
The Semantics of Gringo
and Infinitary Propositional Formulas

Amelia Harrison and Vladimir Lifschitz and Fangkai Yang
University of Texas, Austin, Texas, USA
{ameliaj, vl, fkyang}@cs.utexas.edu

Abstract

Input languages of answer set solvers are based on the mathe-
matically simple concept of a stable model. But many useful
constructs available in these languages, including local vari-
ables, conditional literals, and aggregates, cannot be easily
explained in terms of stable models in the sense of the origi-
nal definition of this concept and its straightforward general-
izations. Manuals written by designers of answer set solvers
usually explain such constructs using examples and informal
comments that appeal to the user’s intuition, without refer-
ences to any precise semantics. We propose to approach the
problem of defining the semantics of GRINGO programs by
translating them into the language of infinitary propositional
formulas. This semantics allows us to study equivalent trans-
formations of GRINGO programs using natural deduction in
infinitary propositional logic, so that the properties of these
programs can be more precisely characterized. In this way,
we aim to create a foundation on which important issues
such as the correctness of GRINGO programs and optimiza-
tion methods may be more formally studied.

1 Introduction
In this note, Gringo is the name of the input language of
the grounder GRINGO,1 which is used as the front end in
many answer set programming (ASP) systems. Several re-
leases of GRINGO have been made public, and more may
be coming in the future; accordingly, we can distinguish be-
tween several “dialects” of the language Gringo. We con-
centrate here on Version 4, released in March of 2013. (It
differs from Version 3, described in the User’s Guide dated
October 4, 2010,2 in several ways, including the approach
to aggregates—it is modified as proposed by the ASP Stan-
dardization Working Group.3)

The basis of Gringo is the language of logic programs
with negation as failure, with the syntax and semantics de-

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1http://potassco.sourceforge.net/.
2The User’s Guide can be downloaded from the Potassco web-

site (Footnote 1). It is posted also at http://www.cs.
utexas.edu/users/vl/teaching/lbai/
clingo guide.pdf.

3https://www.mat.unical.it/aspcomp2013/
ASPStandardization.

fined in (Gelfond and Lifschitz 1988). Our goal here is to ex-
tend that semantics to a larger subset of Gringo. Specifically,
we would like to cover arithmetical functions and compar-
isons, conditions, and aggregates.4

Our proposal is based on the informal and sometimes in-
complete description of the language in the User’s Guide, on
the discussion of ASP programming constructs in (Gebser et
al. 2012), on experiments with GRINGO, and on the clarifica-
tions provided in response to our questions by its designers.

The proposed semantics uses a translation from Gringo
into the language of infinitary propositional formulas—
propositional formulas with infinitely long conjunctions and
disjunctions. Including infinitary formulas is essential, as
we will see, when conditions or aggregates use variables
ranging over infinite sets (for instance, over integers).

Alternatively, the semantics of Gringo programs can be
approached using quantified equilibrium logic (Pearce and
Valverde 2004) or its syntactic counterpart defined in (Fer-
raris, Lee, and Lifschitz 2011). This method involves trans-
lating rules into the language of first-order logic. For in-
stance, the rule

p(Y)← count{X,Y : q(X,Y)} ≥ 1 (1)

can be represented by the sentence

∀y(∃xQ(x, y)→ P (y)).

However, this approach is not very general. For instance, it
is not clear how to represent the rule

total hours(N)
← sum{H,C : enroll(C), hours(H,C)} = N

(2)

from Section 3.1.10 of the Gringo 3 User’s Guide with a
first-order formula. One reason is that the aggregate sum is
used here instead of count. The second difficulty is that the
variable N is used in it rather than a constant.

4The subset of Gringo discussed in this note includes also con-
straints, disjunctive rules, and choice rules, treated along the lines
of (Gelfond and Lifschitz 1991) and (Ferraris and Lifschitz 2005).
The first of these papers introduces also “classical” (or “strong”)
negation—a useful feature that we do not include. Extending our
semantics of Gringo to programs with classical negation is straight-
forward, using the process of eliminating classical negation in fa-
vor of additional atoms described in (Gelfond and Lifschitz 1991,
Section 4).

32

Proceedings of the Fourteenth International Conference on Principles of Knowledge Representation and Reasoning

General aggregate expressions allowed in Gringo can be
represented by first-order formulas with generalized quanti-
fiers. Stable models of formulas with generalized quantifiers
are defined by Lee and Meng (2012a, 2012b, 2012c). The
advantage of infinitary propositional formulas as the target
language is that we have more mathematical results regard-
ing the properties of these formulas. We may be able to
prove, for instance, that two Gringo programs have the same
stable models by observing that the corresponding infini-
tary formulas are equivalent in one of the natural deduction
systems discussed in (Harrison, Lifschitz, and Truszczynski
2014). We give here several examples of reasoning about
Gringo programs based on this idea.

The process of converting Gringo programs into infinitary
propositional formulas defined in this note uses substitutions
to eliminate variables. This form of grounding is quite dif-
ferent, of course, from the process of intelligent instantia-
tion implemented in GRINGO and other grounders. Math-
ematically, it is much simpler than intelligent instantiation;
as a computational procedure, it is much less efficient, not
to mention the fact that sometimes it produces infinite ob-
jects. Like grounding in the original definition of a stable
model (Gelfond and Lifschitz 1988), it is modular, in the
sense that it applies to the program rule by rule, and it is
applicable even if the program is not safe. From this per-
spective, GRINGO’s safety requirement is an implementation
restriction.

Our description of the syntax of Gringo disregards some
of the features related to representing programs as strings
of ASCII characters, such as using :- to separate the head
from the body, using semicolons, rather than parentheses,
to indicate the boundaries of a conditional literal, and rep-
resenting falsity (which we denote here by ⊥) as #false.
Since the subset of Gringo discussed in this note does not
include assignments, we can disregard also the requirement
that equality be represented by two characters ==.

The syntax and semantics of the fragment of Gringo stud-
ied in this note are defined in Sections 2 and 3. In Sec-
tions 4 and 5 we give examples of reasoning about stable
models of Gringo programs on the basis of the proposed se-
mantics. The semantics of aggregate expressions, based on
(Ferraris 2005), is rather complicated, and in Section 6 we
show how it can be simplified in the case of monotone and
anti-monotone aggregate expressions. Definitions and theo-
rems regarding stable models of infinitary formulas used in
this paper are reproduced in Section 3.1 and in the appendix.

A preliminary report on this project was presented at the
2013 Workshop on Answer Set Programming and Other
Computing Paradigms.

2 Syntax
We begin with a signature σ in the sense of first-order logic
that includes, among others,

• numerals—object constants representing all integers,

• arithmetical functions—binary function constants +, −,
×,

• comparisons—binary predicate constants <, >, ≤, ≥.

We will identify numerals with the corresponding elements
of the set Z of integers. Object, function, and predicate sym-
bols which do not fall into any of the categories listed above
will be called symbolic. A term over σ is arithmetical if it
does not contain symbolic object or function constants. A
ground term is precomputed if it does not contain arithmeti-
cal functions.

We assume that in addition to the signature, a set of sym-
bols called aggregate names is specified, and that for each
aggregate name α, the symbol α̂ represents the function de-
noted by α. This function maps every tuple of precomputed
terms to an element of Z ∪ {∞,−∞}.
Examples The functions denoted by the aggregate names
count, max, and sum are defined as follows. For any set T
of tuples of precomputed terms,

• ĉount(T) is the cardinality of T if T is finite, and∞ oth-
erwise;

• m̂ax(T) is the least upper bound of the set of the inte-
gers t1 over all tuples (t1, . . . , tm) from T in which t1 is
an integer;

• ŝum(T) is the sum of the integers t1 over all tuples
(t1, . . . , tm) from T in which t1 is a positive integer; it
is∞ if there are infinitely many such tuples.5

A literal is an expression of one of the forms

p(t1, . . . , tk), t1 = t2, t1 6= t2, not p(t1, . . . , tk)

where p is a symbolic predicate constant of arity k, and
each ti is a term over σ, or of the form

t1 ≺ t2
where ≺ is a comparison, and t1, t2 are arithmetical terms.
A conditional literal is an expression of the form H : L,
where H is a literal or the symbol ⊥, and L is a list of liter-
als, possibly empty. The members of L will be called condi-
tions. If L is empty then we will drop the colon after H , so
that every literal can be viewed as a conditional literal.

Example If available and person are unary predicate sym-
bols then

available(X) : person(X)

and
⊥ : (person(X), not available(X))

are conditional literals.

An aggregate expression is an expression of the form

α{t1 : L1; . . . ; tn : Ln} ≺ s (3)

(n > 0), where
• α is an aggregate name,
• each ti is a non-empty list of terms,
• each Li is a non-empty list of literals,

5To allow negative numbers in this example, we would have to
define summation for a set that contains both infinitely many pos-
itive numbers and infinitely many negative numbers. It is unclear
how to do this in a natural way.

33

• ≺ is a comparison or one of the symbols =, 6=,
• s is an arithmetical term.

Example If enroll is a unary predicate symbol and hours is
a binary predicate symbol then

sum{H,C : enroll(C), hours(H,C)} = N

is an aggregate expression.

A rule is an expression of the form

H1 | · · · |Hm ← B1, . . . , Bn (4)

(m,n ≥ 0), where each Hi is a conditional literal, and
each Bj is a conditional literal or an aggregate expression.
A program is a finite set of rules.

If p is a symbolic predicate constant of arity k, and t is a
k-tuple of terms, then

{p(t)} ← B1, . . . , Bn

is shorthand for

p(t) | not p(t)← B1, . . . , Bn.

Example For any positive integer n,

{p(i)} ← (i = 1, . . . , n),
← p(X), p(Y), p(X+Y)

(5)

is a program.

3 Semantics
We will define the semantics of Gringo using a syntac-
tic transformation τ . It converts Gringo rules into infini-
tary propositional combinations of atoms of the form p(t),
where p is a symbolic predicate constant, and t is a tuple of
precomputed terms. Then the stable models of a program
will be defined as stable models, in the sense of (Truszczyn-
ski 2012), of the set consisting of the translations of all rules
of the program. Truszczynski’s definition of stable models
for infinitary propositional formulas is reviewed below.

Prior to defining the translation τ for rules, we will de-
fine it for ground literals, conditional literals, and aggregate
expressions.

3.1 Review: Stable Models of Infinitary Formulas
Let σ be a propositional signature, that is, a set of proposi-
tional atoms. The sets Fσ0 , Fσ1 , . . . are defined as follows:
• Fσ0 = σ,
• Fσi+1 is obtained from Fσi by adding expressionsH∧ and
H∨ for all subsets H of Fσi , and expressions F → G for
all F,G ∈ Fσi .

The elements of
⋃∞
i=0 Fσi are called (infinitary) formulas

over σ.
A setH of formulas is bounded if it is contained in one of

the sets Fσi . For a bounded set H of formulas, H∧ and H∨
are infinitary formulas.

The symbols> and⊥will be understood as abbreviations
for ∅∧ and ∅∨ respectively; ¬F stands for F → ⊥, and
F ↔ G stands for (F → G) ∧ (G→ F).

We will write {F,G}∧ as F ∧G, and {F,G}∨ as F ∨G.
This convention allows us to view finite propositional for-
mulas over σ as a special case of infinitary formulas. For
any bounded family {Fα}α∈A of formulas, we denote the
formula {Fα : α ∈ A}∧ by

∧
α∈A Fα, and similarly for dis-

junctions.
Subsets of a signature σ will be also called its interpre-

tations. The satisfaction relation between an interpretation
and a formula is defined in a natural way.

The reduct F I of a formula F w.r.t. an interpretation I is
defined as follows:

• For p ∈ σ, pI = ⊥ if I 6|= p; otherwise pI = p.

• (H∧)I = {GI | G ∈ H}∧.

• (H∨)I = {GI | G ∈ H}∨.

• (G → H)I = ⊥ if I 6|= G → H; otherwise
(G→ H)I = GI → HI .

An interpretation I is a stable model of a set H of formulas
if it is minimal w.r.t. set inclusion among the interpretations
satisfying the reducts of all formulas fromH.

3.2 Semantics of Well-Formed Ground Literals
A term t is well-formed if it contains neither symbolic ob-
ject constants nor symbolic function constants in the scope
of arithmetical functions. For instance, all arithmetical terms
and all precomputed terms are well-formed; c+2 is not well-
formed. The definition of “well-formed” for literals, aggre-
gate expressions, and so forth is the same.

For every well-formed ground term t, by [t] we denote the
precomputed term obtained from t by evaluating all arith-
metical functions, and similarly for tuples of terms. For in-
stance, [f(2+2)] is f(4).

The translation τL of a well-formed ground literal L is
defined as follows:

• τ(p(t)) is p([t]);

• τ(t1 ≺ t2), where ≺ is =, 6=, or a comparison is > if the
relation ≺ holds between [t1] and [t2], and ⊥ otherwise;

• τ(not A) is ¬τA.

For instance, τ(not p(f(2 + 2))) is ¬p(f(4)), and
τ(2+2= 4) is >.

Furthermore, τ⊥ stands for ⊥, and, for any list L of
ground literals, τL is the conjunction of the formulas τL
for all members L of L.

3.3 Global Variables
About a variable we say that it is global

• in a conditional literal H : L, if it occurs in H but does
not occur in L;

• in an aggregate expression (3), if it occurs in the term s;

• in a rule (4), if it is global in at least one of the expres-
sions Hi, Bj .

For instance, the head of the rule (2) is a literal with the
global variable N , and its body is an aggregate expression
with the global variable N . Consequently N is global in the
rule as well.

34

A conditional literal, an aggregate expression, or a rule is
closed if it has no global variables. An instance of a rule R
is any well-formed closed rule that can be obtained from R
by substituting precomputed terms for global variables. For
instance,

total hours(6)←
sum{H,C : enroll(C), hours(H,C)} = 6

is an instance of rule (2). It is clear that if a rule is not well-
formed then it has no instances.

3.4 Semantics of Closed Conditional Literals
If t is a term, x is a tuple of distinct variables, and r is a
tuple of terms of the same length as x, then the term obtained
from t by substituting r for x will be denoted by txr . Similar
notation will be used for the result of substituting r for x
in expressions of other kinds, such as literals and lists of
literals.

The result of applying τ to a closed conditional literal
H : L is the conjunction of the formulas

τ(Lx
r)→ τ(Hx

r)

where x is the list of variables occurring in H : L, over all
tuples r of precomputed terms of the same length as x such
that both Lx

r and Hx
r are well-formed. For instance,

τ(available(X) : person(X))

is the conjunction of the formulas

person(r)→ available(r)

over all precomputed terms r;

τ(⊥ : p(2×X))

is the conjunction of the formulas ¬p(2× i) over all numer-
als i.

When a conditional literal occurs in the head of a rule, it
is translated in a different way.6 By τh(H : L) we denote
the disjunction of the formulas

(τ(Lx
r)→ τ(Hx

r)) ∧ ¬¬(Lx
r)

where x and r are as above. For instance,

τh(available(X) : person(X))

is the disjunction of the formulas

(person(r)→ available(r)) ∧ ¬¬person(r)

over all precomputed terms r.

3.5 Semantics of Closed Aggregate Expressions
In this section, the semantics of ground aggregates proposed
in (Ferraris 2005, Section 4.1) is adapted to closed aggregate
expressions. Let E be a closed aggregate expression (3),
and let xi be the list of variables occurring in ti : Li
(1 ≤ i ≤ n). By Ai we denote the set of tuples r of pre-
computed terms of the same length as xi such that both

6Torsten Schaub, Martin Gebser, and Roland Kaminski, per-
sonal communication, October 2013.

(ti)
xi
r and (Li)

xi
r are well-formed. By A we denote the set

{(i, r) : i ∈ {1, . . . , n}, r ∈ Ai}.
About a subset ∆ of A we say that it justifies E if the

relation ≺ holds between α̂({[(ti)xi
r] : (i, r) ∈ ∆}) and [s].

We define τE as the conjunction of the implications∧
(i,r)∈∆

τ((Li)
xi
r) →

∨
(i,r)∈A\∆

τ((Li)
xi
r) (6)

over all sets ∆ that do not justify E.

Example Consider the aggregate expression

count{X : p(X); N : q(2×N)} > 0. (7)

In this case, A1 is the set of all precomputed terms, and A2

is the set of all numerals. Therefore, A is the set of all pairs
whose first member is either 1 or 2 and whose second mem-
ber is a precomputed term when the first member is 1 and
is a numeral when the first member is 2. A subset ∆ of A
justifies (7) iff

ĉount
({
XX

r : (1, r) ∈ ∆
}
∪
{
NN

r : (2, r) ∈ ∆
})

> 0.

Since

{XX
r : (1, r) ∈ ∆} = {r : (1, r) ∈ ∆}

and
{NN

r : (2, r) ∈ ∆} = {r : (2, r) ∈ ∆}
we conclude that the set ∆ justifies (7) iff

ĉount(∆) > 0,

that is, iff the set ∆ is non-empty. Since the only ∆ ⊆ A
that does not justify (7) is ∅, the result of applying τ to (7)
has only one conjunctive term of the form (6). Its antecedent
is the trivial empty conjunction; its consequent is∨

x∈A1

p(x) ∨
∨
n∈A2

q(2n).

If E is an aggregate expression of the form

α{t1 : L1; . . . ; tn : Ln} = s,

E≤ is
α{t1 : L1; . . . ; tn : Ln} ≤ s,

and E≥ is
α{t1 : L1; . . . ; tn : Ln} ≥ s,

then τ(E) has the same conjunctive terms as

τ(E≤) ∧ τ(E≥).

In this sense, E has the same meaning of the conjunction of
E≤ and E≥.

In the special case whenE has the form α{t : L} ≺ s, the
definition of τE can be stated as follows. Let x be the list of
variables occurring in t : L, and let A be the set of tuples r
of precomputed terms of the same length as x such that both
txr and Lx

r are well-formed. A subset ∆ of A justifies E if
the relation ≺ holds between α̂({[txr] : r ∈ ∆}) and [s]. We
define τE as the conjunction of the implications∧

r∈∆

τ(Lx
r)→

∨
r∈A\∆

τ(Lx
r)

35

over all subsets ∆ of A that do not justify E.

Examples Consider the aggregate expression

sum{H,C : enroll(C), hours(H,C)} = 6. (8)

In this case,A is the set of pairs (h, c) of precomputed terms.
The subset {(3, cs101), (3, cs102)} of A justifies (8), be-
cause

ŝum
({

(H,C)H,C3,cs101, (H,C)H,C3,cs102

})
=

ŝum({(3, cs101), (3, cs102)}) = 3 + 3 = 6.

More generally, a set of pairs of precomputed terms justi-
fies (8) whenever it contains finitely many pairs (h, c) in
which h is a positive integer, and the sum of the integers h
over all these pairs is 6. The conjunctive terms of τE are the
formulas ∧

(h,c)∈∆

(enroll(c) ∧ hours(h, c))→∨
(h,c)6∈∆

(enroll(c) ∧ hours(h, c)).
(9)

The conjunctive term corresponding to {(3, cs101)} as ∆
says: if I am enrolled in CS101 for 3 hours then I am en-
rolled in at least one other course. In Section 6.1 we will see
how the result of applying τ to (8) can be simplified.

As a final example illustrating the semantics of aggregate
expressions, consider a pair of closed aggregate expressions
of the form

sum{1, X : L} ≺ s and count{X : L} ≺ s, (10)

where the tuple L of literals contains no variables other
than X . Intuitively, these expressions have the same mean-
ing; accordingly, the translation τ transforms them to identi-
cal formulas. Note first that the result of applying τ to each
of them is the conjunction of implications of the form∧

r∈∆

τ(LXr)→
∨

r∈A\∆

τ(LXr).

To check that both conjunctions extend over the same set ∆
of precomputed terms, observe that

ŝum({(1, X)Xr : r ∈ ∆}) = ŝum({(1, r) : r ∈ ∆})

and

ĉount({XX
r : r ∈ ∆}) = ĉount({r : r ∈ ∆})

= ĉount(∆),

so that both expressions evaluate to the cardinality of ∆.

3.6 Semantics of Rules and Programs
For any rule R, τR stands for the conjunction of the formu-
las

τB1 ∧ · · · ∧ τBn → τhH1 ∨ · · · ∨ τhHm

for all instances (4) of R. A stable model of a program Π is
a stable model, in the sense of (Truszczynski 2012), of the
set consisting of the formulas τR for all rules R of Π.

Example Consider the rules of program (5). If R is the
rule {p(i)} then τR is

p(i) ∨ ¬p(i) (11)

(i = 1, . . . , n). If R is the rule

← p(X), p(Y), p(X+Y)

then the instances of R are rules of the form

← p(i), p(j), p(i+j)

for all numerals i, j. (Substituting precomputed ground
terms other than numerals would produce a rule that is not
well-formed.) Consequently τR is in this case the infinite
conjunction ∧

i,j,k∈Z
i+j=k

¬(p(i) ∧ p(j) ∧ p(k)). (12)

The stable models of program (5) are the stable models of
formulas (11), (12), that is, sets of the form {p(i) : i ∈ S}
for all sum-free subsets S of {1, . . . , n}.

4 Reasoning about Gringo Programs
As an example, we will show how we can reason about the
stable models of the program Π consisting of rule (2) and
an arbitrary finite set S of atoms of the forms hours(h, c)
and enroll(c), where h is a positive integer and c is an object
constant.

Let h∗ be the sum of the numbers h over all pairs (h, c)
such that both hours(h, c) and enroll(c) are in S. As could
be expected, the set

S ∪ {total hours(h∗)} (13)

is the only stable model of Π.
To justify this claim, consider the result of applying τ

to Π. This set of formulas consists of the atoms S and the
implications

τ(sum{H,C : enroll(C), hours(H,C)} = i)
→ total hours(i) (14)

for all numerals i. The conjunction of the formulas in τΠ is
a supertight infinitary program (see Appendix A.1). Conse-
quently, it is sufficient to show that (13) is the only supported
model of τΠ, which can be derived from the following fact:

Lemma Let I be an interpretation such that S is the set
of all atoms of the forms hours(h,c) and enroll(c) that are
satisfied by I. For any numeral i, I satisfies the antecedent
of (14) if and only if i = h∗.

5 Equivalent Transformations of Gringo
Programs

In this section we give examples of reasoning about Gringo
programs on the basis of the semantics defined above. These
examples use the theorem from (Harrison, Lifschitz, and
Truszczynski 2014) reproduced in the appendix.

36

5.1 Simplifying a Rule from Example 3.7 of
User’s Guide

Consider the rule7

weekdays← day(X) : (day(X), not weekend(X)). (15)

Replacing this rule with the fact weekdays within any pro-
gram will not affect the set of stable models. Indeed, the
result of applying translation τ to (15) is the formula∧
r

(day(r)∧¬weekend(r)→ day(r)) → weekdays, (16)

where the conjunction extends over all precomputed terms r.
The formula

day(r) ∧ ¬weekend(r)→ day(r)

is intuitionistically provable. By the theorem from Sec-
tion A.2, it follows that replacing (16) with the atom
weekdays within any set of formulas does not affect the set
of stable models.

5.2 Simplifying the Sorting Rule
The rule

order(X,Y)← p(X), p(Y), X < Y,
not p(Z) : (p(Z), X < Z,Z < Y)

(17)

can be used for sorting.8 It can be replaced by either of
the following two shorter rules within any program without
changing that program’s stable models.

order(X,Y)← p(X), p(Y), X < Y,
⊥ : (p(Z), X < Z,Z < Y)

(18)

order(X,Y)← p(X), p(Y), X < Y,
not p(Z) : (X < Z,Z < Y)

(19)

Let’s prove this claim for rule (18). By the theorem from
Section A.2, it is sufficient to show that the result of applying
τ to (17) is equivalent in the extended system to the result of
applying τ to (18). The instances of (17) are the rules

order(i, j)← p(i), p(j), i < j,
not p(Z) : (p(Z), i < Z,Z < j),

and the instances of (18) are the rules
order(i, j)← p(i), p(j), i < j,

⊥ : (p(Z), i < Z,Z < j)

where i and j are arbitrary numerals. The result of applying
τ to (17) is the conjunction of the formulas

p(i) ∧ p(j) ∧ τ(i < j) ∧∧
k (¬p(k) ∧ τ(i < k) ∧ τ(k < j)→ p(k))→

order(i, j)
(20)

for all numerals i, j. The result of applying τ to (18) is the
conjunction of the formulas

p(i) ∧ p(j) ∧ τ(i < j) ∧∧
k (¬p(k) ∧ τ(i < k) ∧ τ(k < j)→ ⊥)→

order(i, j).
(21)

7This rule is similar to a rule from Example 3.7 of the Gringo 3
User’s Guide (see Footnote 2).

8This rule was communicated to us by Roland Kaminski on
October 21, 2012.

It remains to observe that for any numerals i, j, k,

p(k) ∧ τ(i < k) ∧ τ(k < j)→ ¬p(k)

is intuitionistically equivalent to

p(k) ∧ τ(i < k) ∧ τ(k < j)→ ⊥.

The proof for rule (19) is similar. Rule (18), like rule (17),
is safe; rule (19) is not.

5.3 Eliminating Choice in Favor of a Conditional
Literal

Replacing the rule

{p(X)} ← q(X) (22)

with
p(X)← q(X),⊥ : not p(X) (23)

within any program will not affect the set of stable models.
Indeed, the result of applying translation τ to (22) is∧

r

(q(r)→ p(r) ∨ ¬p(r)) (24)

where the conjunction extends over all precomputed terms r,
and the result of applying τ to (23) is∧

r

(q(r) ∧ ¬¬p(r)→ p(r)). (25)

Each conjunctive term of (24) is equivalent to the corre-
sponding conjunctive term of (25) in the extension of in-
tuitionistic logic obtained by adding the axiom schema

¬F ∨ ¬¬F,

and consequently in the extended system presented in the
appendix. It follows that (24) is equivalent to (25) in the
extended system as well.

5.4 Eliminating a Trivial Aggregate Expression
Rule (1) says, informally speaking, that we can conclude
p(Y) once we establish that there exists at least one X such
that q(X,Y). Replacing this rule with

p(Y)← q(X,Y) (26)

within any program will not affect the set of stable models.
To prove this claim, we need to calculate the result of ap-

plying τ to rule (1). The instances of (1) are the rules

p(t)← count{X, t : q(X, t)} ≥ 1 (27)

for all precomputed terms t. Consider the aggregate expres-
sion E in the body of (27). Any precomputed term r is ad-
missible w.r.t. E. A set ∆ of precomputed terms justifies E
if

ĉount({(r, t) : r ∈ ∆}) ≥ 1,

that is to say, if ∆ is non-empty. Consequently τE con-
sists of only one implication (6), with the empty ∆. The
antecedent of this implication is the empty conjunction >,

37

and its consequent is the disjunction
∨
u q(u, t) over all pre-

computed terms u. Then the result of applying τ to (1) is

∧
t

(∨
u

q(u, t) → p(t)

)
. (28)

On the other hand, the result of applying τ to (26) is∧
t,u

(q(u, t)→ p(t)).

This formula is equivalent to (28) in the extended system
defined in the appendix (see Example 2 from (Harrison, Lif-
schitz, and Truszczynski 2014)).

6 Monotone and Anti-Monotone Aggregate
Expressions

A closed aggregate expression E is monotone if for any set
∆ that justifies E, all supersets of ∆ also justify E. Simi-
larly, E is anti-monotone if for any set ∆ that justifies E, all
subsets of ∆ also justify E.

For example, if α is one of the symbols count, max, or
sum, then (3) is monotone when ≺ is > or ≥, and anti-
monotone when ≺ is < or ≤. (According to the definition
for ŝum given in this paper negative summands are disre-
garded.) As observed in Section 3.5, if≺ is = then E can be
equivalently replaced by the pair of aggregate expressions
E≤, E≥, which are anti-monotone and monotone respec-
tively when α is one of the symbols listed above.

6.1 Simplifying Monotone and Anti-Monotone
Aggregate Expressions

Recall that τE for a closed aggregate expression E is de-
fined as the conjunction of the implications (6) over all
sets ∆ that do not justify E. The two theorems stated be-
low show that the antecedent in (6) can be dropped if E
is monotone, and the consequent can be dropped if E is
anti-monotone. These equivalences can be proved in the
extended system described in the appendix. The theorems
are similar to the properties of monotone and anti-monotone
ground aggregates stated in (Ferraris 2005).

Theorem 1 If a closed aggregate expression E is mono-
tone, then τE is equivalent in the extended system to∧

∆

∨
(i,r)∈A\∆

τ((Li)
xi
r), (29)

where the conjunction extends over the subsets ∆ of A that
do not justify E.

Theorem 2 If a closed aggregate expression E is anti-
monotone, then τE is equivalent in the extended system to∧

∆

¬
∧

(i,r)∈∆

τ((Li)
xi
r), (30)

where the conjunction extends over all subsets ∆ of A that
do not justify E.

Example We saw in Section 3.5 that the result of applying
τ to (8) is the conjunction of formulas (9) over all sets ∆ of
pairs (h, c) of precomputed terms that do not justify (8).
Theorems 1 and 2 allow us to simplify this conjunction.
Note first that the result of applying τ to (8) can be rewritten
as the conjunction of

τ(sum{H,C : enroll(C), hours(H,C)} ≤ 6) (31)

and

τ(sum{H,C : enroll(C), hours(H,C)} ≥ 6). (32)

By Theorem 1, (32) is equivalent to∧
ŝum(∆) < 6

∨
(h,c)/∈∆

(enroll(c) ∧ hours(h, c)),

and by Theorem 2, (31) is equivalent to∧
ŝum(∆) > 6

¬
∧

(h,c)∈∆

(enroll(c) ∧ hours(h, c)),

where ∆ ranges over pairs (h, c) of precomputed terms.

In Section 6.2 we show how Theorem 2 can be used for
simplifying and aggregate expression. Proofs of Theorems 1
and 2 are given in Section 6.3.

6.2 Eliminating an Aggregate Expression in
Favor of a Conditional Literal

We will show that the rule

q ← count{X : p(X)} < 1 (33)

can be replaced by the rule

q ← ⊥ : p(X) (34)

within any program without changing its stable models. The
bodies of both rules express that the set p is empty, but the
first uses an aggregate expression and the second a condi-
tional literal.

Since the aggregate expression in the body of (33) is anti-
monotone, by Theorem 2, the result of applying τ to it is
equivalent (in the extended system) to∧

∆6=∅

¬
∧
a∈∆

p(a) (35)

where ∆ ranges over arbitrary sets of precomputed terms.
On the other hand, the result of applying τ to the body of

(34) is ∧
a

¬p(a) (36)

where a ranges over all precomputed terms.
It remains to observe that all conjunctive terms of (35)

can be derived in the extended system from the conjunctive
terms in which ∆ is a singleton, and that the conjunctive
terms in which ∆ is a singleton are identical to the conjunc-
tive terms of (36).

38

6.3 Proofs of Theorems 1 and 2
Proof of Theorem 1 The implication from (29) to τE is ob-
vious. Now, assume τE, and consider the conjunctive term
of (29) corresponding to a set ∆0 which does not justify E.
Since E is monotone, from τE we can derive the conjunc-
tion of all terms (6) where ∆ ⊆ ∆0. Any formula of the
form (

F →
∨
i∈I

Gi

)
→

(∨
i∈I

(F → Gi)

)
is provable in the extended system defined in the appendix
(see Section 7 of (Harrison, Lifschitz, and Truszczynski
2014)). Consequently, we can derive the conjunction of the
disjunctions

∨
(i,r)∈A\∆

 ∧
(j,s)∈∆

τ((Lj)
xj
s)

 → τ((Li)
xi
r)

over all ∆ ⊆ ∆0. By distributivity, this is equivalent in the
extended system to the disjunction of the conjunctions

∧
∆⊆∆0

 ∧
(j,s)∈∆

τ((Lj)
xj
s) → τ

(
(Lf(∆))

xf(∆)

g(∆)

) (37)

over all pairs of functions (f, g) defined on all subsets ∆ of
∆0 such that the pair (f(∆), g(∆)) is an element of A \∆.
Now we reason by cases, with one case corresponding to
each disjunctive term (37). For a particular disjunctive term
(37), we wish to show that we can derive from it τ((Li)

xi
r)

for some pair (i, r) in A \ ∆0. Consider the set ∆∗ of all
pairs (i, r) such that τ((Li)

xi
r) is derivable from (37) in the

extended system. We will show that ∆∗ is not a subset of
∆0. Assume ∆∗ ⊆ ∆0, so that

(f(∆∗), g(∆∗)) ∈ A \∆∗, (38)

and one of the conjunctive terms of (37) is∧
(j,s)∈∆∗

τ((Lj)
xj
s) → τ

(
(Lf∆∗)

xf(∆∗)
g(∆∗)

)
.

By the definition of ∆∗, every conjunctive term in the
antecedent of this implication is derivable from (37). It
follows that the consequent is derivable as well, so that
(f(∆∗), g(∆∗)) belongs to ∆∗, which contradicts (38).
Therefore, ∆∗ is not a subset of ∆0, so that at least one
disjunctive term of (29) is derivable from (37).

Proof of Theorem 2 The implication from (30) to τE is
obvious. We will derive (30) from τE using the disjunction

∨
∆⊆A

¬ ∨
(i,r)∈A\∆

τ((Li)
xi
r) ∧ ¬¬

∧
(i,r)∈∆

τ((Li)
xi
r)

 .

(39)
This is a special case of the generalized law of weak ex-
cluded middle given in Section 7 of (Harrison, Lifschitz, and
Truszczynski 2014). Each disjunctive term (39) corresponds
to a subset ∆ of A. We will reason by cases with one case

corresponding to each disjunctive term D∆ of (39). Each
D∆ is equivalent to

¬

 ∧
(i,r)∈∆

τ((Li)
xi
r) →

∨
(i,r)∈A\∆

τ((Li)
xi
r)

 (40)

in the extended system described in the appendix. If ∆ does
not justify E then (40) contradicts one of the conjunctive
terms from (6) and (30) follows. Consider now the case
when ∆ justifies E. Assume∧

(i,r)∈∆0

τ((Li)
xi
r) (41)

for some ∆0 that does not justify E. Since E is anti-
monotone ∆0 is not a subset of ∆. We conclude that ∆0

and A \∆ overlap on at least one element. It follows that∨
(i,r)∈A\∆

τ((Li)
xi
r)

can be derived from (41) since at least one of its disjunctive
terms can be derived. This disjunction contradicts (40), and
so we may conclude the negation of (41).

7 Conclusion
In this note, we approached the problem of defining the se-
mantics of Gringo by reducing Gringo programs to infinitary
propositional formulas. We argued that this approach to se-
mantics may allow us to study equivalent transformations of
programs using natural deduction in infinitary propositional
logic.

In the absence of a precise semantics, it is impossible to
put the study of some important issues on a firm foundation.
This includes the correctness of ASP programs, grounders,
solvers, and optimization methods, and also the relationship
between input languages of different solvers (for instance,
the equivalence of the semantics of aggregate expressions
in Gringo to their semantics in the ASP Core language and
in the language proposed in (Gelfond 2002) under the as-
sumption that aggregates are used nonrecursively). As fu-
ture work, we are interested in addressing some of these
tasks on the basis of the semantics proposed in this note.
Proving the correctness of the intelligent instantiation algo-
rithms implemented in GRINGO will provide justification for
our informal claim that for a safe program, the semantics
proposed here correctly describes the output produced by
GRINGO.

Acknowledgements
Many thanks to Roland Kaminski and Torsten Schaub
for helping us understand the input language of GRINGO.
Roland, Michael Gelfond, Yuliya Lierler, Joohyung Lee,
and anonymous referees provided valuable comments on
drafts of this note.

Appendix
We review here conditions for characterizing the stable mod-
els of a set of infinitary formulas in terms of supportedness

39

(Lifschitz and Yang 2013), and transformations of infinitary
formulas which preserve their stable models (Harrison, Lif-
schitz, and Truszczynski 2014).

A.1 Tight Infinitary Programs

An infinitary program is a conjunction of (possibly infinitely
many) infinitary formulas of the form G → A, where A
is an atom. We say that an infinitary program Π is super-
tight if it is impossible to find an infinite sequence of atoms
A1, A2, . . . such that for all i, Π contains a conjunctive term
G → Ai, where Ai+1 occurs in G. We say that an inter-
pretation I is supported by Π if each atom A ∈ I is the
consequent of a conjunctive term G → A of Π such that
I |= G.

Theorem For any model I of a supertight infinitary pro-
gram Π, I is stable iff I is suported by Π.

This theorem is a special case of Lemma 2 from (Lif-
schitz and Yang 2013). In the statement of that lemma Π
is required to be “tight on I .” That condition is significantly
more general than supertightness as defined above.

A.2 Equivalent Transformations of Infinitary
Formulas

The extended system of natural deduction presented in (Har-
rison, Lifschitz, and Truszczynski 2014) includes the axiom
schema

F ⇒ F,

the axiom schema

⇒ F ∨ (F → G) ∨ ¬G

that characterizes (in the finite case) the logic of here-and-
there (Hosoi 1966), and the following additional axiom
schemas:

⇒ ¬
∧
F∈H

F →
∨
F∈H

¬F, (42)

⇒

(∧
i∈I

∨
F∈Hi

F

)
→

 ∨
{Fi}i∈I

∧
i∈I

Fi

 , (43)

and

⇒

 ∧
{Fi}i∈I

∨
i∈I

Fi

→ (∨
i∈I

∧
F∈Hi

F

)
. (44)

In formula (42) H is a bounded set of formulas. In formu-
las (43) and (44) {Hi}i∈I is an arbitrary non-empty family
of sets of formulas such that its union is bounded. The dis-
junction in the consequent of (43) and the conjunction in the
antecedent of (44) extend over all elements {Fi}i∈I of the
Cartesian product of the family {Hi}i∈I .

The inference rules are the introduction and elimination
rules for the propositional connectives

(∧I) Γ⇒ H for all H ∈ H
Γ⇒ H∧

(∧E) Γ⇒ H∧
Γ⇒ H (H ∈ H)

(∨I) Γ⇒ H
Γ⇒ H∨ (H ∈ H)

(∨E)
Γ⇒ H∨ ∆, H ⇒ F for all H ∈ H

Γ,∆⇒ F

(→I)
Γ, F ⇒ G

Γ⇒ F → G

(→E) Γ⇒ F ∆⇒ F → G
Γ,∆⇒ G ,

where H is a bounded set of formulas, and the weakening
rule

(W) Γ⇒ F
Γ,∆⇒ F .

The set of theorems of the extended system is the smallest
set of sequents that includes the axioms of the system and is
closed under the application of its inference rules. We say
that formulas F andG are equivalent in the extended system
if⇒ F ↔ G is a theorem of the extended system.

Theorem For any set H of formulas, if formulas F and
G are equivalent in the extended system then H ∪ {F}
andH ∪ {G} have the same stable models.

References
Ferraris, P., and Lifschitz, V. 2005. Weight constraints as
nested expressions. Theory and Practice of Logic Program-
ming 5:45–74.
Ferraris, P.; Lee, J.; and Lifschitz, V. 2011. Stable models
and circumscription. Artificial Intelligence 175:236–263.
Ferraris, P. 2005. Answer sets for propositional theories. In
Proceedings of International Conference on Logic Program-
ming and Nonmonotonic Reasoning (LPNMR), 119–131.
Gebser, M.; Kaminski, R.; Kaufmann, B.; and Schaub, T.
2012. Answer Set Solving in Practice. Synthesis Lectures on
Artificial Intelligence and Machine Learning. Morgan and
Claypool Publishers.
Gelfond, M., and Lifschitz, V. 1988. The stable model
semantics for logic programming. In Kowalski, R., and
Bowen, K., eds., Proceedings of International Logic Pro-
gramming Conference and Symposium, 1070–1080. MIT
Press.
Gelfond, M., and Lifschitz, V. 1991. Classical negation in
logic programs and disjunctive databases. New Generation
Computing 9:365–385.
Gelfond, M. 2002. Representing knowledge in A-Prolog.
Lecture Notes in Computer Science 2408:413–451.
Harrison, A.; Lifschitz, V.; and Truszczynski, M. 2014. On
equivalence of infinitary formulas under the stable model se-
mantics. Theory and Practice of Logic Programming. To
appear.

40

Hosoi, T. 1966. The axiomatization of the intermediate
propositional systems Sn of Gödel. Journal of the Faculty
of Science of the University of Tokyo 13:183–187.
Lee, J., and Meng, Y. 2012a. Stable models of formulas with
generalized quantifiers. In Working Notes of the 14th Inter-
national Workshop on Non-Monotonic Reasoning (NMR).
Lee, J., and Meng, Y. 2012b. Stable models of formulas
with generalized quantifiers (preliminary report). In Tech-
nical Communications of the 28th International Conference
on Logic Programming (ICLP), 61–71.
Lee, J., and Meng, Y. 2012c. Two new definitions of stable
models of logic programs with generalized quantifiers. In
Working Notes of the 5th Workshop of Answer Set Program-
ming and Other Computing Paradigms (ASPOCP).
Lifschitz, V., and Yang, F. 2013. Lloyd-Topor completion
and general stable models. Theory and Practice of Logic
Programming 13(4–5).
Pearce, D., and Valverde, A. 2004. Towards a first order
equilibrium logic for nonmonotonic reasoning. In Proceed-
ings of European Conference on Logics in Artificial Intelli-
gence (JELIA), 147–160.
Truszczynski, M. 2012. Connecting first-order ASP and the
logic FO(ID) through reducts. In Correct Reasoning: Essays
on Logic-Based AI in Honor of Vladimir Lifschitz. Springer.

41

