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Abstract

In this paper, we investigate the revision of argumenta-
tion systems à la Dung. We focus on revision as mini-
mal change of the arguments status. Contrarily to most
of the previous works on the topic, the addition of new
arguments is not allowed in the revision process, so
that the revised system has to be obtained by modify-
ing the attack relation only. We introduce a language of
revision formulae which is expressive enough for en-
abling the representation of complex conditions on the
acceptability of arguments in the revised system. We
show how AGM belief revision postulates can be trans-
lated to the case of argumentation systems. We pro-
vide a corresponding representation theorem in terms
of minimal change of the arguments statuses. Several
distance-based revision operators satisfying the postu-
lates are also pointed out, along with some methods to
build revised argumentation systems. We also discuss
some computational aspects of those methods.

Introduction
In this paper, we investigate the revision issue for abstract
argumentation systems à la Dung (Dung 1995). Argumen-
tation systems are directed graphs, where nodes correspond
to arguments and arcs to attacks between arguments. In such
systems, the status (acceptance) of each argument depends
on the chosen acceptability semantics (grounded, preferred,
stable – among others).

In his book, Gärdenfors (1988) introduced abstractly be-
lief change as the operation allowing to change the epistemic
status of a piece of information with respect to the epistemic
state of an agent. There are three possible statuses: accepted,
rejected or undetermined. And revision, contraction and ex-
pansion are defined as the possible transitions between these
statuses, as illustrated by Figure 1.

In order to instantiate Gärdenfors’ general definition of
belief change within Dung’s argumentation theory, it is first
necessary to define what are the available pieces of informa-
tion and what these statuses mean. In Dung’s argumentation
theory, the basic pieces of information are the arguments of
the system, and their statuses depend on the acceptability se-
mantics under consideration. Thus, following Gärdenfors, it
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Figure 1: Gärdenfors’ epistemic transitions

does not make sense to study the revision of argumentation
systems directly on the attack graph, independently of any
semantics. Stated otherwise, the revision of a given argu-
mentation system under two different semantics may easily
lead to two different results. For instance, in the case of the
argumentation system AF given in Figure 2, we note that
under the stable and preferred semantics, d belongs to every
extension, whereas d does not belong to any extension in the
case of the grounded semantics. So, revising AF in order to
accept d does not need any change for the stable or the pre-
ferred semantics, but a change is required for the grounded
semantics.

a b

c

d

Figure 2: Revising AF may lead to different results.

In this paper, we focus on revision as minimal change of
the arguments statuses. To be more precise, under a chosen
semantics, given an argumentation system and a revision
formula expressing how the statuses of some arguments has
to be changed, we want to derive argumentation systems
which satisfy the revision formula, and are such that the
corresponding extensions are as close as possible to the
extensions of the input system. In most of the previous
works on the topic, the change in the input system is a

52

Proceedings of the Fourteenth International Conference on Principles of Knowledge Representation and Reasoning



modification of the set of arguments. Contrarily to those
works, we do not allow the addition of new arguments in
the revision process, so that the revised system has to be
obtained by modifying the attack relation, only. Especially,
the revision formula does not indicate why the statuses
of arguments have changed, which makes sense in cases
when the agent learns an unjustified information from a
trustworthy source. More details can be found in Section
“Discussion”.
Minimal change of the attack graph can be considered as a
criterion for defining the revised systems, but the acceptance
statuses of arguments is more fundamental information.
Accordingly, ensuring a minimal change of these statuses is
more important than (and not compatible with)1 ensuring a
minimal change of the attack graph.
To ensure such a minimal change of arguments statuses,
we define revision as two step process: first, we revise
extensions, without considering the attack relation. Then,
from the output of this first step, we generate argumentation
systems such that their extensions are the expected ones.
This second step may use minimal change on the argumen-
tation graph, as a second criterion.

The rest of the paper is organized as follows. After a short
introduction to Dung’s theory of abstract argumentation, we
introduce a language of revision formulae which is expres-
sive enough for enabling the representation of complex con-
ditions on the acceptability of arguments in the revised sys-
tem. Then we show how AGM belief revision postulates
can be translated to the case of argumentation systems. We
provide a corresponding representation theorem in terms of
minimal change of the arguments statuses. Several distance-
based revision operators satisfying the postulates are pointed
out. Then we present methods for associating argumenta-
tion systems with the obtained sets of extensions. We discuss
some computational aspects of the revision process. Proofs
are omitted for space reasons.

Preliminaries
We start with a very short introduction to Dung’s theory of
argumentation (see (Dung 1995) for more details). A (finite)
argumentation system (also referred to as an argumentation
framework) is a pair AF = 〈A,R〉 where A is a (finite and
non empty) set of so-called arguments and R is a binary re-
lation over A (a subset of A × A). In the following, A is
supposed to contain at least two elements and the attack re-
lation R is supposed to be irreflexive, i.e., self-contradicting
arguments are rejected. AFsA denotes the set of all such sys-
tems on the set of arguments A.

Arguments and attacks are considered in an abstract way
as atomic concepts. Especially we do not assume any under-
lying logical setting in which arguments and attacks would
be defined.

An argument a ∈ A is acceptable with respect to a set
of arguments S ⊆ A whenever it is defended by S, i.e., for
every b ∈ A s.t. (b, a) ∈ R, there exists c ∈ S such that
(c, b) ∈ R. We say that a subset S ofA is conflict-free if and

1See Section “Revision at the System Level” for details.

only if for every a, b ∈ S, we have (a, b) 6∈ R. A subset S of
A is admissible for AF if and only if S is conflict-free and
acceptable with respect to S. “Solutions” of an argumen-
tation systems are sets S of arguments accepted together.
Some semantics σ (especially, the complete, the preferred,
the stable, and the grounded semantics) can be considered
for capturing formally this notion, and each of them gives
rise to a specific notion of extension. For instance:

• S is a complete extension of AF if and only if it is an ad-
missible set and every argument which is acceptable with
respect to S belongs to S,

• S is a preferred extension of AF if and only if it is maxi-
mal (with respect to set inclusion) in the set of admissible
sets for AF ,

• S is a stable extension of AF if and only if S is conflict-
free and ∀a ∈ A \ S, ∃b ∈ S such that (b, a) ∈ R,

• S is the grounded extension of AF if and only if it is the
smallest element (with respect to set inclusion) among the
complete extensions.

Extσ(AF ) denotes the set of extensions of AF for the
semantics σ. In this work, we focus on the skeptical pol-
icy to define the epistemic status of an argument. Thus, the
epistemic status of any argument a ∈ A with respect to the
epistemic state represented by AF is given by: a is accepted
if a belongs to every ε ∈ Extσ(AF ), a is refused if a does
not belong to any ε ∈ Extσ(AF ), and a is undefined in the
remaining case.

Moreover, we use the following notation about minimal
elements of a set. For any pre-order ≤ over a set E, < de-
notes the strict part of ≤ and ' denotes the indifference re-
lation associated with ≤. Given a set E and a pre-order ≤,
the minimal elements of E w.r.t. ≤ are min(E,≤) = {e ∈
E|@e′ ∈ E, e′ < e}.

On Revision Formulae
We want to define a revision setting for Dung’s argumenta-
tion systems in which sophisticated revision formulae can be
taken into account, and not only the fact that a given argu-
ment should be accepted or refused. To this end, we consider
a logical language LA, where negation is used to denote the
fact that a given argument should be refused, and formulae
can be connected using conjunction and disjunction.

Definition 1. Given A = {α1, . . . , αk} a set of arguments,
LA is the language generated by the following context-free
grammar in BNF:

arg ::= α1| . . . |αk
Φ ::= arg|¬Φ|(Φ ∧ Φ)|(Φ ∨ Φ)

For instance, ϕ1 = (a∧b∧c)∨(a∧¬b∧¬c) expresses that
in the revised epistemic state, amust be accepted and b and c
must be both accepted or both refused. The epistemic status
of such a formula ϕ from LA in an argumentation system
AF ∈ AFsA for a given semantics σ is given by:

Definition 2. Let ε ⊆ A and ϕ ∈ LA. The concept of sat-
isfaction of ϕ by ε, noted ε|∼ϕ, is defined inductively as fol-
lows:
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• If ϕ = a ∈ A, then ε|∼ϕ iff a ∈ ε,
• If ϕ = (ϕ1 ∧ ϕ2), ε|∼ϕ iff ε|∼ϕ1 and ε|∼ϕ2,
• If ϕ = (ϕ1 ∨ ϕ2), ε|∼ϕ iff ε|∼ϕ1 or ε|∼ϕ2,
• If ϕ = ¬ψ, ε|∼ϕ iff ε|6∼ψ.
Then for any AF in AFsA, and any semantics σ, we say
that:
• ϕ is accepted w.r.t. AF , noted AF |∼σϕ, if ε|∼ϕ for every
ε ∈ Extσ(AF ),
• ϕ is refused w.r.t. AF , noted AF |∼σ¬ϕ, if ε|∼ϕ for no
ε ∈ Extσ(AF ),
• ϕ is undefined w.r.t. AF in the remaining case.
Inference |∼σ can be extended to the case of a set S
of argumentation systems by considering Extσ(S) =⋃
AF∈S Extσ(AF ).
This language, used in next sections to define the revision

of an argumentation framework, allows to change the status
of an information ϕ to accepted (revise by ϕ) or rejected
(revise by ¬ϕ), but not to undetermined. It is normal:
Gärdenfors defines the change of status of a belief from
accepted or rejected to undetermined as a contraction, as
explained in the Introduction (see Fig. 1).

From now on we call candidate2 any subset ε of A. Can-
didates can be interpreted as interpretations of revision for-
mulae. Continuing the previous example, if A = {a, b, c},
ϕ1 is satisfied by the candidates from {{a}, {a, b, c}}. Thus,
for the grounded semantics, ϕ1 is accepted w.r.t. AF1 with
R1 = {(b, c), (c, b)} but is refused w.r.t. AF2 with R2 =
{(a, b), (b, a)}.

We define consistency in a classical way:
Definition 3. Given a formula ϕ,Aϕ denotes the set of can-
didates satisfying ϕ. ϕ is said to be consistent iff Aϕ 6= ∅.

In the general case, Aϕ is not the set of all σ-extensions
of an AF in AFsA. Consider for instance, A = {a, b, c} and
ϕ1 = (a ∧ b ∧ c) ∨ (a ∧ ¬b ∧ ¬c). Aϕ1 = {{a}, {a, b, c}},
and there is no AF in AFsA such that Extσ(AF ) = Aϕ1

for σ = grounded, σ = preferred or σ = stable.
In this case, it is enough to choose two argumentation

frameworks to cover the extensions {{a}, {a, b, c}} (for in-
stance, in the first AF a attacks b and c, and in the second
AF the attack relation is empty). Note that in the general
case, increasing the number of frameworks is not enough
to capture the expected extensions. In order to characterize
formulae that can be associated to a set of frameworks and a
semantics, a concept of σ-representability can be defined as
follows:
Definition 4. A set C of candidates is σ-representable iff
there exists a set S of argumentation systems in AFsA such
that C = Extσ(S).
A formula ϕ ∈ LA is σ-representable iff Aϕ is σ-
representable.

When A = {a, b, c}, ϕ1 = (a ∧ b ∧ c) ∨ (a ∧ ¬b ∧ ¬c)
is σ-representable for σ = grounded, σ = preferred or σ =
stable since {{a}, {a, b, c}} = Extσ(AF3 ) ∪ Extσ(AF4 )

2That is to say “candidate to be an extension”.

where R3 = {(a, b), (a, c)} and R4 = ∅. Contrastingly,
ϕ2 = ¬a∧¬b∧¬c is grounded-representable and preferred-
representable but not stable-representable. ϕ3 = a ∧ ¬a is
neither grounded-representable nor preferred-representable,
but is stable-representable (consider AF5 such that
R5 = {(a, b), (b, c), (c, a)}).

A form of consistency can be defined to take account for
the semantics:

Definition 5. Given σ a semantics, a formula ϕ ∈ LA is
σ-consistent iff ϕ is consistent and ϕ is σ-representable.

From σ-consistency, we define a notion of model:

Definition 6. Given a formula ϕ ∈ LA and a semantics σ,
the set of models of ϕ is defined by

Aσϕ = {ε ∈ Aϕ|{ε} is σ-representable}.

A last point about formulae is the definition of equiva-
lence. Two formulae ϕ,ψ ∈ LA are said σ-equivalent, noted
ϕ ≡σ ψ, if and only if Aσϕ = Aσψ .

Revision at the Extension Level
In order to define revision operators, our approach follows
a two-step process. Intuitively, the process first selects from
models of ϕ those as close as possible to the σ-extensions
of AF . This selection has to ensure the minimal change
of arguments statuses. Then, the second step generates
the argumentation systems such that the union of their σ-
extensions precisely coincides with the selected candidates.

We define a revision operator on argumentation systems
as a mapping associating a set of argumentation systems
with the input argumentation system and the input revision
formula:

Definition 7. Given any set of arguments A, a revision
operator on argumentation systems ? is a mapping from
AFsA × LA to 2AFsA .

Clearly, the result of the revision of an argumentation
system is not a unique argumentation system in the general
case, but a set of argumentation systems. The reason is
quite simple: there can be several possible results which
have exactly the same maximum plausibility. So in this case
there is no reason to select just one of them (we will return
to this point later on). If this is problematic for a particular
application, a selection function can be used as a tie-break
rule for ensuring the unicity of the result (just like, for
instance, the maxichoice selection function considered in
AGM belief revision (Gärdenfors 1988)).

Of course, each mapping from AFsA × LA to 2AFsA

is not a reasonable revision operator. For instance, the
constant, yet trivial operator defined by AF ? ϕ = ∅ should
be discarded.

In order to identify interesting revision operators, we have
to identify the logical properties which guarantee a ratio-
nal behaviour. Such an axiomatic approach is standard in
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logic, and the AGM postulates (Alchourrón, Gärdenfors, and
Makinson 1985; Katsuno and Mendelzon 1991) have been
pointed out for characterizing valuable revision operators in
a logical setting. As in (Qi, Liu, and Bell 2006), we can
revisit these postulates in a set-theoretic framework, here
suited to the argumentation case.

Let S be a set of argumentation systems AF in AFsA. The
counterpart of AGM postulates in the argumentation case is
given by:
(AE1) Extσ(AF ? ϕ) ⊆ Aσϕ
(AE2) If Extσ(AF ) ∩ Aσϕ 6= ∅,

then Extσ(AF ? ϕ) = Extσ(AF ) ∩ Aσϕ
(AE3) If ϕ is σ-consistent, then Extσ(AF ? ϕ) 6= ∅
(AE4) If ϕ ≡σ ψ, then Extσ(AF ? ϕ) = Extσ(AF ? ψ)

(AE5) Extσ(AF ? ϕ) ∩ Aσψ ⊆ Extσ(AF ? (ϕ ∧ ψ))

(AE6) If Extσ(AF ? ϕ) ∩ Aσψ 6= ∅,
then Extσ(AF ? (ϕ ∧ ψ)) ⊆ Extσ(AF ? ϕ) ∩ Aσψ
(AE1) states that the σ-extensions of the resulting set of

argumentation systems must be among the models of ϕ.
(AE2) demands that if there are σ-extensions of the input
system satisfying ϕ, then the resulting σ-extensions must
coincide with them. (AE3) requires the resulting set of σ-
extensions to be non-empty as soon as ϕ is σ-consistent.
(AE4) concerns the irrelevance of syntax: the revision by
two formulae must be identical if the formulae are equiv-
alent. The last two postulates (AE5) and (AE6) express a
minimal change principle with respect to the arguments sta-
tuses: changes of the statuses of the arguments are expected
to be minimal with respect to the input system. In particular,
these postulates give the expected behaviour of the operator
when an argumentation system is revised by a conjunction
of formulae.

Interestingly, as in the logical case, we can derive a repre-
sentation theorem which characterizes exactly the revision
operators satisfying the postulates in a more constructive
way. To this end, we first need to present a counter-part of
the notion of faithful assignment (Katsuno and Mendelzon
1991) in the argumentation setting:
Definition 8. A faithful assignment is a mapping associat-
ing any argumentation system AF = 〈A,R〉 (under a se-
mantics σ) with a total pre-order ≤σAF on the set of candi-
dates such that:
1. if ε1 ∈ Extσ(AF ) and ε2 ∈ Extσ(AF ),

then ε1 'σAF ε2,
2. if ε1 ∈ Extσ(AF ) and ε2 6∈ Extσ(AF ),

then ε1 <σAF ε2.
The representation theorem can then be stated as follows:

Proposition 1. Given a semantics σ, a revision operator ?
satisfies the rationality postulates (AE1) - (AE6) iff there
exists a faithful assignment which maps every system AF =
〈A,R〉 to a total pre-order ≤σAF so that

Extσ(AF ? ϕ) = min(Aσϕ,≤σAF ).

This theorem is important for defining operators satisfy-
ing the rationality postulates, as the ones presented in the
next section.

Distance-Based Revision
Let us now present some (pseudo-)distance-based revi-
sion operators satisfying the rationality postulates (AE1) -
(AE6).

Let d be any pseudo-distance3 on 2A, for instance, the
Hamming distance given by dH(ε1, ε2) = |(ε1 \ ε2) ∪
(ε2 \ ε1)|. Given ε ∈ 2A and E ⊆ 2A, d can be ex-
tended to a “distance” between ε and E , by stating that
d(ε, E) = minε′∈E d(ε, ε′). For any argumentation system
AF ∈ AFsA, this distance induces a total pre-order between
candidates ε1, ε2 ∈ 2A given by

ε1 ≤σ,dAF ε2 iff d(ε1,Extσ(AF )) ≤ d(ε2,Extσ(AF )).

On this ground, revision operators can be defined by:

Definition 9. Let σ be any given semantics. A pseudo-
distance-based revision operator ?d is any revision opera-
tor for which there exists a pseudo-distance d on 2A such
that for every AF and every ϕ, we have Extσ(AF ?d ϕ) =

min(Aσϕ,≤
σ,d
AF ).

Proposition 2. Let σ be any semantics. Any pseudo-
distance-based revision operator ?d satisfies the rationality
postulates (AE1) - (AE6).

Let us now define another family of pseudo-distance-
based operators, which take advantage of labellings. Let us
first recall that, instead of using extensions, the solutions of
an argumentation system can be expressed using the concept
of labelling (Caminada 2006).

Formally, a labelling is a mapping L associating a label
in , undec or out with every argument of the set A. The
stronger notion of reinstatement labelling depends on the at-
tack relation R: an argument a is labelled in iff every ar-
gument attacking a is out ; an argument a is out iff there
exists an argument in attacking a; an argument is undec iff
it is neither in nor out . These reinstatement labellings cor-
respond to Dung’s complete extensions in a bijective way.
Thus, for any complete extension ε, the associated reinstate-
ment labelling is such that every argument a ∈ ε is in , every
argument attacked by an argument in is out , every other
argument is undec. Conversely, for every reinstatement la-
belling L, the corresponding extension E(L) is the set of
arguments labelled in by the labelling. All usual semantics
can also be encoded with labellings.

We introduce some notation: Lϕ is the set of labellings
L such that E(L) ∈ Aσϕ. Given a set of labellings Lab,
E(Lab) = {E(L)|L ∈ Lab}. Finally, given a system AF
and a semantics σ, Labsσ(AF ) denotes the set of labellings
corresponding to the σ-extensions of AF .

Labellings, which bring richer information than exten-
sions, can be used to define interesting pseudo-distance-
based revision operators. Indeed, consider the following no-
tion of edition pseudo-distance:

3A pseudo-distance d on a set S is defined as a binary relation
on S which satisfies:

• d(x, y) = d(y, x);

• d(x, y) = 0 iff x = y.
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Definition 10. Let m,n, o be three integers and let L1 and
L2 be two labellings.
An edition pseudo-distance d(m,n,o) between labellings is
defined as:

d(m,n,o)(L1, L2) =
∑
a∈A

ad(L1(a), L2(a)),

where

• ad(in, in) = ad(out , out) = ad(undec, undec) = 0

• ad(in, out) = ad(out , in) = m

• ad(in, undec) = ad(undec, in) = n

• ad(out , undec) = ad(undec, out) = o

Proposition 3. Let m,n, o be three integers. d(m,n,o) is a
pseudo-distance.

Interestingly, these edition pseudo-distances are not
necessarily neutral or symmetric. We call neutral an
edition pseudo-distance such that ad(in, undec) +
ad(undec, out) = ad(in, out) and symmetric a pseudo-
distance such that ad(in, undec) = ad(undec, out).
Defining non-symmetric edition pseudo-distances is a way
for instance to favor acceptance of arguments over rejection
(see Example 1).

For any pseudo-distance dL between labellings, we can
define a pre-order ≤σ,dLAF between labellings as we did it for
candidates:

L1 ≤σ,dLAF L2 iff dL(L1, Lσ(AF )) ≤ dL(L2, Lσ(AF )).

Definition 11. Let σ be any given semantics. A labelling-
pseudo-distance-based revision operator ?dL is any revision
operator for which there exists a pseudo-distance dL =
d(m,n,o) on 2A such that for every AF and every ϕ, we have
Labsσ(AF ?dL ϕ) = min(Lϕ,≤σ,dLAF ).

The following example illustrates the impact of the cho-
sen pseudo-distance on the revised system:

Example 1. Let σ be the stable semantics. We revise the
system AF6 below by the formula ϕ = (¬d ∧ ¬e).

a

b
c
d

e

Figure 3: The system AF6

Extσ(AF6 ) = {{a, d, e}, {b, d, e}}, the associated
stable labellings are {(a, in), (b, out), (c, out), (d, in),
(e, in)} and {(a, out), (b, in), (c, out), (d, in), (e, in)}.
When we revise AF6 by ϕ using the pseudo-distance-based
operator induced by the pseudo-distance d(1,9,10) on
labellings, the obtained result is a system with the following
labellings: {(a, in), (b, out), (c, out), (d, out), (e, out)}
and {(a, out), (b, in), (c, out), (d, out), (e, out)}. When the
pseudo-distance d(9,1,10) is used, we get {(a, in), (b, out),
(c, out), (d, undec), (e, undec)} and {(a, out), (b, in),
(c, out), (d, undec), (e, undec)} as labellings of the result
systems.

If the second step of the process, i.e. the generation of the
resulting argumentation systems, as expected, takes account
for the labellings, the structure of the resulting graphs will
be different: when the refused arguments are out , it means
that there exists an attack from an accepted argument to a
refused argument. When the arguments are undec, those
attacks do not exist.
With the first pseudo-distance d(1,9,10), it is cheaper
to change an argument from in to out than to undec.
Such a pseudo-distance allows for choosing candidates
which refuse arguments. Contrarily, the pseudo-distance
d(9,1,10) allows for choosing candidates which accept more
arguments.

Like operators based on extensions, pseudo-distance-
based operators using labelling exhibit good logical prop-
erties:
Proposition 4. Let σ be any semantics. Any labelling-
pseudo-distance-based revision operator ?dL satisfies the
rationality postulates (AE1) - (AE6).

Revision at the System Level
The operators defined in the previous section focus on the
candidates that are as close as possible to the extensions
of the input system. However, they do not indicate how
to generate the corresponding argumentation systems, i.e.,
the argumentation systems such that the union of their
extensions coincides with the selected candidates. This task
is the second step in the definition of the revision operator.

In order to achieve this task, we consider a mappingAFσ
from 22

A
to 2AFsA , called generation operator, that asso-

ciates with any set C of candidates a set of argumentation
systems such that Extσ(AFσ(C)) = C.

An important point we would like to discuss is the fact
that a revision operator ? outputs a set of argumentation sys-
tems, and not a single argumentation system in the general
case. Actually, this is a consequence of the expressiveness
of the language of revision formulae we want to consider. In
order to illustrate it, consider A = {a, b, c, d}, and AF7 as
represented in Figure 4.

a

b

c

d

Figure 4: The system AF7

a

b

c

d

AF8

a

b

c

d

AF9

Figure 5: Revision of AF7
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The extensions of AF7 are the same ones for the stable
and preferred semantics, Extσ(AF7 ) = {{a, b}, {a, c}}.
Let ϕ4 = (¬b ∨ c) ∧ (¬c ∨ b). Observe that b and c play
symmetric roles, both in AF7 and in ϕ4. When computing
the result of the revision with the revision operator based
on Hamming distance between candidates, we obtain two
candidates {a} and {a, b, c}. We present in the following
generation operators leading to the two corresponding argu-
mentation systems AF8 (corresponding to candidate {a})
and AF9 (corresponding to candidate {a, b, c}). Clearly,
choosing one of these systems would require to accept some
arbitrariness given the symmetric roles of b and c.

Let us now show that for every semantics σ, generation
operators AFσ do exist.

Proposition 5. Whatever the semantics σ, for every non-
empty set C of candidates from 2A, such that ∅ 6∈ C, there
exists a finite set S ⊆ AFsA such that C = Extσ(S).

For instance, for every candidate C, we can build the
naive system 〈A,RC〉 with RC = {(x, y) ∈ A × A|x ∈
C, y 6∈ C}.

So now we can define our revision operators:

Definition 12. Given a semantics σ, a faithful assignment
that matches every argumentation system to a total pre-order
≤σAF , and a generation operator AFσ , the corresponding
revision operator ? is defined by:

AF ? ϕ = AFσ(min(Aσϕ,≤σAF )).

One of the key results of the paper is that:

Proposition 6. Every revision operator ? defined following
Definition 12 satisfies the postulates (AE1)-(AE6).

By construction, our revision operators are ensured to deal
with minimality of change of arguments statuses, but not
with minimality of change of the attack relation. Indeed, the
rationality postulates ask for preserving as much as possi-
ble the statuses of arguments in the input system: doing so
while ensuring that the revision formula is satisfied does not
usually imply a minimal change of the attack relation, and
vice-versa. As a matter of illustration, consider the argumen-
tation systems AF10 , AF11 , AF12 , and AF13 .

a b

c de

AF10

a b

c de

AF11

a b

c de

AF12

a b

c de

AF13

Figure 6: Minimal Change

Suppose that our goal is to reject e, that is to get a system
so that e does not appear in any extension. So we consider
the revision formula ϕ5 = ¬e. A minimal change on the
attack relation of AF10 leads to AF11 or AF12 : each of
them differs with AF10 on a single attack. This contrasts
with AF13 since the change on the attack relation required
to go from AF10 to AF13 is strictly greater than the change
on the attack relation required to go from AF10 to AF12 .
Each of these four systems has a unique extension for the
usual semantics4: {b, d, e} for AF10 , {b, c, d} for AF11 ,
and {b, d} for AF12 and AF13 . Hence, the change on the
statuses of arguments achieved when going from AF10 to
AF12 or AF13 is strictly smaller than the change on the
statuses of arguments achieved when going from AF10 to
AF11 .

During the generation process, minimization can actually
be considered in at least two ways: either minimizing
change on the attack relation, or minimizing the number
of output systems. In fact, these ways can be combined,
either with a more important role to minimal change of the
attack relation, or with a more important consideration for
minimization of the cardinality.

Thus, a notion of minimal change on the attack
relation can be defined through a notion of pseudo-
distance dg on the attack relation. Such a pseudo-distance
can be for instance the Hamming distance, given by
dgH(AF1 ,AF2 ) = |(R1 \ R2) ∪ (R2 \ R1)|. The dgH
distance between two argumentation systems corresponds
to the number of attacks that must be added or removed to
make them identical. But we can consider more elaborated
edition pseudo-distances such as those given in (Coste-
Marquis et al. 2007). Each pseudo-distance dg induces
a pre-order between argumentation systems, defined by
AF1 ≤dgAF AF2 iff dg(AF1 ,AF ) ≤ dg(AF2 ,AF ).
We can easily extend this notion to a distance be-
tween a system AF and a set of systems AFs:
dg(AF,AFs) = minAFi∈AFs(dg(AF,AFi)).

To give priority to minimal change on the attack relation,
we define a generation operator that builds sets of argumen-
tation systems which cover the candidates; then chooses the
ones which minimize a function of the pseudo-distance dg;
and finally retains the sets which are minimal in terms of
cardinality.
Definition 13. Given C a set of candidates, σ a semantics,
dg a pseudo-distance between graphs and AF an argumen-
tation system, AFdg,AFσ is defined as:

AFdg,AFσ (C) =
⋃
{AFs ∈ sets|card(AFs) is minimal}

with
sets = {AFs | Extσ(AFs) = C

and
∑

AFi∈AFs
dg(AF,AFi) is minimal}.

4For instance, for the complete, the preferred, the stable and the
grounded semantics.
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A second approach consists in giving priority to the min-
imality of the output cardinality. It builds first sets of sys-
tems that cover the set of candidates with a minimal number
of systems, and then chooses the sets which minimize the
change on the attack relation.
Definition 14. Given C a set of candidates, σ a semantics,
dg a pseudo-distance between graphs and AF an argumen-
tation system, AFcard,AFσ is defined by:
AFcard,AFσ (C) =

⋃
{AFs ∈ sets|∑
AFi∈AFs

dg(AF,AFi) is minimal}

with
sets = {AFs | Extσ(AFs) = C

and card(AFs) is minimal}.
These two approaches are not equivalent:

Proposition 7. The generation operators AFdg,AFσ and
AFcard,AFσ are distinct.
Example 2. Let us now give an example of revision with
the approaches previously defined. The input system AF14

is given on Figure 7.

a b c

Figure 7: The framework AF14

Its unique stable extension is {a, b, c}. The revision for-
mula is ϕ6 = (a∨ b)∧ (¬a∨¬b), the revision operators are
?dg such that

AF ?dg ϕ = AFdg,AFσ (min(Aσϕ,≤
σ,dH
AF ))

and ?card such that

AF ?card ϕ = AFcard,AFσ (min(Aσϕ,≤
σ,dH
AF ))

both based on the Hamming distance on candidates and the
Hamming distance on attack relations. Each one uses one of
the previously defined generation operators.
Let us first compute the revised candidates. It is easy to find
that {a, c} and {b, c} are the minimal models of ϕ6 with re-
spect to the Hamming distance and the stable extension of
the input system.
Now we present the result for the two revision operators.
When minimizing the change on attack relation, the gener-
ation step produces two argumentation systems, AF15 and
AF16, each one with a single difference from the input
graph.

a b c

AF15

a b c

AF16

Figure 8: AF14 ?dg ϕ6

Contrastingly, the revision of AF14 with operator ?card
gives as output a unique argumentation system AF17 with
two differences with respect to the Hamming distance on the
attack relation.

a b c

AF17

Figure 9: AF14 ?card ϕ6

While the two approaches exemplified here use the sum
to aggregate the pseudo-distances, any aggregation func-
tion can be used instead. For instance, the min, the max,
or any OWA (Ordered Weighted Average (Yager 1988)).
These kind of aggregation function allows to combined dis-
tance and cardinality without giving priority to one of them.
For instance, a specific ordered weighted average OWAb is
given by:
• v(S) = (dg(AF1, AF ), . . . , dg(AFk, AF ))5 with
S = {AF1, . . . , AFn} and k the cardinal of the largest
set (the vectors corresponding to smaller sets are normal-
ized by adding the appropriate number of zeroes in front
of the vector).

• wi = 2i−1

• OWAb(E) =
∑k
i=1 wiv(E)[i]

With the OWAb function, a set of frameworks E1 such
that the vector of pseudo-distances is v1 = (1, 1, 4) is
less preferred than a set E2 with v2 = (1, 2, 3), because
OWAb(E1) = 19 > OWAb(E2) = 17.
A set E2, with three argumentation systems, can also be
preferred to a set E3 with only two systems, if those two
systems are too far from the input systems. For instance, if
the vector of pseudo-distances is (1, 4), once normalized to
v3 = (0, 1, 4), OWAb(E3) = 18, and soE2 is still preferred
in spite of its larger cardinality.

It is worthwhile to note that aggregation functions can
also be used alone to define a generation operator. Given an
aggregation function f , we define a pre-order ≤f such that
E1 ≤f E2 iff f(E1) ≤ f(E2). For any aggregation func-
tion on sets of argumentation systems, a generation operator
is AF fσ given by

AFfσ(C) ∈ min({E = {AFi}|Extσ(E) = C},≤f}.

All proposed approaches cannot guarantee to produce a
single set of argumentation systems. For instance, two sets
may have the same cardinality and the same pseudo-distance
from the input system with respect to the pseudo-distance
dg.
The result can then be defined following one of the two op-
tions below:
• The result is defined as the union of all the sets. The rea-

son is that these sets represent the uncertain result of the
revision, so we keep all of them to avoid arbitrary choice.
The main default of this method is that the size of the re-
sult is increased.

• A tie-break rule is used to select a single set of AFs. The
agent is obliged to do an arbitrary choice. Note that it
5We suppose that the vector is sorted in increasing order.
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does not prevent the revision operator from satisfying ra-
tionality postulates (because the postulates deal with ex-
tensions, not with attack relations).

Some Computational Aspects
A first interesting question concerns the size of the output of
revision operators. The first step of the revision can lead to
an exponential number of candidates, in terms of the num-
ber n of arguments in the input system. It is directly related
to the revision formula. Given a pseudo-distance-based re-
vision operator, the size of the output depends also on the
generation operator which is used at the second step of the
process. In the worst case, the number of argumentation sys-
tems which are generated is exponential in n:

Proposition 8. If ? is a revision operator based on the gen-
eration operator AFdg,AFσ , then the size of AF ? ϕ can be
exponential in |A|.

The complexity of the inference problem has also to be
identified. Given a revision operator ? for argumentation
systems and a semantics σ, the inference problem from a re-
vised argumentation system is the following decision prob-
lem:

• Input: An argumentation system AF on A, and two for-
mulae ϕ, ψ ∈ LA.

• Query: Does AF ? ϕ|∼σψ hold?

Unsurprisingly, provided that σ ensures the existence of
an extension for every AF , the inference problem from a
revised argumentation system AF ? ϕ is at least as hard as
the inference problem from AF . In formal terms:

Proposition 9. Let C be a complexity class which is closed
under polynomial-time reductions. Suppose that ? satisfies
(AE1) to (AE6), and that the semantics σ ensures the exis-
tence of an extension for every AF . If the inference problem
from an argumentation system is C-hard, then the inference
problem from a revised argumentation system is C-hard as
well.

Clearly enough, it can be the case that the inference prob-
lem from a revised argumentation system AF ? ϕ is strictly
harder than the inference problem from AF (unless P =
NP). For instance, under the restriction when the queries ψ
are restricted to arguments (or more generally, CNF formu-
lae on A), it is easy to show that the inference problem from
AF w.r.t. the grounded semantics can be solved in polyno-
mial time. Contrastingly:

Proposition 10. Suppose that ? satisfies (AE1) and (AE3).
The inference problem from a revised argumentation system
w.r.t. the grounded semantics is coNP-hard, even under the
restriction when the queries ψ are restricted to CNF formu-
lae on A.

Our results show that the revision of argumentation sys-
tems is comparable to the revision of propositional formu-
lae from a computational point of view. Especially, it may
lead to harder computational problems: on the one hand, the
revision of an argumentation system may require exponen-
tially many systems for being represented (this is reminis-

cent to the non-compilability of some belief revision opera-
tors (Cadoli et al. 1999)); on the other hand, inference may
also become harder (Nebel 1998).

Related Work
Some previous works have already considered the change is-
sue for argumentation systems à la Dung. Thus, Boella, Kaci
and Van der Torre, (2009a; 2009b) have studied abstraction
and refinement principles. An abstraction is a reduction of
the attack relation or of the set of arguments, whereas a re-
finement is the addition of attacks or arguments to the sys-
tem. The authors focused on the study of semantics which
ensure the existence of a unique extension (for instance, the
grounded extension), and they formulated some principles of
the form “if we do this particular change, then the extension
of the result is like this”. They identified some principles
satisfied by the grounded semantics.

Cayrol, Dupin de Saint-Cyr and Lagasquie-Schiex (2010)
studied the addition of an argument to an argumentation sys-
tem. They stated some properties that can be satisfied when
a change occurs in an argumentation system, and pointed
out those which are satisfied (and under which conditions)
when an argument (and the attacks concerning it) is added
to the graph. With Bisquert, they did a similar study about
the deletion of an argument (Bisquert et al. 2011).

In (Kontarinis et al. 2013), the authors studied the prob-
lem of minimal change to satisfy a goal based on arguments
acceptance. The main difference between this work and our
approach is that minimal change for them refers to the num-
ber of changes to perform on the attack relation, while we
focus on arguments statuses.

Baumann (2012) also studied the minimal change prob-
lem in abstract argumentation. He reported some bounds on
the number of modifications of the attack relation to make so
as to enforce a given set of arguments. These bounds depend
on the semantics and the type of change allowed.

Discussion
An abstract argumentation system à la Dung is defined by a
set of arguments and an attack relation. All the works dis-
cussed in the previous section generate changes in an argu-
mentation system by adding new arguments, while trying
to minimize the modifications of the attack relation. Con-
trastingly, if we consider that the meaning of an argumen-
tation system is given by the set of arguments that are ac-
cepted or rejected, then minimal change means to minimize
the change on the (status of the) set of arguments.

Giving the priority on the minimization of the attack re-
lation or on the minimization of the arguments status is re-
ally a question of considering the status of the arguments
as first-class citizen of argumentation systems or only as a
by-product of the graph. Whereas this last option received
considerable attention these last years, there is no work ex-
cept this one which concentrates on the first optic.

In addition, previous works also suppose that one can add
as many arguments as one wants in order to modify the sta-
tus of some arguments. In some cases this is perfectly sen-
sible, but in other cases it is difficult to assume that such
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arguments are available. Consider for instance the case of
big society debates, where political parties, economists, and
other specialists have already put forward all the arguments
in favor of or against some decision (for example whether
the state has to increase or decrease individual taxation). If
a political leader wants to change the current decision, then
he will need to be very brilliant in order to find an argument
that has not been already pointed out by experts. More prob-
ably she will rather try to change the beliefs (or preferences)
of the people on the fact that some arguments do or do not
attack other ones.

Let us now mention some contexts where allowing only
changes of the attack relation is very natural.

A first example of application for the revision process
without adding new arguments is the reception of a unjus-
tified but trustworthy information (which is a particular case
of argument from authority). This scenario is frequent in ap-
plications of argumentation on social network debates (Gab-
briellini and Torroni 2013). When an agent A initiates a de-
bate about an argument α, if another agent B does not agree
with A about α but considers that A is trustworthy, B has
to revise her beliefs to accept α. In this case, agent B can
change her beliefs even if agent A has not introduced a new
argument in the debate. So, B has to reconsider the attacks
between some arguments, but not the set of arguments itself.

A second example concerns applications of argumenta-
tion on public opinion, and is related to the society debates
motivation we discussed above: suppose that an argumenta-
tion system represents the opinion of some groups of agents,
where an attack between arguments exists if the majority of
the group supports it. If a group leader wants to modify the
statuses of arguments, then she can perform a revision of
the input system. The resulting argumentation systems may
help her to determine the attacks she has to focus on so as to
modify the majoritarian opinion.

A third context concerns preference-based argumentation
(see (Amgoud and Cayrol 2002)). In such argumentation
systems some arguments attacks each other (in particular if
the arguments are based on logical formulae and rebuttal, at-
tack is symmetric), and the preference relation determines if
an attack succeeds or not. So it is possible to modify the at-
tack relation just by modifying the preferences of the agent.
A similar case of revision can occur with value-based argu-
mentation frameworks (Bench-Capon 2002): each argument
is mapped to a value, and a value can be “stronger” than an-
other. Comparison of values can lead an attack to fail. In this
case, a change of values leads to a change of the (succeed-
ing) attacks.

A final point we want to discuss is the fact that our re-
vision methods output a set of argumentation systems in-
stead of a single one. At the beginning of Section “Revi-
sion at the System Level”, we advocated the fact that this
is necessary to avoid arbitrary choices. We want to add that
obtaining a set as result of a revision process is just usual
in most belief revision settings. It is important to note that
the canonical representation of AGM contraction/revision
operators by use of relational partial-meet functions (Al-
chourrón, Gärdenfors, and Makinson 1985) defines the re-
sult of the process as a set of minimal theories. It turns out

that the language used makes it possible to produce a single
theory from this set using intersection (conjunction). But in
languages where this is not possible it seems natural to keep
a set as result. For instance (Fagin et al. 1986) defines flocks
that are the set of logical databases which result of the re-
vision of a single logical database. Flocks have also been
used as sets of possible results for combination/merging op-
erators (Baral, Kraus, and Minker 1991; Baral et al. 1992;
Konieczny 2000).

Conclusion and Future Work
In this paper, we investigated the revision problem for ab-
stract argumentation systems à la Dung. We focused on revi-
sion as minimal change of the arguments statuses. We intro-
duced a language of revision formulae which is expressive
enough for enabling the representation of complex condi-
tions on the acceptability of arguments in the revised sys-
tem. We showed how AGM belief revision postulates can
be translated to the case of argumentation systems. We pro-
vided a corresponding representation theorem in terms of
minimal change of the arguments status, and pointed out
several pseudo-distance-based revision operators satisfying
the postulates. We investigated some computational aspects
of revision of argumentation systems.

We are currently encoding our revision operators by rep-
resenting argumentation systems with logical constraints (in
a similar way to (Besnard and Doutre 2004)), so as to be
able to benefit from the power of constraint solvers to com-
pute revised systems. At the time of writing this paper, the
revision of the stable extensions of an AF by a logical con-
straint is encoded. Some future work is to define an en-
coding for other semantics, and to encode some generation
operators. Informations about this work is available here:
http://www.cril.fr/DynArgs/revision.html.

There are some things still to do concerning this topic. Let
us quote some of them now.

Designing revision approaches which allow to combine
the two kinds of revision operators of argumentation systems
would be useful: the ones that allow only addition of new ar-
guments and no change of the attack relation, and the ones
that allow only changes of the attack relation and no addi-
tion of new arguments. Allowing both changes in a sensible
way is an interesting question, especially in the presence of
constraints (stating for instance that some arguments must
remain accepted, or that some attacks cannot be changed).

Associating a minimal set of argumentation systems with
a set of candidates is another important issue, not only for
our revision purpose. It is related to the problem of realiz-
ability (Dunne et al. 2013), where the question is to find a
(unique) argumentation system that corresponds to a set of
candidates. This problem can also be studied in the case of
labellings, and used for the generation of argumentation sys-
tems from a set of labellings, exploiting labelling-distance-
based revision operators defined in this paper.
Finally, it is interesting to study if some restriction on the
faithful assignment could allow to guarantee that the output
of the revision operator is a single AF, in a similar way to
(Delgrande and Peppas 2011).
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