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Abstract
The tendency to accept or reject arguments based on
own beliefs or prior knowledge rather than on the rea-
soning process is called the belief-bias effect. A psy-
chological syllogistic reasoning task shows this phe-
nomenon, wherein participants were asked whether they
accept or reject a given syllogism. We discuss one case
which is commonly assumed to be believable but not
logically valid. By introducing abnormalities, abduction
and background knowledge, we model this case under
the weak completion semantics. Our formalization re-
veals new questions about observations and their ex-
planations which might include some relevant prior ab-
ductive contextual information concerning some side-
effect. Inspection points, introduced by Pereira and
Pinto, allow us to express these definitions syntactically
and intertwine them into an operational semantics.

Keywords: Abductive Reasoning; Side-effects; Inspection
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1 Introduction
Whenever discovering abductive explanations for some
given primary observation, one may wish to check too
whether some other given additional secondary observa-
tions are logical consequences of the abductive explanations
found for the primary observation. The primary explanations
may be used to explain the secondary observations, whereas
the secondary explanations cannot be used to explain the pri-
mary observations. We show this type of reasoning requires
the characterization of a new abduction concept and mecha-
nism, that of contextual abduction. We formalize contextual
abduction and employ it to understand and justify the belief-
bias effect in human reasoning by addressing syllogisms.

Evans, Barston, and Pollard (1983) made a psychological
study showing possibly conflicting processes in human rea-
soning. Participants were presented syllogisms and had to
decide whether they were logically valid. Consider Sadd:
PREMISE1 No addictive things are inexpensive (not costly).
PREMISE2 Some cigarettes are inexpensive (not costly).
CONCLUSION Therefore, some addictive things are not cigarettes.
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Although the conclusion does not necessarily follow from
the premises, participants assumed the syllogism to be log-
ically valid. Evans, Barston, and Pollard (1983) concluded
that they have been unduly influenced by their own beliefs.
In the following, we explain the belief-bias effect by abduc-
tive reasoning and its side-effects.

2 Preliminaries
We restrict ourselves to datalog (first-order) programs, ie.
the set of terms consists only of constants and variables. A
logic program P is a finite set of clauses of the form

A← A1 ∧ . . . ∧An ∧B1 ∧ . . . ∧Bm,
where A and Ai, 1 ≤ i ≤ n, are atoms and Bj , 1 ≤ j ≤ m,
are negated atoms. A is the head and A1 ∧ . . . ∧An ∧B1 ∧
. . . ∧ Bm is the body of the clause. We abbreviate the body
of a clause by body. A ← > and A ← ⊥ are special cases
of clauses denoting positive and negative facts, respectively.
If an argument is written with an upper case letter, it is a
variable; otherwise it is a constant. In the sequel, we assume
P to be ground, containing all the ground instances of its
clauses. The set of all atoms occurring in P is atoms(P). An
atom is undefined in P if it is not the head of some clause in
P and the corresponding set of these atoms is udef(P).

2.1 Three-Valued Łukasiewicz Semantics
Table 1 shows the three-valued Łukasiewicz (1920) seman-
tics. Interpretations are represented by pairs 〈I>, I⊥〉, where

I> = {A ∈ BP | A is mapped to >},
I⊥ = {A ∈ BP | A is mapped to ⊥}.

BP is the Herbrand base wrt P . A model of P is an interpre-
tation which maps each clause occurring in P to >.

2.2 Weak Completion Semantics
Weak completion semantics (Hölldobler and Kencana Ramli
2009a) seems to adequately model Byrne’s (1989) suppres-
sion task (Dietz, Hölldobler, and Ragni 2012) and Wa-
son’s (1968) selection task (Dietz, Hölldobler, and Ragni
2013). Consider the following transformation for P:
1. Replace all clauses with the same head A ← body1,

. . . , A← bodyn by A← body1 ∨ . . . ∨ bodyn.
2. For all atoms A, if A ∈ udef(P) then add A← ⊥.
3. Replace all occurrences of← by↔.
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F F

> ⊥
⊥ >
U U

∧ > U ⊥
> > U ⊥
U U U ⊥
⊥ ⊥ ⊥ ⊥

∨ > U ⊥
> > > >
U > U U
⊥ > U ⊥

←Ł > U ⊥
> > > >
U U > >
⊥ ⊥ U >

↔Ł > U ⊥
> > U ⊥
U U > U
⊥ ⊥ U >

Table 1: >, ⊥, and U denote true, false, and unknown, respectively.

The resulting set of equivalences is called the completion
of P (Clark 1978). If Step 2 is omitted, then the resulting set
is called the weak completion of P (wcP).

Hölldobler and Kencana Ramli (2009b) showed that each
weakly completed program admits a least model. Stenning
and van Lambalgen (2008) devised an operator which has
been generalized for first-order programs by Hölldobler
and Kencana Ramli (2009a): Let I be an interpretation
in ΦP(I) = 〈J>, J⊥〉, where
J>= {A |there exists A← body ∈ P with I(body) = >},
J⊥= {A |there exists A← body ∈ P and

for all A← body ∈ P we find I(body) = ⊥}.
As shown by Hölldobler and Kencana Ramli, the least fixed
point of ΦP is identical to the least model of the weak com-
pletion of P (lmŁwcP). Starting with the empty interpreta-
tion I = 〈∅, ∅〉, lmŁwcP can be computed by iterating ΦP .1

3 Reasoning in an Appropriate Logical Form
We follow the approach of Stenning and van Lambal-
gen (2005; 2008), who proposed to model human reason-
ing by a two step process: Firstly, human reasoning is to be
modeled by setting up an appropriate representation and,
secondly, reasoning wrt this representation.

3.1 Integrity Constraints
One should observe that the first premise no addictive things
are inexpensive is equivalent to if something is inexpensive,
then it is not addictive. As weak completion semantics does
not allow negative heads in clauses, for every negative con-
clusion p(X) we need to introduce an auxiliary formula
p′(X) together with the clause p(X)← p′(X). We obtain a
(preliminary) representation of the first premise of Sadd:

add′(X) ← inex(X),

add(X) ← add′(X),
where add(X), add′(X), and inex(X) denote that X is ad-
dictive, not addictive, and inexpensive, respectively.

With the introduction of these auxiliary atoms, the need
for integrity constraints arises. An interpretation which maps
both, add(a) and add′(a), to true for some constant a should
not be a model. This can be represented by a specific type
of integrity constraint (IC ), a logical formula of the form
⊥ ← IC body, where IC body is a conjunction of atoms.
For our running example we obtain the integrity constraint:

⊥ ← add(X) ∧ add(X)′.
However, the Φ operator does not consider clauses of this
form. We need to apply a two step approach: firstly, com-
pute the least model and secondly, verify whether it respects

1Dietz, Hölldobler, and Wernhard (2014) showed that the weak
completion semantics corresponds to the well-founded seman-
tics (Van Gelder, Ross, and Schlipf 1991) for tight logic programs.

the IC , where an interpretation I respects IC iff for each
⊥ ← IC body in IC , we find that I(IC body) ∈ {⊥,U}.2

For the following examples, whenever there is a p(X) and
its p(X)′ counterpart, we implicitly assume its correspond-
ing integrity constraint, IC p: ⊥ ← p(X) ∧ p(X)′.

3.2 Abnormalities
Stenning and van Lambalgen proposed the idea to imple-
ment conditionals by default licenses for implications. This
can be achieved by adding an abnormality predicate to the
antecedent of the implication and initially assuming that the
abnormality predicate is false. Following this idea, the initial
program representing PREMISE1 in Sadd is extended to:

If something is inexpensive and not abnormal,
then it is not addictive.

Nothing (by default) is abnormal (regarding PREMISE1).

3.3 Background Knowledge and Belief-Bias
A direct first-order representation of PREMISE2 is

There exists a cigarette which is inexpensive. (1)
which includes two pieces of information. Firstly, a more
specific one, namely that there exists something, say a,
which is a cigarette. Secondly, as Evans et al. have dis-
cussed, it contains background knowledge or belief that hu-
mans seem to have, which, in this context, we assume to be

Cigarettes are inexpensive (2)
compared to other addictive things, which implies (1) and bi-
ases the reasoning towards a representation. This belief bias
together with the idea to represent conditionals by default
licenses for implication leads to

If something is a cigarette and not abnormal,
then it is inexpensive.

Nothing (by default) is abnormal (regarding PREMISE2).
Additionally, we have a second piece of background knowl-
edge, viz. it is commonly known that

Cigarettes are addictive. (3)
This belief together with (2), leads to

If something is a cigarette,
then it is abnormal (regarding PREMISE1).

The information contained in the two premises of Sadd is
encoded as the program Padd as follows:

cig(a) ← >,
add′(X) ← inex(X) ∧ ab1(X),

add(X) ← add′(X),
ab1(X) ← ⊥,
ab1(X) ← cig(X),

inex(X) ← cig(X) ∧ ab2(X),
ab2(X) ← ⊥.

2This corresponds to the definition applied for the well-founded
semantics in (Pereira, Aparı́cio, and Alferes 1991).
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Finally, we impose IC add : ⊥ ← add(X) ∧ add′(X).

4 Abductive Framework
Following Kakas, Kowalski, and Toni (1993) we consider an
abductive framework consisting of a program P as knowl-
edge base, a collection of atoms A of abducibles syntacti-
cally represented by the set of the (positive and negative)
facts for each undefined ground atom in P , a set of integrity
constraints IC , and the logical consequence relation |=lmwc

Ł ,
where P |=lmwc

Ł F if and only if lmŁwcP(F ) = > for a
formula F . An observation is a non-empty set of literals. An
explanation E is a consistent subset of A.
Definition 1 Let 〈P,A, IC , |=lmwc

Ł 〉 be an abductive frame-
work, O an observation, E an explanation, IC a set of in-
tegrity constraints, and |=lmwc

Ł the consequence relation de-
fined for all formulas F .
O is explained by E given P and IC iff P ∪ E |=lmwc

Ł O,
where P 6|=lmwc

Ł O and lmŁwc (P ∪ E) respects IC .
O is explained given P and IC iff there exists an E such

that O is explained by E given P and IC .
We distinguish between two forms of reasoning:
F follows skeptically from P , IC and O iff O can be ex-

plained given P and IC , and for all minimal (or otherwise
preferred) explanations E we find that P ∪ E |=lmwc

Ł O.
F follows credulously from P , IC andO iff there exists a

minimal (or otherwise preferred) explanation E such that
P ∪ E |=lmwc

Ł O.
An important extension of abduction pertains to the issue
that, whenever discovering explanations for some given pri-
mary observation, one may wish to check too whether some
other given additional secondary observations are true, being
a logical consequence of the abductive explanations found
for the primary observation.3

5 Contextual Abductive Explanations
Let’s consider again Padd, where its weak completion con-
sists of the equivalences:

cig(a) ↔ >,
add′(a) ↔ inex(a) ∧ ab1(a),

add(a) ↔ add′(a),
ab1(a) ↔ cig(a),

inex(a) ↔ cig(a) ∧ ab2(a),
ab2(a) ↔ ⊥.

Its least model, lmŁwcPadd, is
〈{cig(a), inex(a), add(a), ab1(a)}, {add′(a), ab2(a)}〉,

from which we cannot derive the CONCLUSION in Sadd.
Obviously, the CONCLUSION is something about an object
which is not a. The first part of this conclusion is an observa-
tion, let’s say about b: Oadd(b) = {add(b)}, which we need
to explain as described in Section 4. The set of abducibles
is: A(Padd∪Oadd(b)) = {cig(b)← >, cig(b)← ⊥}.
We have the following minimal explanations for Oadd(b):
E
cig(b)

= {cig(b)← ⊥} and Ecig(b) = {cig(b)← >}.

3Reuse of contextual abductions, by resorting to an implemen-
tation of tabled abduction for well-founded semantics, is reported
in (Saptawijaya and Pereira 2013).

The corresponding least models of the weak completion are:
lmŁwc (Padd ∪ Ecig(b)) = 〈{add(b)}, {cig(b), inex(b), ...}〉,
lmŁwc (Padd ∪ Ecig(b)) = 〈{add(b), cig(b), inex(b), ...}, ...〉.
Under credulous reasoning we conclude, given explana-
tion E

cig(b)
that the CONCLUSION of Sadd is true, as there

exists something addictive which is not a cigarette.
However, Oadd(b) can also be explained by Ecig(b). We
would prefer to reflect that the first explanation describes
the usual case and the second describes the exceptional one.

6 Inspection Points
In the example we can easily identify from the context what
is the exceptional case. But this is not stated in our program
yet. For this purpose we apply inspection points, originally
presented in (Pereira and Pinto 2011). We now discuss this
approach and show how inspection points can be modeled
in our example, concerning its abducibles. Given an atom A,
we introduce the following two reserved (meta-)predicates:

inspect(A) and inspect¬(A),
that are special cases of abducibles. They differ from usual
abducibles in the way that they can only be abduced when-
ever A or ¬A have been abduced somewhere else already:
an abductive solution or explanation E is only valid when
for each inspect(A) it contains, respectively inspect¬(A), it
also contains a corresponding A, respectively ¬A.

One should observe that for a treatment of inspection
points for all literals in a program and not just the abducible
ones, we would simply need to adopt the program transfor-
mation technique in (Pereira and Pinto 2011), which recur-
sively relays inspection of non-terminal literals to the base
inspection of terminals.

6.1 Usual Contextual Abduction
Let us modify our previous example with inspection points.
The new program, Pinsp

add , has a new ab1-clause:
(Padd\ {ab1(X)← cig(X)})∪

{ab1(X)← inspect(cig(X))}.
Suppose again that b is addictive, i.e. Oadd(b) = {add(b)}.
As cig(b) is unknown, inspect(cig(b)) is false, and ab1(b)
is false rather than unknown that is, its falsity is obtained
because nothing is known about cig(b), and there exists
no observation to be explained and which abduces cig(b).
The only minimal explanation for Oadd(b) is generated
by inex(b) being false, achieved by lmŁwc (Pinsp

add ∪Ecig(b)):
〈{add(b)}, {add′(b), cig(b), ab1(b), inex(b), ab2(b)}〉.
Now, even under skeptical reasoning, we conclude that
there exists an addictive thing which is not a cigarette.

6.2 Contextual Side-effects
Let us extend Sadd with the conditional:

If something is sold in the streets and
there is no reason to believe it is cigarettes, then it is illegal.
Accordingly, our new program Pinsp

ill is defined as:
Pinsp
add ∪ {ill(X)← streets(X) ∧ inspect¬(cig(X))}.

We only conclude that something is illegal when we have
abduced somewhere else that it is not a cigarette. Note,
that we can abduce Estreets(b) = {streets(b) ← >} to
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partly explain Oill(b) = {illegal(b)}. Assume addition-
ally, we observe Oadd(b) which is explained by E

cig(b)
. The

lmŁwc (Pinsp
ill ∪ E

cig(b)
∪ Estreets(b)) is:

〈{add(b), streets(b), illegal(b), inspect¬(cig(b))},
{add′(b), cig(b), ab1(b), inex(b), ab2(b)}〉

thus, illegal(b) is true. We define side-effects as follows:
Definition 2 Given a background knowledge P and two ob-
servations O1 and O2, both explained given P and IC .
O2 is a necessary contextual side-effect of O1 given P

and IC iff for all explanations E1 for O1, there exists
some explanation E2 for O2 containing abducibles of the
form inspect(A), or respectively inspect¬(A), and for
all such abducibles for which abducible A, respectively
¬A, is not in E2, and at least one exists, then it is in E1.
O2 is a strict necessary contextual side-effect of O1

given P and IC iff O2 is a necessary contextual side-
effect of O1 given P and IC and all explanations E1 for
O1 are also all the explanations for O2.
O2 is a possible contextual side-effect of explained O1

given P and IC iff there exists an explanation E1 for O1

and an explanation E2 for O2 containing abducibles of
the form inspect(A), or respectively inspect¬(A), and
for all such abducibles for which abducible A, respec-
tively ¬A, is not in E2, at least one exists, then it is in E1.

O2 is a strict possible contextual side-effect ofO1 given P
and IC iff O2 is a possible contextual side-effect of O1

given P and IC and there exists an explanation E1 forO1

such that E1 is also an explanation for O2.
The idea behind necessary contextual side-effects, is, that
every explanation E1 for O1 affords us with one complete
explanation under which some incomplete explanation E2
for O2 is necessarily completed. The idea behind possible
contextual side-effects, is, that there is at least one expla-
nation E1 for O1 which affords us with one complete ex-
planation under which some incomplete explanation E2 for
O2 can be completed. Summing up, Oadd(b) is a strict nec-
essary contextual side-effect of explained Oinex(b) given
Pinsp
add and IC add and Oill(b) is a possible contextual side-

effect of Oadd(b) given Pinsp
ill and IC add but not vice versa.

7 Conclusion
Taking weak completion semantics as starting point, we
showed with a running example the need for possible ex-
tensions in abductive reasoning. Introducing the concept of
inspection points in our framework by applying reserved
(meta-)predication for all abductive ground atoms, gives
us the possibility to distinguish between different kinds
of abducibles in a logic program. This distinction allows
to straightforwardly implement the concepts of contextual
side-effects. Torasso et al. (1991) do abduction with the
completion semantics and do not address side-effects.

8 Acknowledgments
We thank Pierangelo DellAcqua for comments and are grate-
ful to the 3 reviewers. The stay of the 2nd author at UNL was
supported by DAAD within the FITweltweit program.

References
Byrne, R. M. J. 1989. Suppressing valid inferences with condition-
als. Cognition 31:61–83.
Clark, K. L. 1978. Negation as failure. In Gallaire, H., and Minker,
J., eds., Logic and Data Bases, volume 1. New York, NY: Plenum
Press. 293–322.
Dietz, E.-A.; Hölldobler, S.; and Ragni, M. 2012. A computational
logic approach to the suppression task. In Miyake, N.; Peebles,
D.; and Cooper, R. P., eds., Proceedings of the 34th Annual Con-
ference of the Cognitive Science Society, 1500–1505. Austin, TX:
Cognitive Science Society.
Dietz, E.-A.; Hölldobler, S.; and Ragni, M. 2013. A computational
logic approach to the abstract and the social case of the selection
task. In Proceedings of the 11th International Symposium on Log-
ical Formalizations of Commonsense Reasoning.
Dietz, E.-A.; Hölldobler, S.; and Wernhard, C. 2014. Modeling the
suppression task under weak completion and well-founded seman-
tics. J. of Applied Non-Classical Logics. accepted.
Evans, J.; Barston, J. L.; and Pollard, P. 1983. On the conflict
between logic and belief in syllogistic reasoning. Memory & Cog-
nition 11(3):295–306.
Hölldobler, S., and Kencana Ramli, C. D. 2009a. Logic programs
under three-valued Łukasiewicz semantics. In Hill, P. M., and War-
ren, D. S., eds., Logic Programming, 25th International Confer-
ence, ICLP 2009, volume 5649 of LNCS, 464–478. Heidelberg:
Springer.
Hölldobler, S., and Kencana Ramli, C. D. 2009b. Logics and net-
works for human reasoning. In Alippi, C.; Polycarpou, M. M.;
Panayiotou, C. G.; and Ellinas, G., eds., International Conference
on Artificial Neural Networks, ICANN 2009, Part II, volume 5769
of LNCS, 85–94. Heidelberg: Springer.
Kakas, A. C.; Kowalski, R. A.; and Toni, F. 1993. Abductive logic
programming. Journal of Logic and Computation 2(6):719–770.
Łukasiewicz, J. 1920. O logice trójwartościowej. Ruch Filo-
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