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Abstract

Graphical belief models are compact and powerful tools for
representing and reasoning under uncertainty. Possibilistic
networks are graphical belief models based on possibility
theory. In this paper, we address reasoning under uncertain
inputs in both quantitative and qualitative possibilistic net-
works. More precisely, we first provide possibilistic coun-
terparts of Pearl’s methods of virtual evidence then compare
them with the possibilistic counterparts of Jeffrey’s rule of
conditioning. As in the probabilistic setting, the two methods
are shown to be equivalent in the quantitative setting regard-
ing the existence and uniqueness of the solution. However
in the qualitative setting, Pearl’s method of virtual evidence
which applies directly on graphical models disagrees with
Jeffrey’s rule and the virtual evidence method. The paper pro-
vides the precise situations where the methods are not equiv-
alent. Finally, the paper addresses related issues like transfor-
mations from one method to another and commutativity.

Introduction
Belief revision and more generally belief dynamics is a
fundamental task in artificial intelligence. Indeed, rational
agents often need to revise their beliefs in order to take
into account new information. In uncertainty frameworks,
this task is often referred to as belief revision or reason-
ing with uncertain inputs. Belief revision has received a
lot of attention in artificial intelligence especially in logic-
based and some uncertainty frameworks (Benferhat et al.
2010)(Dubois and Prade 1994). In spite of the power of
graphical belief models for representing and reasoning with
uncertain information, belief revision and reasoning with
uncertain inputs in such models is addressed only in few
works mostly in the context of Bayesian networks (Chan and
Darwiche 2005)(Vomlel 2004).
In this paper, we compare two methods for revising the be-
liefs encoded in a possibilistic framework when new and un-
certain information is available. The two methods compared
here are Jeffrey’s rule of conditioning (Jeffrey 1965) and the
virtual evidence method (Pearl 1988). They were originally
proposed and studied in a probabilistic setting where they
are shown to be equivalent and differ only in the way they
specify the inputs (Chan and Darwiche 2005).
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In the possibilistic setting, the counterparts of Jeffrey’s rule
are proposed in (Dubois and Prade 1997)(Dubois and Prade
1993). In (Benferhat, Tabia, and Sedki 2011), we studied
the existence and the uniqueness of the solution in both the
quantitative and qualitative possibilistic settings. The possi-
bilistic counterpart of Jeffrey’s rule is investigated for belief
revision in possibilistic knowledge bases in (Benferhat et al.
2010) where it is claimed that this rule can successfully re-
cover most of the belief revision kinds such as the natural
belief revision, drastic belief revision, reinforcement, etc. In
(Benferhat, Da Costa Pereira, and Tettamanzi 2013), a syn-
tactic version is proposed for the possibilistic counterpart of
Jeffrey’s rule. In this paper, we address revising the beliefs
encoded by means of possibilistic networks with uncertain
inputs. More precisely, the paper provides
• Possibilistic counterparts of Pearl’s method of virtual ev-

idence and its generalization named the virtual evidence
method in both the quantitative and qualitative settings.
Unlike the probabilistic and quantitative possibilistic set-
tings, the inputs for the qualitative counterparts of Pearl’s
methods should be possibility degrees because of the def-
inition of the qualitative conditioning.

• An analysis of the existence and uniqueness of the so-
lutions using the proposed possibilistic counterparts of
Pearl’s methods.

• Transformations from Jeffrey’s rule to the virtual evi-
dence method and vice versa and comparisons of these
methods in both the quantitative and qualitative settings.
As in the probabilistic setting, the two methods are shown
to be equivalent in the quantitative setting regarding the
existence and uniqueness of the solution. However in the
qualitative setting, Pearl’s method of virtual evidence is
not equivalent to Jeffrey’s rule since it is impossible using
this method to increase the possibility degree of an event
but its generalization is shown equivalent to Jeffrey’s rule.

Possibility Theory and Possibilistic networks
Let us first fix the notations used in the rest of this paper.
V ={X,Y,A1, A2, ..} denotes a set of variables (in capital
letters and indexed when necessary). DAi={a1, a2, .., am}
denotes the domain of a variable Ai (note that DAi is as-
sumed a finite domain). ai denotes an instance (value) of
variable Ai, namely ai∈DAi . Ω=×Ai∈VDAi denotes the
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universe of discourse (all possible states of the world). It
is the cartesian product of all the variable domains involved
in V . A tuple w=(a1, a2, .., an) which is an instance of Ω
represents a possible state of the world (also called a model
or interpretation). φ, ϕ, λ denote subsets of Ω called events.

Possibility theory
Possibility theory is an alternative uncertainty theory suited
for representing and reasoning with uncertain and incom-
plete information (Dubois and Prade 1988a; Yager 1983).
The concept of possibility distribution π is an important
building block of possibility theory: It is a mapping from
the universe of discourse Ω to the unit scale [0, 1] which can
be either quantitative or qualitative (ordinal). In both these
settings, a possibility degree π(wi) expresses to what ex-
tent it is consistent that wi can be the actual state of the
world. In particular, π(wi)=1 means that wi is totally plau-
sible and π(wi)=0 denotes an impossible event. The rela-
tion π(wi)>π(wj) means that wi is more plausible than
wj . A possibility distribution π is said to be normalized if
maxwi∈Ω(π(wi))=1. The second important concept in pos-
sibility theory is the one of possibility measure denoted
Π(φ) and computing the possibility degree relative to an
event φ⊆Ω. It evaluates to what extent φ is consistent with
the current knowledge encoded by the possibility distribu-
tion π on Ω. It is defined as follows:

Π(φ) = max
wi∈φ

(π(wi)). (1)

The term Π(φ) denotes the possibility degree of having one
of the events involved in φ as the actual state of the world.
The necessity measure is the dual of possibility measure and
evaluates the certainty implied by the current knowledge of
the world. Namely, N(φ)=1 − Π(φ) where φ denotes the
complement of φ.
According to the interpretation underlying the possibilistic
scale [0,1], there are two variants of possibility theory:
• Qualitative (or min-based) possibility theory: In this

case, the possibility distribution is a mapping from the
universe of discourse Ω to an ordinal scale where only
the ”ordering” of the values is important.

• Quantitative (or product-based) possibility theory: In
this case, the possibilistic scale [0,1] is numerical and pos-
sibility degrees are like numeric values that can be manip-
ulated by arithmetic operators. One of the possible inter-
pretations of quantitative possibility distributions is view-
ing π(wi) as a degree of surprise as in Spohn’s ordinal
conditional functions (Spohn 1988).

The other fundamental notion in possibility theory is the one
of conditioning concerned with updating the current knowl-
edge encoded by the possibility distribution π when a com-
pletely sure event (evidence) is observed. Note that there
are several definitions of the possibilistic conditioning (His-
dal 1978)(L.M. De Campos and Moral 1995)(Dubois and
Prade 1988b) (Fonck 1997). In the quantitative setting, the
product-based conditioning (also known as Dempster rule of
conditioning (Shafer 1976)) is defined as follows:

π(wi|pφ) =

{
π(wi)
Π(φ) if wi ∈ φ;

0 otherwise.
(2)

Conditioning in the qualitative setting is defined as follows
(Hisdal 1978):

π(wi|mφ) =

{
1 if π(wi)=Π(φ) and wi ∈ φ;
π(wi) if π(wi)< Π(φ) and wi ∈ φ;
0 otherwise.

(3)
While there are several similarities between the quantitative
possibilistic and the probabilistic frameworks (conditioning
is defined in the same way), the qualitative one is signifi-
cantly different. Note that the two definitions of conditioning
satisfy the condition: ∀ω∈φ, π(ω)=π(ω|φ)⊗Π(φ) where ⊗
is either the product or min-based operator.

Possibilistic networks
A possibilistic network G=<G,Θ> is specified by:
i) A graphical component G consisting in a directed acyclic

graph (DAG ) where vertices represent variables of inter-
est and edges represent direct dependence relationships
between these variables.

ii) A quantitative component Θ allowing to quantify the un-
certainty of the relationships between domain variables
using local possibility tables (CPTs). The quantitative
component orG’s parameters consist in a set of local pos-
sibility tables Θi={θai|ui} where ai∈Di and ui is an in-
stance of Ui denoting the parent variables of Ai in G.

Note that all the local possibility distributions Θi

must be normalized, namely ∀i=1..n, ∀ui∈DUi ,
maxai∈Di(θai|ui)=1. The structure of G encodes a set of
conditional independence relationships I={I(Ai, Ui, Y )}
where Y is a subset of variables non descendent from Ai.
For example, in the network of Figure 1, variable C is
independent of B in the context of A.
Example 1. Figure 1 gives an example of a possibilistic
network over four binary variables A, B, C and D.

A π(A)

a1 1
a2 .5

����
A

����
D

B A π(B|A)

b1 a1 1
b2 a1 1
b1 a2 .2
b2 a2 1

C A π(C|A)

c1 a1 1
c2 a1 .6
c1 a2 .2
c2 a2 1

����
C

�
��	 ����

B

@
@@R

D B C π(D|BC)

d1 b1 c1 0
d2 b1 c1 1
d1 b1 c2 1
d2 b1 c2 .4
d1 b2 c1 .6
d2 b2 c1 1
d1 b2 c2 1
d2 b2 c2 .4

@
@R

�
��	

Figure 1: Example of a possibilistic network

In the possibilistic setting, the joint possibility distribution
is factorized using the chain rule defined as follows:

π(a1, a2, .., an) = ⊗ni=1(π(ai|ui)), (4)

where ⊗ denotes the product-based (resp. min-based) oper-
ator used in the quantitative (resp. qualitative) setting.
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Example 2. In the min-based setting, the joint distribution
encoded by the network of Figure 1 is derived as follows:

π(A,B,C,D) = min(π(A), π(C|A), π(B|A), π(D|BC)).

Reasoning with uncertain inputs in the
probabilistic setting

In the probabilistic framework, there are two main methods
for revising beliefs represented using probability distribu-
tions or probabilistic models by uncertain information: Jef-
frey’s rule (Jeffrey 1965) and the virtual evidence methods
(Pearl 1988). Let us first focus on the notions of beliefs and
uncertain inputs.

Beliefs and uncertain inputs

The concept of belief used in this paper allows an agent to
encode at which extent a given event is believed to be or
become the actual state of the world. Generally, beliefs are
specified over a universe of discourse Ω using belief mea-
sures like probability or possibility measures1. Then belief
degrees are associated with each singleton event ω∈Ω in the
form of a belief distribution. According to the chosen set-
ting, belief measures allow to assess the belief of any ar-
bitrary event φ⊆Ω. Now given a set of initial beliefs (also
called prior beliefs), an agent may have new information
which can be in the form of evidence (also called hard evi-
dence and corresponding for instance to a sure observation
of the value of a variable) or in the form of uncertain or
soft evidence (e.g. unreliable input) or simply new beliefs
regarding some events2. In the uncertainty literature, belief
change dealing with hard evidence is known as belief update
and it is generally based on conditioning while it is known
as belief revision in case of uncertain inputs.
In Jeffrey’s rule and the virtual evidence methods, the un-
certainty bears on an exhaustive and mutually exclusive set
of events λ1,..,λn (namely, ∀λi⊆Ω and ∀λj⊆Ω with i6=j,
we have λi∩λj=∅ and λ1∪λ2∪..∪λn=Ω). However, the new
information is expressed differently:

• In Jeffrey’s rule, the new beliefs are a probability distribu-
tion over λ1,..,λn and must consequently sum up to 1. The
new information is expressed in the form of (λi, αi) such
that P ′(λi)=αi where p′ denotes the revised probability
distribution fully accepting the new beliefs.

• In Pearl’s methods, the new information is expressed by
specifying the amount of increase or decrease of the be-
lief on each event λi moving from p to p′. This amount
is called in (Darwiche 2009) the Bayes factor and corre-
sponds to the ratio P ′(λi)

P (λi)
. For example, a ratio regarding

an event λi of 2 means that the new belief regarding λi is
twice as it was before receiving this new information.

1The beliefs of an agent can be encoded using other for-
malisms like belief bases (e.g. probabilistic or possibilistic knowl-
edge bases), graphical belief models, etc.

2On the different meanings of hard, soft and uncertain evidence,
see (Ma and Liu 2011)(Pan, Peng, and Ding 2006)(Bilmes 2004).

Jeffrey’s rule of conditioning
Jeffrey’s rule (Jeffrey 1965) is an extension of the probabilis-
tic conditioning to the case where the evidence is uncertain.
This method involves a way for:

1. Specifying the uncertain evidence: The uncertainty is
of the form (λi, αi) with αi=P ′(λi) meaning that after
the revision operation, the posterior probability of each
event λi must be equal to αi (namely, P ′(λi)=αi). The
uncertain inputs are seen as a constraint or an effect once
the new information is fully accepted.

2. Computing the revised probability distributions: Jef-
frey’s method assumes that although there is a disagree-
ment about the events λi in the old distribution p and the
new one p′, the conditional probability of any event φ⊆Ω
given any uncertain event λi remains the same in the orig-
inal and the revised distributions. Namely,

∀λi ∈ Ω,∀φ ⊆ Ω, P (φ|λi) = P ′(φ|λi). (5)

The underlying interpretation of the revision implied by
constraint of Equation 5 is that the revised probability dis-
tribution p′ must not change the conditional probability
degrees of any event φ given the uncertain events λi. To
revise the probability degree of any event φ⊆Ω, the fol-
lowing formula is used:

P ′(φ) =
∑
λi

αi ∗
P (φ, λi)

P (λi)
. (6)

The revised distribution p′ obtained using Jeffrey’s rule al-
ways exists and it is unique (Chan and Darwiche 2005). In
the following, we first present Pearl’s method of virtual evi-
dence applying directly on Bayesian networks then its gen-
eralization named virtual evidence method applying directly
on probability distributions as in Jeffrey’s rule.

Pearl’s method of virtual evidence
This method is proposed in (Pearl 1988) in the framework of
Bayesian networks. The main idea of this method is to cast
the uncertainty relative to the uncertain evidence E on some
virtual sure event η: the uncertainty regarding E is spec-
ified as the likelihood of η in the context of E. In Pearl’s
method of virtual evidence the beliefs are encoded with a
Bayesian network over a set of variables {A1, .., An}. As-
sume that the observation regarding a variable Ai is uncer-
tain (for instance, because of a sensor unreliability). Pearl’s
virtual evidence method deals with this issue by adding for
each uncertain observation variable Ai a variable Zi with
an arc from Ai to Zi. The uncertainty relative to Ai is
then cast as the likelihoods of Zi=zi in the context of Ai.
Then the uncertain inputs are taken into account by observ-
ing the sure evidence Zi=zi. Doing this way, it is clear that
the conditional probability of any event φ given Ai is the
same in the old and revised distribution, namely ∀φ⊆Ω,
p(φ|Ai)=p′(φ|Ai). It is the d-separation3 criterion that en-
sures this property. In this method, the uncertainty bears on
a set of exhaustive and mutually exclusive events a1,..,an
(forming the domain of variable Ai). Let γ1:..:γn denote the

3The d-separation property states that two disjoint variable sub-
sets X and Y are d-separated if there exists a third variable sub-set
Z such that X and Y are independent given Z.
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likelihood ratios encoding the new inputs. Such ratios should
satisfy the following condition:

γ1 : .. : γn =
P ′(a1)

P (a1)
: .. :

P ′(an)

P (an)
(7)

Note that there are many solutions for the values of γ1, .. , γn
satisfying the condition of Equation 7 (one possible solution
for encoding the inputs within the network is to set p(z|ai)
to γi=

p′(ai)
p(ai)

). It is worth to mention that contrary to Jeffrey’s
rule where the inputs α1,..,αn are the revised belief degrees
once the revision performed, in Pearl’s methods, the inputs
are likelihood ratios γ1,..,γn satisfying Equation 7 and they
don’t form a probability distribution.
Example 3. Assume that the current beliefs about a given
problem are encoded by the Bayesian network G of Figure
2 over two binary variables A and B. The joint probability
distribution encoded by this network is given by the joint
probability distribution p(AB) of Figure 2.

B p(B)
b1 0.75
b2 0.25

����
B

A B p(A|B)
a1 b1 0.8
a2 b1 0.2
a1 b2 0.4
a2 b2 0.6����

A
@
@R

A B p(AB)
a1 b1 0.6
a2 b1 0.15
a1 b2 0.1
a2 b2 0.15

Figure 2: Example of an initial Bayesian network G and the
joint distribution p(AB) encoded by G.

Assume now that we have new inputs γa1
=.57 and γa2

= 2.
Following Pearl’s method of virtual evidence, this is handled
by adding a variable Z as a child of A as in Figure 3.

B p(B)
b1 0.75
b2 0.25

����
B A B p(A|B)

a1 b1 0.8
a2 b1 0.2
a1 b2 0.4
a2 b2 0.6����

A
@
@R

����
Z
�
�	Z A p(Z|A)

z a1 0.57
z a2 2

Figure 3: Bayesian network G′: Bayesian network G of Fig-
ure 2 augmented with node Z to encode the new inputs.

Let us mention that the conditional probability table of node
Z in order to encode the new inputs don’t need to be nor-
malized (it can easily be normalized but this is not needed
to revise the old beliefs encoded by the initial network). An-
other solution satisfying Equation 7 is γa1 :γa2 = .2:.7 (since
.57
2 = .2

.7 ). The revised beliefs are given in Table 1.

A B p(AB|z)
a1 b1 0.34
a2 b1 0.3
a1 b2 0.06
a2 b2 0.3

Table 1: The conditional distribution pG′(.|z) representing
the revised distribution encoded by the network of Figure 2.

It is easy to check that the revised distribution p′=pG′(.|z)
fully integrates the inputs.

Virtual evidence method
The virtual evidence method generalizes Pearl’s method of
virtual evidence and applies directly on joint probability dis-
tributions as in Jeffrey’s rule.

1. Specifying the uncertain inputs: The new information is
in the form of a set of likelihood ratios γ1,..,γn such that
γi=P (η|λi) and

γ1 : .. : γn =
P ′(λ1)

P (λ1)
: .. :

P ′(λn)

P (λn)
,

where λ1,..,λn denote the exhaustive and mutually exclu-
sive set of events on which bears the uncertainty. More-
over, as a consequence of the d-separation criterion in
Bayesian networks, we have the following property:

∀φ ⊆ Ω,∀i = 1..n, P ′(η|λi, φ) = P ′(η|λi),

where η denotes the virtual event.
2. Computing the revised beliefs: The revised probability

distribution p′ is simply equivalent to p(.|η) and it is com-
puted as follows (Chan and Darwiche 2005):

∀φ ⊆ Ω, P ′(φ) = P (φ|η) =

∑n
i=1(γi ∗ P (λi, φ))∑n
j=1(γj ∗ P (λj))

. (8)

Example 4. Let us reuse the joint probability distribution
of the example of Figure 2. Let also the likelihood ratios be
γ1=P ′(a1)

P (a1) =.57 and γ2=P ′(a2)
P (a2) =2. The revised distribution

p′ is computed using Equation 8.

A B p(AB)
a1 b1 0.6
a2 b1 0.15
a1 b2 0.1
a2 b2 0.15

A B p(AB|η)
a1 b1 0.34
a2 b1 0.3
a1 b2 0.06
a2 b2 0.3

Table 2: Example of initial probability distribution p and the
revised distribution p(.|η).

From the results of Table 1 and Table 2, it is clear that the
revised distributions are equivalent.

Jeffrey’s rule and Pearl’s methods differ only in the way
they specify the inputs and the way the revised beliefs are
computed (Chan and Darwiche 2005). In Jeffrey’s rule, the
inputs are seen as the result or the effect of the revision op-
eration while in the virtual evidence method, the inputs only
denote the relative difference between the old beliefs and the
revised ones specified in terms of likelihood ratios.
In the following, we compare the two methods presented in
this section in a possibilistic framework.

Reasoning with uncertain inputs in the
quantitative possibilistic setting

Jeffrey’s rule of conditioning in the quantitative
possibilistic setting
In the possibilistic setting, given the initial beliefs encoded
by a possibility distribution π and a set of inputs in the form
of (αi, λi) such that Π′(λi)=αi and αi∈[0, 1] meaning that
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after revising π, the new possibility degree of λi is αi. The
revised possibility distribution π′ according to Jeffrey’s rule
must satisfy the following conditions:

C1: ∀λi, Π′(λi)=αi.
C2: ∀λi⊂Ω, ∀φ⊆Ω, Π′(φ|λi)=Π(φ|λi).

As in the probabilistic setting, revising a possibility distri-
bution π into π′ according to the possibilistic counterpart
of Jeffrey’s rule must fully accept the inputs (condition C1)
and preserve the fact that the uncertainty about the events λi
must not alter the conditional possibility degree of any event
φ⊆Ω given any uncertain event λi (condition C2). The re-
vision based on the possibilistic counterpart of Jeffrey’s rule
in the product-based possibilistic setting is performed as fol-
lows (Dubois and Prade 1997):
Definition 1. Let π be a possibility distribution and (λ1,
α1),..,(λn, αn) be a set of exhaustive and mutually exclusive
events where the uncertainty is of the form Π′(λi)=αi for
i=1..n. The revised possibility degree of any arbitrary event
φ⊆Ω is computed as follows (we assume that Π(φ)>0):

∀φ ⊆ Ω,Π′(φ) = max
λi

(αi ∗
Π(φ, λi)

Π(λi)
). (9)

It follows from Equation 9 that the revised possibility de-
gree of any interpretation ωj∈Ω is computed as follows:

∀ωj ∈ λi, π′(wj) = αi ∗
π(wj)

Π(λi)
.

It is shown in (Benferhat, Tabia, and Sedki 2011) that the re-
vised possibility distribution π′ computed according to Def-
inition 1 always exists and it is unique.
Example 5. In this example, we assume that we have be-
liefs over two binary variables A and B. The possibility dis-
tribution π(AB) encodes the current beliefs. Table 3 gives
the distribution π, the marginal distribution of A (namely,
π(A)), the one ofB (namely, π(B)) and the conditional dis-
tribution of B given A (namely, π(B|A)).

A B π(AB)
a1 b1 1
a2 b1 0.4
a1 b2 0.1
a2 b2 0.4

A π(A)
a1 1
a2 0.4
B π(B)
b1 1
b2 0.4

A B π(B|A)
a1 b1 1
a2 b1 1
a1 b2 0.1
a2 b2 1

Table 3: Example of initial possibility distribution π and the
underlying marginal and conditional distributions.

Now assume that we have new beliefs in the form (a1, .4)
and (a2, 1). The revised distribution using Jeffrey’s rule of
Equation 9 is given by π′ of Table 4.

According to Tables 3 and 4, it is clear that the input be-
liefs are fully accepted (see the marginal distribution π′(A))
and that ∀ai∈DA, ∀bj∈DB , Π(bj |ai)=Π′(bj |ai).

Pearl’s method of virtual evidence in the
quantitative possibilistic setting
In Pearl’s virtual evidence method, the new information is
a set of likelihood ratios γ1,..,γn and satisfies the following
condition:

A B π′(AB)
a1 b1 0.4
a2 b1 1
a1 b2 0.04
a2 b2 1

A π′(A)
a1 0.4
a2 1
B π′(B)
b1 1
b2 1

A B π′(B|A)
a1 b1 1
a2 b1 1
a1 b2 0.1
a2 b2 1

Table 4: Revised beliefs of the initial distribution given in
Table 3 using Jeffrey’s rule of Equation 9.

C3: γ1:..:γn= Π(η|λ1):..:Π(η|λn)= Π(λ1|η)
Π(λ1) :..: Π(λn|η)

Π(λn) .

Pearl’s virtual evidence method guarantees that the uncer-
tainty bears only on the events λ1,..,λn and does not concern
the other events. Formally,

C4: ∀φ⊆Ω, Π(η|λi, φ)= Π(η|λi).
Pearl’s method of virtual evidence applies in a quite straight-
forward way for quantitative possibilistic networks. Indeed,
once the new inputs specified, they are integrated into the
network G encoding the current beliefs in the form of a new
node Z with a conditional possibility table designed in such
a way that conditioning on the node Z, the conditional dis-
tribution πG(.|z) provides the revised joint distribution.
Example 6. Let G be a possibilistic network over two bi-
nary variables A and B. The network G encodes the same
possibility distribution as the distribution π of Table 3.

B π(B)
b1 1
b2 0.4

����
B

A B π(A|B)
a1 b1 1
a2 b1 0.4
a1 b2 0.25
a2 b2 1����

A
@
@R

A B π(AB)
a1 b1 1
a2 b1 0.4
a1 b2 0.1
a2 b2 0.4

Figure 4: Example of a possibilistic network G and the joint
distribution π(AB) encoded by G.

Let us assume now that new information says that
γa1

:γa2
=.4:2.5. One solution satisfying this ratio is γa1

=.04
and γa2

=.25. Let us then add a new node Z to integrate γa1

and γa2
.

B π(B)
b1 1
b2 0.4

����
B A B π(A|B)

a1 b1 1
a2 b1 0.4
a1 b2 0.25
a2 b2 1����

A
@
@R

����
Z
�
�	Z A p(Z|A)

z a1 0.04
z a2 0.25

Figure 5: G’: The possibilistic network G of Figure 4 aug-
mented with the node Z.

The revised beliefs are given in Table 5.

One can easily check that the revised distribution of Ta-
ble 5 using Pearl’s method of virtual evidence is exactly
the same as the distribution π′ obtained using Jeffrey’s rule
given in Table 4. It is also easy to check that conditions C3
and C4 are satisfied.
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A B π(AB|z)
a1 b1 0.4
a2 b1 1
a1 b2 0.04
a2 b2 1

Table 5: The conditional possibility distribution πG′(.|z)
representing the revised distribution of the initial beliefs en-
coded by the network of Figure 4.

After addressing Pearl’s method of virtual evidence in the
quantitative possibilistic setting, let us see its generalization.

Virtual evidence method in the quantitative
possibilistic setting
Here, the virtual evidence method applies on any possibility
distribution exactly as Jeffrey’s rule. The revised beliefs are
computed according to the following definition.

Definition 2. Let the initial beliefs be encoded by π and the
new inputs be γ1,..,γn. The revised possibility degree Π′(φ)
of any event φ⊆Ω is computed as follows:

∀φ ⊆ Ω,Π′(φ) = Π(φ|η) =
maxni=1 γi ∗Π(φ, λi)

maxnj=1 γj ∗Π(λj)
. (10)

It is straightforward that revising the possibility degree of
individual events ωk∈Ω is done as follows:

∀ωk ∈ λi, π′(ωk) = π(ωk|η) =
γi ∗ π(ωk)

maxnj=1 γj ∗Π(λj)
. (11)

Example 7. Let the initial beliefs be encoded by the possi-
bility distribution π of Table 6. Let also the likelihood ratios
be γ1= Π′(a1)

Π(a1) =.4 and γ2= Π′(a2)
Π(a2) =2.5 as in the example of

Table 5. The revised distribution π′ is computed using Equa-
tion 10.

A B π(AB)
a1 b1 1
a2 b1 0.4
a1 b2 0.1
a2 b2 0.4

A B π(AB|η)
a1 b1 0.4
a2 b1 1
a1 b2 0.04
a2 b2 1

Table 6: Example of initial possibility distribution π and the
revised distribution π(.|η).

The distribution π′ computed using Equation 11 always ex-
ists and it is unique according the following proposition.

Proposition 1. Let π be the possibility distribution encoding
the initial beliefs. Let also γ1,..,γn be the likelihood ratios
corresponding to the new inputs regarding the exhaustive
and mutually exclusive set of events λ1,..,λn. Then the re-
vised possibility distribution π′ computed using the formula
of Equation 10 always exists and it is unique.

Proof. Let π be the possibility distribution encoding the ini-
tial beliefs and let γ1,..,γn be the likelihood ratios regarding
the events λ1,..,λn.

1. Let us first show that the revised possibility distribution
π′ computed using the formula of Equation 10 satisfies
the conditions (C3) and (C4). Let us start proving that
condition (C3) is satisfied.
Π(η|λ1) :..: Π(η|λn) = Π(η,λ1)

Π(λ1) :..: Π(η,λn)
Π(λn)

= Π(λ1|η)∗Π(η)
Π(λn) :..: Π(λn|η)∗Π(η)

Π(λn)

=
γ1∗Π(λ1)

maxj(γj∗Π(λj))
∗Π(η)

Π(λn) :..:
γn∗Π(λn)

maxj(γj∗Π(λj))
∗Π(η)

Π(λn)

= γ1∗ Π(η)
maxj(γj∗Π(λj))

:..:γn∗ Π(η)
maxj(γj∗Π(λj))

= γ1 :..: γn �

Let us now prove that condition (C4) is satisfied.
∀φ⊆Ω, Π(η|λi, φ)= Π(η,λi,φ)

Π(λi,φ)

= Π(λi,φ|η)∗Π(η)
Π(λi,φ) =

γi∗Π(λi,φ)

maxj(γj∗Π(λj))
∗Π(η)

Π(λi,φ)

= γi∗Π(η)
maxj(γj∗Π(λj))

=
γi∗

Π(λi,η)

Π(λi|η)

maxj(γj∗Π(λj))

=
γi∗

Π(λi,η)

γi∗Π(λi)
maxj(γj∗Π(λj))

maxj(γj∗Π(λj))

= Π(λi,η)
Π(λi)

= Π(η|λi) �

2. Now let us provide the proof that if a distribution π′ sat-
isfies the conditions (C3) and (C4) then π′ is computed
using Equation 10.
∀φ⊆Ω, Π′(φ)= Π(φ|η)= Π(φ,η)

Π(η)

= maxni=1(Π(φ,λi,η))
maxnj=1(Π(λj ,η))

= maxni=1(Π(η|φ,λi)∗Π(φ,λi))
maxnj=1(Π(η|λj)∗Π(λj))

= maxni=1(Π(η|λi)∗Π(φ,λi))
maxnj=1(Π(η|λj)∗Π(λj))

= maxni=1(γi∗Π(φ,λi))
maxnj=1(γj∗Π(λj))

�

In the following, we provide the transformations from Jef-
frey’s rule to the virtual evidence method and vice versa.

From Jeffrey’s rule to the virtual evidence method
in a quantitative possibilistic setting
The following transformations are the possibilistic counter-
parts of the corresponding ones proposed in the probabilistic
framework in (Chan and Darwiche 2005):

Proposition 2. Let π be a possibility distribution encoding
the initial beliefs and let also λ1,..,λn be an exhaustive and
mutually exclusive set of events and new information in the
form of (αi, λi) such that for i=1..n, Π′(λi)=αi. Let γ1,..,γn
be likelihood ratios such that

γ1 : .. : γn =
α1

Π(λ1)
: .. :

αn
Π(λn)

,
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then the revised possibility distribution π′J computed using
Jeffrey’s rule of Equation 9 and the revised possibility dis-
tribution π′P computed using the virtual evidence method of
Equation 10 are equivalent. Namely, ∀ω∈Ω, π′J(ω)=π′P (ω).

Proof sketch. The proof is direct. Just set in the virtual ev-
idence method of Equation 10 γi= αi

Π(λi)
for i=1..n, and the

obtained distribution π′P satisfies conditions C1 and C2 of
Jeffrey’s rule and since the revised distribution with Jeffrey’s
rule is unique then π′P equals π′J .

From the virtual evidence method to Jeffrey’s rule
in a quantitative possibilistic setting
We show now how to obtain the new beliefs α1,..,αn needed
in Jeffrey’s rule from the available set of likelihood ratios:

Proposition 3. Let π be a possibility distribution encoding
the initial beliefs. Let also λ1,..,λn be an exhaustive and mu-
tually exclusive set of events and new information in the form
of likelihood ratios γ1,..,γn. For i=1..n, let αi=γi∗Π(λi).
Then the revised possibility distribution π′J computed using
Jeffrey’s rule of Equation 9 and the revised possibility dis-
tribution π′P computed using the virtual evidence method of
Equation 10 are equivalent. Namely, ∀ω∈Ω, π′J(ω)=π′P (ω).

Proof sketch. The proof is similar to the proof of Proposi-
tion 2. Using Jeffrey’s rule of Equation 9 with the inputs
(λi, αi) for i=1..n such that αi=γi*Π(λi) and the obtained
distribution π′J satisfies conditions C3 and C4 of the virtual
evidence method and since the revised distribution is also
unique then π′J equals π′P .

Reasoning with uncertain inputs in the
qualitative possibilistic setting

Jeffrey’s rule in the qualitative possibilistic setting
In the qualitative setting, the revision according to Jeffrey’s
rule is performed as follows (Dubois and Prade 1997):

Definition 3. Let π be a possibility distribution and λ1,..,λn
be a set of exhaustive and mutually exclusive events. The re-
vised possibility degree of any arbitrary event φ⊆Ω is com-
puted using the following formula:

∀φ ⊆ Ω,Π′(φ) = max
λi

(min(Π(φ|λi), αi)). (12)

It is straightforward that for elementary events ωj , the re-
vised beliefs are computed according the following formula:

∀wj ∈ λi, π′(wj) =

{
αi if π(wj)≥αi or π(wj)=Π(λi);
π(wj) otherwise.

Contrary to the probabilistic and quantitative possibilistic
settings, there exist situations where the revision according
to Equation 12 does not guarantee the existence of a solu-
tion satisfying conditions C1 and C2 (Benferhat, Tabia, and
Sedki 2011).

Example 8. Assume that we have beliefs in the form of a
possibility distribution π(AB) over two binary variables A
and B (we have the same beliefs as in Table 3). In Table 7,

we have the joint distribution π(AB), the marginal distri-
butions π(A) and π(B)) and the conditional one π(B|A).

A B π(AB)
a1 b1 1
a2 b1 0.4
a1 b2 0.1
a2 b2 0.4

A π(A)
a1 1
a2 0.4
B π(B)
b1 1
b2 0.4

A B π(B|A)
a1 b1 1
a2 b1 1
a1 b2 0.1
a2 b2 1

Table 7: Example of initial possibility distribution π and the
underlying marginal and conditional distributions.

Assume now that we want to revise π of Table 7 into π′
such π′(a1)=.4 and π′(a2)=1. The revised distribution using
the qualitative counterpart of Jeffrey’s rule of Equation 12
is given by π′ Table 8.

A B π′(AB)
a1 b1 0.4
a2 b1 1
a1 b2 0.1
a2 b2 1

A π′(A)
a1 0.4
a2 1
B π′(B)
b1 1
b2 1

A B π′(B|A)
a1 b1 1
a2 b1 1
a1 b2 0.1
a2 b2 1

Table 8: Revised beliefs of the initial distribution given in
Table 7 using Jeffrey’s rule of Equation 12.

According to the results of Table 7 and 8, it is clear that
in this example conditions C1 and C2 are fulfilled.

Pearl’s method of virtual evidence in the
qualitative possibilistic setting
As in the quantitative setting, the inputs are specified in the
same way. Namely, the uncertainty bears on an exhaustive
and mutually exclusive set of events λ1,..,λn and the new in-
formation is specified as likelihood ratios γ1:..:γn according
to condition C3. As shown in the following example, unlike
the probabilistic and quantitative possibilistic settings, it is
not enough for the parameters γ1,..,γn to satisfy condition
C3 to be directly integrated into the conditional possibility
table of the new node Z.

Example 9. Let G be the possibilistic network of Figure 6
and the corresponding joint distribution πG.

B π(B)
b1 1
b2 0.4

����
B

A B π(A|B)
a1 b1 1
a2 b1 0.4
a1 b2 0.1
a2 b2 1����

A
@
@R

A B πG(AB)
a1 b1 1
a2 b1 0.4
a1 b2 0.1
a2 b2 0.4

Figure 6: Example of a possibilistic network G and the joint
distribution πG(AB) encoded byG in the qualitative setting.

Let us assume now that we want to revise the distribution
πG encoded by the network G of Figure 6 into a new dis-
tribution π′G such that γa1

=1 and γa2
=2 meaning that the

initial belief degree of a1 is not changed while the degree
of a2 is to be doubled. The augmented network G′ encoding
the new inputs is shown in Figure 7.

The revised beliefs are given in Table 9.
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B π(B)
b1 1
b2 0.4

����
B A B π(A|B)

a1 b1 1
a2 b1 0.4
a1 b2 0.1
a2 b2 1����

A
@
@R

����
Z
�
�	Z A p(Z|A)

z a1 1
z a2 2

Figure 7: The possibilistic networkG′ obtained by augment-
ing G of Figure 6 with the node Z.

A B πG′(AB|z)
a1 b1 1
a2 b1 .4
a1 b2 .1
a2 b2 .4

Table 9: The conditional distribution πG′(.|z) representing
the revised distribution of the initial beliefs of Figure 6.

One can notice from the results of Table 9 that condition
C3 is not satisfied since ΠG′ (a2|z)

ΠG(a2) = .4
.4 6=γa2=2.

Hence, instead of using only the inputs γ1,..,γn, the con-
ditional possibility table of the new node Z must be set for
each uncertain event λi directly to Π′(λi)=γi*Π(λi) as in
Jeffrey’s rule. This is imposed by the min-based operator
and the definition of conditioning in the qualitative possi-
bilistic setting (see Equations 3 and 4). Clearly, if a param-
eter πG′(z|ai)>1 then it is not taken into account (note that
in the probabilistic and quantitative possibilistic settings, the
values of γi are not necessarily in the interval [0, 1] and they
are always taken into account thanks to the definition of con-
ditioning in these settings). Now, even when replacing γi by
γi*Π(λi) for i=1..n, it is impossible with Pearl’s method of
virtual evidence to increase the plausibility of an event as
stated in the following proposition.
Proposition 4. Let G be a min-based network and let πG
be the possibility distribution encoded byG. Let also γ1,..,γn
be the likelihood ratios corresponding to the new inputs re-
garding the exhaustive and mutually exclusive set of events
a1,.., an. LetG′ be the augmented possibilistic network with
the virtual node Z to encode γ1,.., γn such that for i=1..n,
πG′(Z=z|ai)=ΠG(ai)*γi. Then we have two cases:
• If ∀i=1..n, γi≤1, then conditions C3 and C4 are satisfied.
• Otherwise if ∃γi>1 then the revised possibility degree

ΠG′(ai|z)=ΠG(ai) implying that C3 is not satisfied while
C4 is always satisfied.

Proposition 4 states that associating with an uncertain event
ai a possibility degree of ΠG(ai)*γi in the augmented net-
work G′, the posterior possibility degree ΠG′(ai|z) equals
ΠG(ai) (unless ΠG′(ai|z) is the greatest one in the context
of z in which case Π(ai|z)=1 because of normalization). As
a consequence of Proposition 4, it is impossible to augment
the possibility degree of an event ai unless Π(ai)≥Π(aj) for
any j 6=i meaning that condition C3 is not satisfied. Indeed,

because of the idempotency of the min-based operator used
in the min-based chain rule of Equation 4 and the definition
of the min-based conditioning of Equation 3, applying di-
rectly Pearl’s method of virtual evidence does not guarantee
that condition C3 will be satisfied. However, condition C4 is
always satisfied as it is implied by a graphical property.

Proof sketch. The proof follows from the min-based chain
rule and the augmented network G′. Indeed,
Π′
G(ai|z)=Π(ai, z)=maxA1..ai..An(Π(A1..ai..An, z))

= maxA1..ai..An(min(π(A1|U1), .., π(ai|Ui), .., π(An|Un), π(z|ai))
≤ π(z|ai)=γi*ΠG(ai) �
However, one can show that due to the encoding of the
inputs by means of augmenting the network, for every
event φ, ∀ai∈Di, Π(z|ai, φ)=Π(z|ai) (due to d-separation)
meaning that condition C4 is always satisfied since it is a
graphical property of the augmented network G′.

Virtual evidence method in the qualitative
possibilistic setting
The min-based counterpart of the quantitative possibilistic
virtual evidence method of Definition 2 is defined as follows:

Definition 4. Let the initial beliefs be encoded by π and the
new inputs be γ1,..,γn specified as likelihood ratios γ1:..:γn
such that γi=Π(η|λi)= Π(λi|η)

Π(λi)
. The revised possibility de-

gree Π′(φ) of any event φ⊆ω is computed as follows:

∀φ ⊆ Ω,Π(φ|η) =
n

max
i=1

(min(Π(φ|λi), γi ∗Π(λi)) (13)

For single interpretations ωk∈Ω, the revised degrees are
computed as follows:

∀ωk ∈ λi, π′(ωk) = min(Π(ωk|λi), γi ∗Π(λi)) (14)

Example 10. Let us reuse the beliefs given Table 7 as initial
beliefs. Assume now that we want to revise π of Table 7 into
π′ such γa1=π′(a1)

π(a1) =.75 and γa2=π′(a2)
π(a2) =2.5. The revised

distribution using the qualitative counterpart of the virtual
evidence method of Equation 13 is given by π′ Table 10.

A B π′(AB)
a1 b1 0.75
a2 b1 1
a1 b2 0.1
a2 b2 1

A π′(A)
a1 0.75
a2 1

γa1 .75
γa2 2.5

Table 10: Revised beliefs of the initial distribution given in
Table 7 using the virtual evidence method of Equation 13.

From the results of Table 7 and 10, one can easily check
that the conditions C3 and C4 are satisfied.

The distribution π′ computed using Equation 13 always sat-
isfy conditions C3 and C4 as stated in Proposition 5.

Proposition 5. Let π be the possibility distribution encoding
the initial beliefs. Let also γ1,..,γn be the likelihood ratios
corresponding to the new inputs regarding the exhaustive
and mutually exclusive set of events λ1,..,λn. Then the re-
vised possibility distribution π′ computed using the formula
of Equation 13 always satisfy conditions C3 and C4.
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Proof sketch. Let π be the possibility distribution encoding
the initial beliefs and let γ1,..,γn be the likelihood ratios cor-
responding to the new inputs regarding the set of exhaustive
and mutually exclusive set of events λ1,..,λn such that for
i=1..n, γi=

Π′(λi)
Π(λi)

. Let us first show that the revised possibil-
ity distribution π′ computed using the formula of Equation
13 satisfies condition (C3).
Π(η|λ1) :..: Π(η|λn) = Π(λ1, η) :..: Π(λn|η)

=min(Π(λ1|η),Π(η)):..: min(Π(λn|η),Π(η))

=min(maxi(Π(λ1|λi), γi ∗Π(λi))):..:min(maxi(Π(λn|λi), γi ∗Π(λi)))

=min(Π(λ1|λ1), γ1 ∗ Π(λ1)):..:min(Π(λn|λn), γn ∗ Π(λn))

=γ1 ∗ Π(λ1):..:γn ∗ Π(λn). �

The proof that π′ satisfies condition C4 is similar to the proof
of Proposition 1. Let us now provide the proof that if a dis-
tribution π′ satisfies the conditions (C3) and (C4) then π′ is
computed using Equation 13.
∀φ⊆Ω, Π′(φ)= Π(φ|η)=maxλi(Π(φ|η, λi))

= maxλi(min(Π(φ|λi),Π(λi|η))
= maxλi(min(Π(φ|λi), γi ∗Π(λi)) �

Relating the virtual evidence method with Jeffrey’s
rule in the qualitative possibilistic setting
As in the quantitative setting, it is straightforward to move
from Jeffrey’s rule to the virtual evidence method and vice
versa (because of space limitation, we provide only basic
results, the propositions and their proofs are similar to the
corresponding transformations in the quantitative setting).

1. From the virtual evidence method to Jeffrey’s rule: Just set
the inputs αi=γi*Π(λi) for i=1..n and use Jeffrey’s rule
of Equation 12 will give exactly the same revised distri-
bution π′ as the distribution π(.|η) obtained by the min-
based possibilistic counterpart of the virtual evidence
method of Equation 13.

2. From Jeffrey’s rule to the virtual evidence method : Here,
it is enough to set the inputs γi=αi/Π(λi) for i=1..n then
use the virtual evidence method of Equation 13 to obtain
π(.|η) which is equivalent to π′ obtained using Jeffrey’s
rule of Equation 12.

Discussions and concluding remarks
In order to revise the beliefs encoded by means of a pos-
sibility distribution one can either use Jeffrey’s rule or the
virtual evidence method which are shown equivalent in both
the quantitative and qualitative settings. However, revising
a whole distribution is very costly while Pearl’s method of
virtual evidence allows to integrate the inputs and compute
any possibility degree of interest directly from the network
without revising the whole distribution. Moreover, the exist-
ing inference algorithms in graphical models (e.g. Junction
tree) can be used directly to compute the revised beliefs.
This paper addressed reasoning with uncertain inputs in pos-
sibilistic networks. We provided possibilistic counterparts
for Pearl’s methods and compared them with the well-known
Jeffrey’s rule of conditioning. In Jeffrey’s rule, the inputs
(αi, λi) are seen as constraints that should be satisfied lead-
ing to fully accepting the new beliefs. The way Jeffrey’s

method revises the old distribution π in order to fully ac-
cept the inputs (αi, λi) complies with the probability kine-
matics principle (see condition C2) aiming to minimize be-
lief change. In spite of the fact that Pearl’s methods specify
the inputs differently, the way the new inputs are graphi-
cally taken into account (see condition C4) complies with
the probability kinematics principle hence minimizing also
belief change. Regarding accepting the inputs, it is clear that
even specified differently, the inputs to both methods are
fully accepted (see conditions C1 and C3).
Regarding iterative revisions, it is well-known that Jeffrey’s
rule is no commutative (since the new inputs are fully ac-
cepted, then revising first with (λi, αi) then with (λi, α′i)
will be different from first revising with (λi, α′i) then with
(λi, αi)). However in the virtual evidence method, due to
the commutativity of multiplication and the definition of the
quantitative counterpart of this revision rule, it is easy to
show that revising with a set of likelihood ratios γ1,..,γn then
revising the resulted beliefs with other new inputs γ′1,..,γ′n
will give exactly the same results as revising first with
γ′1,..,γ′n followed by revision with γ1,..,γn. Revision using
the qualitative virtual evidence method is not commutative
because the inputs are no more likelihood ratios γ1,..,γn but
the new beliefs which are fully accepted as in Jeffrey’s rule.
To sum up, the contributions of the paper are:

1. Providing counterparts to Pearl’s method of virtual evi-
dence and its generalization in the quantitative and qual-
itative settings. We showed that contrary to the proba-
bilistic and quantitative possibilistic settings, the inputs
for the qualitative counterparts of Pearl’s methods should
be possibility degrees satisfying condition C3. This is due
to the fact that in possibilistic networks, we deal with lo-
cal tables combined with the min-based operator which
is idempotent and because of the definition of the quali-
tative conditioning. We showed also that it is impossible
to enhance the possibility degree of an event using Pearl’s
method of virtual evidence in qualitative networks.

2. Analyzing the existence and uniqueness of the solutions
using the proposed possibilistic counterparts of Pearl’s
methods. In the quantitative setting, the paper showed that
the solution always exists and it is unique. In the min-
based setting however, depending on the inputs, the so-
lution is not guaranteed to satisfy conditions C3 using
Pearl’s method of virtual evidence while using the vir-
tual evidence method the solution always exists and it is
unique and satisfies conditions C3 and C4.

3. Providing transformations from Jeffrey’s rule to the vir-
tual evidence method and comparisons of these methods
in both the quantitative and qualitative settings. We pro-
vided precise conditions where the methods are equiva-
lent. Finally, we tried to relate the criteria underlying Jef-
frey’s rule and Pearl’s methods and highlighted many re-
lated issues like iterated revisions in these formalisms.
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