v4’ is
interrelated with ‘entity v4 being above v3’. Note that these
graphs does not imply a ‘directionality’, there are no ‘condi-
tions’ or ‘effects’, just multiple dependency chains between
concepts.

Figure 3 gives an overview of our reasoning process: we
activate knowledge in Gmix and then combine the activated
graphs into result graph Gres .
Activating Knowledge. We start with a knowledge graph
G1 representing the input and a set BGact = {G2, . . . , Gn}
of activated knowledge graphs from a background knowl-
edge collection BG (BGact ⊆BG). For this work it was
sufficient to activate knowledge BGact ⊆BG according to
matches of node contents that are more specific than ‘entity’
or ‘action’. For a larger-scale system, methods that rely on
salience and semantic distance should be used, for example
Distributional Semantics (Padó and Lapata 2007).

Tina Sam

drawing
entity

drawing
entityabove

hang
action

below

much
better

appearwith

poss poss

obj

mod
subj

mod obj

subjmeta
mod

mod

obj

mod

vt

vs

C′ = {vt 6= vs} vt ← {vt, vo, v4, v2} vs ← {vs, ve, v3, v1}

Figure 4: Reasoning: combining graphs from Figure 1 and 2.

Background knowledge is activated because it is some-
how related to the input, however some of that knowledge
might not be useful for reasoning. Hence we select a subset
BGuse ⊆BGact of used knowledge graphs from activated
knowledge. The next section specifies how this selection is
realized.

For combining knowledge we put all graphs in BGuse

into one graph structure. For that we define a union oper-
ator: given two knowledge graphs G1 and G2 with disjoint
sets of nodes, Gi =(Vi, Ei, lcont i, ltype i, Ci), i∈{1, 2} we
obtain G1 ∪ G2 = (V1 ∪V2, E1 ∪E2, lcont1 ∪ lcont2,
ltype1 ∪ ltype2, C1 ∪C2). Due to disjoint sets of nodes the
result is again a knowledge graph. If necessary, we can
achieve disjointness by renaming nodes.

Combining Knowledge. We transform a knowledge graph
by combining sets of nodes into single nodes. For that we
use a function that maps nodes to other nodes.

Definition 3. Given a knowledge graph structure
G=(V,E, lcont , ltype , C), a target function target :V →V
is a total function such that target(v)=u with v 6=u implies
target(u)=u.

A target function induces an equivalence relation over V :
nodes that are mapped to themselves are representatives of
the equivalence class and all other nodes map to such nodes.
We use a function representation because it is more practical
for our purposes.

The effect of applying a target function to a knowledge
graph is defined next.

Definition 4. Given a knowledge graph structure G=(V ,
E, lcont , ltype , C) and a target function target wrt. G, we
denote by G[target ] the application of target to G and define
G[target ] = (V ′, E′, lcont

′, ltype
′, C ′) with

• V ′ = {target(v) | v ∈V },
• E′ = {(target(u), target(v)) | (u, v)∈E},
• lcont

′(v)=
⋃
{lcont(u) |u∈V, target(u)= v},

• ltype
′(v)=

⋃
{ltype(u) |u∈V, target(u)= v}, and

• C ′ = {c with vertices mapped using target | c∈C}.
The graph G[target ] is a knowledge graph structure, how-

ever it might not be a knowledge graph (e.g., a vertex
might obtain two types). We next restrict target such that
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G[target ] is again a knowledge graph structure, and define
the effect of reasoning constraints.

Reasoning constraints enforce structural properties of
knowledge graphs: inequality constraints ensure that two
nodes remain distinct nodes during reasoning, while equality
constraints ensure that certain nodes are collapsed with oth-
ers. In our example sentence (5) the word ‘another’ causes
the constraint ve 6= vo in Figure 1 while the word ‘it’ must
bind to a predecessor phrase which can either be ‘Sam’s
drawing’ or ‘Tina’s [drawing]’, hence we have the constraint
(vt = ve) ∨ (vs = ve).
Definition 5. Given a knowledge graph structure G=(V ,
E, lcont , ltype , C), a target function target wrt. G is a rea-
soning function if
(a) G[target ] is a knowledge graph,
(b) for each inequality constraint (u 6= v)∈n(C) it holds

that target(u) 6= target(v), and
(c) for each equality constraint c∈ e(C) there is an equality

(u= v) in c such that target(u)= target(v).
As an example consider Figure 4 where we combine

knowledge graphs. If we disregard the bold mod edge and
action concept then the graph is just a reorganized input
graph (Figure 1) with target(vo)= vt and target(ve)= vs.
Combining the left graph in Figure 2 with the input graph is
possible by combining ‘action’ with ‘hang’, and other nodes
with nodes containing the same content, which leads to an
additional dependency mod between ‘above’ and node vs.
Now we can see that the right graph from Figure 2 is already
contained in the resulting graph, precisely we can combine
v3 with vs and v4 with vt and then nodes containing ‘be-
low’ and ‘above’, and this generates no additional edges or
nodes. Note that these operations do not violate reasoning
constraints, and that in the resulting set of constraints C ′ we
still have vt 6= vs but we omit the equivalence constraint be-
cause it is satisfied as vs and ve becoming the same node.

Observe that the result graph depicted in Figure 4 is a cor-
rect solution to the Winograd Schema (5) because in that
schema ‘it’ must refer to Sam’s drawing and the graph iden-
tifies ve with vs.

Finally we formally define a reasoning process based on
which we will next formulate criteria of relevance.
Definition 6. Given input graph G1 and background knowl-
edge BG , our reasoning process deterministically obtains
BGact , then chooses BGuse and target , and thereby obtain
the result graph Gres =Gmix [target ] where

Gmix =
⋃(
{G1}∪BGuse

)
.

Relevance (Theory) in Knowledge Graphs
The previous section defined a reasoning process that leaves
two important points open: (i) how to select BGact and
(ii) how to select target . In this section we use concepts from
Relevance Theory to assigning a relevance fitness value to
a reasoning process. This fitness value induces a preference
between possible choices for BGuse and target .

By comparing fitness values wrt. BGact and target we
can find the most relevant reasoning outcomes for a given
input. This approach corresponds well with RT, which states

that relevance cannot be measured in absolute terms, but it
is always in comparison with alternatives.

RT originally is a theory of human cognition of natural
language. We next justify and sketch possible formalizations
of important principles from RT, then we propose a fitness
function based on these ideas.

Nodes in Gres that originate from at least one node in
the input graph G1 we call input nodes (V in

res ), while nodes
that originate only from nodes in background knowledge
graphs we call background nodes (V bg

res ). In our example in
Figure 4, the only background node is the bold mod de-
pendency node, all other nodes are input nodes because the
remaining (seven) nodes from background knowledge are
combined with input nodes.

We consider the following formalizations of relevance.
• The amount of nodes from background knowledge that

can been combined with input nodes indicates how well
background knowledge integrates with the input. If all nodes
from a background knowledge graph are combined with
input nodes, then that background graph supports existing
knowledge or strengthens existing assumptions. Both is de-
fined as positive cognitive effect in RT.
• Background nodes can form contextual implications in

the graph, also contributing to positive cognitive effect: they
can connect parts of the input graph (as in Figure 4) that
are not connected originally. Such connections are like in-
ferences using background and input graph knowledge.
• Background nodes can be close to input nodes or far

away in the graph (in terms of the shortest path to some input
node). The former nodes are closely related to input, while
the latter are more ‘far-fetched’, they can be seen as addi-
tional assumptions.

Assuming additional concepts can be necessary to make
sense of an input, however this imposes additional process-
ing effort and therefore reduces relevance relative to alter-
natives. In our example, we can combine the right graph in
Figure 2 with Figure 1 in a more far-fetched manner: instead
of combining v3 with vs and v4 with vt we could combine
v3 with vt and not combine v4 with any input node. In that
case our reasoning process makes the assumption that there
is a third object that is below Tina’s drawing.
• Another effect of reasoning with background knowl-

edge is that it can connect nodes from the input graph and
thus causes the overall graph to become more connected. To
measure how well the result of reasoning matches expecta-
tions in background knowledge, and how well-integrated the
result of reasoning is, it can therefore be useful to measure
the radius of the resulting knowledge graph.

The graph radius is the smallest value r such that from
some node of the graph we can reach all other nodes travers-
ing less than r edges. Our input graph in Figure 1 has radius
7 (from the left subj node), while the result graph in Figure 4
has radius 5 (from the bold mod node). Recall that depen-
dencies are nodes, so from ‘Tina’ to ‘meta’ we traverse 8
edges.

Based on our definition of reasoning process, we next de-
fine a fitness function with constant parameters Ccom

in , Cbg ,
Ccom

bg , Cdis
bg , Com , and Crad .
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Definition 7. Given G1, BG , BGuse , and target as in Def-
inition 5, we define fitness function frel as

frel(G1,BG ,BGuse , target) = Ccom
in ·

∑
n∈V in

res

com(n)+

Cbg ·|V bg
res |+Ccom

bg ·
∑

n∈V bg
res

com(n)+Cdis
bg ·

∑
n∈V bg

res

dis(n)+

Com ·|BGact \BGuse |+Crad ·rad(Gres)

where

V in
res = {target(v) | v ∈V1},

V bg
res =Vres \ V in

res ,

com(n)= |{v ∈Vres | target(n) = target(v)}|,
dis(n)= the length of the shortest path from n

to some node n′ ∈V in
res , and

rad(Gres)= the radius of graph Gres .

Informally, V in
res denotes input nodes, V bg

res denotes nodes
background nodes, com(n) denotes the number of nodes
combined to form node n∈Vres , and dis(n) denotes the dis-
tance of node n∈V bg

res to the nearest node n′ ∈V in
res .

This fitness function contains all points stated informally
before, with (so far) unspecified constant factors as param-
eters. Ccom

in allows to measure how many nodes were com-
bined to yield input nodes. For background nodes, Cbg gives
uniform weight to each one, Ccom

bg gives weight propor-
tional to the amount of combined nodes, and Cdis

bg gives
weight proportional to the distance from input nodes. More-
over Com allows for giving a weight to each activated back-
ground knowledge graph that was not used, and Crad gives
a weight to the radius of the result graph Gres .

Note that Ccom
in , Cbg , and Ccom

bg can be computed locally
for each node of Gres , while Cdis

bg requires consideration of
more than one node, Crad is about a property of the whole
graph, and Com is not about the graph but about which
background knowledge is used to build Gres . These locality
properties can have significant influence on implementabil-
ity and computational efficiency of an optimization proce-
dure that computes graphs with optimal fitness. In this work
we consider only small inputs to show qualitative applica-
bility of the fitness function, therefore we will only briefly
touch on matters of computational efficiency.

Experimental Evaluation
We designed our relevance fitness function based on princi-
ples of RT, moreover we know that disambiguation of certain
WSs can be explained in terms of relevance.

In this section we perform experiments on such schemas
in order to show which parameters lead to a correct dis-
ambiguation, and how well our fitness function performs in
general, i.e., whether it captures the requirements on disam-
biguating our example schemas.

For our empirical experiments we selected Winograd
Schemas numbered 2, 5, 15, and 17 from (Levesque, Davis,
and Morgenstern 2012), encoded them in both of their vari-
ants as input graphs, and encoded some relevant background

knowledge (including Figure 2). We repeat these schemas
as (7)+(8), (5)+(6), (9)+(10), and (11)+(12), respectively.

[Tom]t threw his schoolbag down to [Ray]r
after [he]t,r? reached the top of the stairs. (7)

[Tom]t threw his schoolbag down to [Ray]r
after [he]t,r? reached the bottom of the stairs. (8)

The [drain]d is clogged with [hair]h.
[It]d,h? has to be removed. (9)

[The drain]d is clogged with [hair]h.
[It]d,h? has to be cleaned. (10)

There is [a pillar]p between me and [the stage]s,
and I can’t see [it]p,s?

(11)

There is [a pillar]p between me and [the stage]s,
and I can’t see around [it]p,s?. (12)

We chose these schemas because they do not violate text
structure or world knowledge in their wrong reading, there-
fore we think Relevance Theory is a major ingredient in
solving them.2

For each schema we computed the reasoning outcome(s)
that were ranked as most relevant by the fitness function frel .
We measured the number of result graphs with correct dis-
ambiguation (i.e., graphs where the node corresponding to
the ambiguous pronoun is combined with the node of the in-
put that corresponds to the correct answer) versus the num-
ber of result graphs with an incorrect disambiguation.

We performed this experiment on the following parameter
combinations.
• Ccom

in ∈{0, 1, 2, 3} varies the importance of combining
background knowledge with input nodes.
• (Cbg , Ccom

bg , Cdis
bg ) ∈ {(0, 0, 0), (-1, 0, 0), (0, 0, -1), (0,

1, -2), (0, 1, -1), (0, 2, -1)} varies the importance of several
features of background nodes. In particular (0,0,0) omits any
cost or benefit, (-1,0,0) gives a uniform cost to every back-
ground node, (0,0,-1) imposes a cost corresponding to dis-
tance from the nearest input node, (0,1,-1) additionally gives
a benefit for combining with other nodes, finally (0,1,-2) and
(0,2,-1) vary the ratio between cost and benefit of distance
from input nodes and combination with background knowl-
edge.
• Com ∈{0, -10, -20, -30} varies the cost of not using an

activated background knowledge graph.
• Crad ∈{0, -5, -10, -15} gives cost to the graph radius.
These parameter ranges were established from estimates

of parameter importance and in preliminary experiments.
The seemingly natural setting (Cbg , C

com
bg , Cdis

bg )= (0, 1, 0)
was excluded because it facilitates the use of background
knowledge that is neither combined with other background
knowledge nor with input knowledge.

The above parameter combinations yield 384 overall pa-
rameter combinations and we have 8 sentences (2 for each
schema), yielding 3072 overall experimental runs.

We encoded the reasoning process in Answer Set Pro-
gramming (ASP) (Lifschitz 2008; Brewka, Eiter, and

2There can be two stairs, a plumber might remove a clogged
drain, and there can be an object blocking the view to the pillar.
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Figure 5: Experimental results (for each parameter group we accumulated over all combinations of remaining parameters).

Truszczynski 2011) which is a logic programming formal-
ism suitable for representing knowledge and guess-and-
check computations with integer optimization. Encodings,
graph visualizations, and results are available online.3

In our experiments we used the solver clingo 4.2.1 (Geb-
ser, Kaufmann, and Schaub 2013) with a timeout of 1 hour
for finding the optimal value and 1 hour for enumerating a
maximum of 25 graphs of optimum cost. Note that our en-
codings are not tuned for good performance, hence some pa-
rameter combinations and inputs cause timeouts and we only
consider results from runs without timeouts. Such timeouts
happened only for inputs (7) and (8), due to a high number
of activatable background knowledge graphs. To gain confi-
dence in our results, we checked that all trends we report in
the following are similar if we use a timeout of only 20 min,
hence timeouts do not invalidate the following discussion.

Results
Figure 5 shows results for each of the four parameter groups
described previously, accumulated over all possible combi-
nations of the other three parameter groups. We display the
number of enumerated reasoning graphs, split into correctly
and incorrectly disambiguated graphs, we also show the per-
centage of correct disambiguations.

We aim for a relevance fitness function that has the fol-
lowing properties: (i) firstly it gives higher fitness to graphs
that contain the correct disambiguation, and (ii) it select as
few as possible best results. The benefit of (i) is obvious,
while (ii) is desireable for reasons of relevance: a low total
number of results means that few assumptions needed to be
taken for achieving these results, and few assumptions are
necessary for subsequent reasoning.

From Figure 5 we can observe the following.
• Increasing Ccom

in improves the correctness and reduces
the number of result graphs.

• Giving weight to the second group of parameters
(Cbg , C

com
bg , Cdis

bg ) is important for correctness and for re-
ducing the number of result graphs. The best correctness
results are achieved with (-1,0,0), (0,0,-1), and (0,1,-2).

3www.peterschueller.com/winograd/kr14/

• A nonzero Com increases correctness and increases the
number of results (due to encouraging usage of back-
ground graphs).

• Giving weight to Crad reduces correctness from 79% to
59% and drastically reduces the number of results.

These accumulated results give an overview of the impact of
our fitness function constants. We next look into details.

Table 1 shows the best and worst individual parameter
combinations. Each row is the result of 8 runs (one for each
sentence of each schema).

In the upper part of the table we first show the 11 best
combinations, they yield 100% correct answers and only
10 answers for 8 inputs. We can observe that Ccom

in and
Crad are never 0, furthermore the combinations (0,0,0) and
(0,2,-1) do not appear in the second column, which indicates
that these parameter values are not favorable for correct-
ness. Comseems to be least important. The table row with 11
correct answers and 100% correctness actually contains 30
different parameter configurations, these combinations are
not shown for space reasons, but we note that these combi-
nations contain neither zero constants for Ccom

in , Com , and
Crad , nor combinations (0,0,0) or (0,2,-1) for the other con-
stants. This suggests that all possible parameter values ex-
cept (0,0,0) and (0,2,-1) and zero values contribute to suc-
cessful disambiguation.

In the lower part of the table we show the 8 worst settings.
(Cbg ,Ccom

bg ,Cdis
bg ) is either (0,0,0) which gives no weight to

background nodes, or (0,1,-1), which gives cost to distance
from input nodes but also gives the same amount of benefit
for combination with other background knowledge nodes.
Ccom

in is zero in all but configuration. Com and Crad vary
across their possible values. The total number of solutions
(correct plus incorrect) is higher in the lower part of the ta-
ble, except for two rows with 7 incorrect and 4 correct so-
lutions: in these rows the parameters make graph radius the
dominating cost and optimal fitness is achieved by not us-
ing any background knowledge (which is undesired and also
leads to bad correctness).

In summary we see that all coefficients of frel are impor-
tant, and many parameter values and combinations achieve
correct disambiguation with few reasoning result. On the
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Ccom
in (Cbg ,Ccom

bg ,Cdis
bg ) Com Crad # incorr. # corr. % corr.

3 (0,1,-2) 0 -5 0 10 100
3 (0,1,-2) 0 -10 0 10 100
3 (0,1,-2) -10 -5 0 10 100
3 (0,1,-2) -10 -10 0 10 100
3 (0,0,-1) 0 -5 0 10 100
1 (0,0,-1) -10 -5 0 10 100
3 (0,0,-1) -10 -5 0 10 100
3 (0,0,-1) -10 -10 0 10 100
2 (-1,0,0) 0 -5 0 10 100
3 (-1,0,0) 0 -5 0 10 100
3 (0,1,-1) 0 -5 0 10 100
— 30 configurations (see text) — 0 11 100
· · · · · · · · · · · · ·
0 (0,1,-1) 0 -15 7 4 36
0 (0,1,-1) 0 -10 7 4 36
1 (0,0,0) -20 0 102 58 36
0 (0,0,0) 0 -15 100 50 33
0 (0,0,0) 0 -5 100 50 33
0 (0,0,0) 0 -10 100 50 33
0 (0,1,-1) -10 0 114 46 29
0 (0,0,0) -30 -5 154 24 14

Table 1: Best and worst parameter settings (8 runs per row).

negative side we see that zero values are unfavorable, and
that the benefit of (0,1,-1) depends on other parameters.

Conclusion and Future Work
In order to formalize important concepts from Relevance
Theory we introduced a formal simplification of Roger
Schank’s framework for knowledge graphs. We started from
this framework because it promised an easy formulation of
principles from RT as properties of graphs. Moreover, our
knowledge graphs have similar properties to other graphs
used for representing knowledge.

Therefore we hope that our work can inspire applications
of Relevance Theory also in other graph-based reasoning
formalisms.
Negative Results. Preliminary experiments showed that cer-
tain graph parameters are not useful: minimizing the num-
ber of bridges (edges whose removal disconnects the graph)
does not yield promising results because the input graph
might already be without any bridges. Also, maximizing the
number of dependencies per node encourages buildup of ad-
ditional dependencies between input nodes (think: contex-
tual implications) but this measure can introduce redundan-
cies in the graph that do not violate basic graph conditions
and certainly do not follow the intended notion of relevance.
Possible Extensions. An important possible extension of
our approach are graphs that act as constraints, i.e., they
invalidate a reasoning result if a specific part of them can
match the result graph. Preliminary experiments show that
adding only one background knowledge graph with such ca-
pabilities increases the correctness of many parameter com-
binations tested in this work. Due to prohibitively high com-
putation times we conducted only preliminary experiments.

Possible extensions of our relevance fitness function are

the Cheeger constant (a graph parameter that measures bot-
tlenecks in a graph; it is mainly used in research about social
or computer networks) and a variable cost for unused acti-
vated graphs, depending on such graphs’ size.

Winograd Schemas contain short sentences and they are
meant to be interpreted without additional context. There-
fore wrt. processing effort we mainly considered effort of
assuming additional entities, a characterization that is shared
by RT and by Hobbs et al. (1993). Future work should also
consider salience of concepts and semantic distance between
concepts as factors that contribute to processing effort.
Obtaining Knowledge Graphs. We here considered only
knowledge graphs and abstracted from the process of pars-
ing natural language to create knowledge graphs — cer-
tainly a challenging task by itself. Most existing parsing sys-
tems resolve ambiguities during parsing, a notable excep-
tion is Minimal Recursion Semantics (Copestake et al. 2005)
which inspired equality constraints in this work. For obtain-
ing and processing knowledge graphs several related works
exist, e.g., the Boxer system (Bos 2008) which is based on
Discourse Representation Theory, work by Baral and Dzif-
cak (2012) who interpret natural language and inferring un-
known annotations using inverse lambda calculus, and the
approaches of Chen et al. (2013) who combine existing open
knowledge bases in a system for human-robot interaction.

Probabilistic approaches are not included in this work, in
a general and robust system such methods will be necessary,
and metrics relevant to probabilistic NLP will become rele-
vant for evaluating such a system, for example MUC (Mes-
sage Understanding Conference) metrics.
Computational Efficiency. We largely disregarded the effi-
ciency of reasoning in our experiments and discussion. Due
to the high complexity class of our reasoning method which
is a typical guess & check & optimize task, reasoning effi-
ciency will certainly become an important topic in practice.
Several possibilities for tuning performance exist, the most
obvious being an optimization of the ASP encoding, using
general principles as described, e.g., by Balduccini and Lier-
ler (2012). Moreover there is the possibility of using a hy-
brid reasoning formalism such as HEX-programs (Eiter et
al. 2005) that combine ASP with domain-specific C++ code
(e.g., for graph processing). Finally it is possible to realize
the reasoning method from this paper in a formalism that is
independent from ASP.
Incremental Progress. While our experiments indicate that
certain parameter combinations lead to correct disambigua-
tion, they are limited because they have been performed
on a small set of examples. Levesque, Davis, and Morgen-
stern (2012) pointed out that incremental progress is possi-
ble in the WSC, by creating libraries of questions that can be
solved by children, up to questions solvable by university-
educated people. They also propose using a limited vocabu-
lary, which will make testing more objective, and avoid so-
lutions that are targeted to certain sentences.

For this paper we created a few background knowledge
graphs from which several become activated and used in
multiple of our test sentences. Nevertheless we are con-
vinced that for achieving truly general results, it will be nec-
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essary to create larger-scale testsuites on standard vocab-
ularies. (Otherwise background knowledge used in experi-
ments might just be tuned to achieve the right experimental
outcome, making the experimental results meaningless.)

Creating such a corpus of Winograd Schema on a limited
vocabulary contains several research challenges such as vo-
cabulary selection, building the schemas, and evaluating em-
pirically whether each schema is correctly disambiguated by
a significant majority of human subjects.
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