
A Formalization of Programs in
First-Order Logic with a Discrete Linear Order∗

Fangzhen Lin (flin@cs.ust.hk)
Department of Computer Science

The Hong Kong University of Science and Technology
Clear Water Bay, Kowloon, Hong Kong

Abstract

We consider the problem of representing and reasoning about
computer programs, and propose a translator from a core pro-
cedural iterative programming language to first-order logic
with quantification over the domain of natural numbers that
includes the usual successor function and the “less than” lin-
ear order, essentially a first-order logic with a discrete linear
order. Unlike Hoare’s logic, our approach does not rely on
loop invariants. Unlike typical temporal logic specification of
a program, our translation does not require a transition system
model of the program, and is compositional on the structures
of the program. Some non-trivial examples are given to show
the effectiveness of our translation for proving properties of
programs.

Introduction
In computer science, how to represent and reason about
computer programs effectively has been a major concern
since the beginning. For imperative, non-concurrent pro-
grams that we are considering here, notable approaches in-
clude Dijkstra’s calculus of weakest preconditions (Dijkstra
1976; Dijkstra and Scholten 1990), Hoare’s logic (Hoare
1969), dynamic logic (Harel 1979), and separation logic
(Reynolds 2002). For the most part, these logics provide
rules for proving assertions about programs. In particular,
for proving assertions about iterative loops, these logics rely
on what have been known as Hoare’s loop invariants. In
this paper, we propose a way to translate a program to a
first-order theory with quantification over natural numbers.
The properties that we need about natural numbers are that
they have a smallest element (zero), are linearly ordered, and
each of them has a successor (plus one). Thus we are essen-
tially using first-order logic with a predefined discrete linear
order. This logic is closely related to linear temporal logic,
which is a main formalism for specifying concurrent pro-
grams (Pnueli 1981).

Given a program, we translate it to a first-order theory
that captures the relationship between the input and output
values of the program variables, independent of what one

∗This work was supported in part by HK RGC under GRF
616013.
Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

may want to prove about the program. For instance, trivially,
the following assignment

X = X+Y

can be captured by the following two axioms:

X ′ = X + Y,

Y ′ = Y,

where X and Y denote the initial values of the correspond-
ing program variables and X ′ and Y ′ their values after the
statement is performed. Obviously, the question is how the
same can be done for loops. This is where quantification
over natural numbers come in. Consider the following while
loop

while X < M do { X = X+1 }

It can be captured by the following set of axioms:

M ′ = M,

X ≥M → X ′ = X,

X < M → X ′ = X(N),

X(0) = X,

∀n.X(n+ 1) = X(n) + 1,

X(N) ≥M,

∀n.n < N → X(n) < M,

where N is a natural number constant denoting the total
number of iterations that the loop runs to termination, and
X(n) the value of X after the nth iteration. Thus the third
axiom says that if the program enters the loop, then the
output value of the program variable X , denoted by X ′, is
X(N), the value of X when the loop exits.

The purpose of this paper is to describe how this set of
axioms can be systematically generated, and show by some
examples how reasoning can be done with this set of ax-
ioms. Without going into details, one can already see that
unlike Hoare’s logic, our axiomatization does not make use
of loop invariants. One can also see that unlike typical tem-
poral logic specification of a program, we do not need a tran-
sition system model of the program, and do not need to keep
track of program execution traces. We will discuss related
work in more detail later.

338

Proceedings of the Fourteenth International Conference on Principles of Knowledge Representation and Reasoning

Preliminaries
We use a typed first-order language. We assume a type for
natural numbers (non-negative integers). Depending on the
programs, other types such as integers may be used. For nat-
ural numbers, we use constant 0, linear ordering relation <
(and ≤), successor function n+ 1, and predecessor function
n − 1. We follow the convention in logic to use lower case
letters, possibly with subscripts, for logical variables. In par-
ticular, we use m and n for natural number variables, and x,
y, and z for generic variables. The variables in a program
will be treated as functions in logic, and written as either
upper case letters or strings of letters.

We use the following shorthands. The conditional expres-
sion:

e1 = if ϕ then e2 else e3
is a shorthand for the conjunction of the following two sen-
tences:

∀~x.ϕ→ e1 = e2,

∀~x.¬ϕ→ e1 = e3,

where ~x are all the free variables in ϕ and ei, i = 1, 2, 3.
Typically, all free variables in ϕ occur in e1.

Our most important shorthand is the following expression
which says that e is the smallest natural number that satisfies
ϕ(n):

smallest(e, n, ϕ)
is a shorthand for the following formula:

ϕ(n/e) ∧ ∀m.m < e→ ¬ϕ(n/m),

where n is a natural number variable in ϕ, m a new natu-
ral number variable not in e or ϕ, ϕ(n/e) the result of re-
placing n in ϕ by e, similarly for ϕ(n/m). For example,
smallest(M,k, k < N ∧ found(k)) says that M is the
smallest natural number such that M < N ∧ found(M):
M < N∧found(M)∧∀n.n < M → ¬(n < N∧found(n)).

Finally, we use the convention that free variables in a dis-
played sentence are implicitly universally quantified from
outside. For instance,

n < M → ¬(n < N ∧ found(n))

stands for ∀n.n < M → ¬(n < N ∧ found(n)). No-
tice however, that in the macro smallest(M,k, k < N ∧
found(k)), k is not a free variable.

The following two useful properties about the smallest
macro are easy to prove.
Proposition 1 If ∃nϕ(n), then ∃m.smallest(m,n, ϕ(n)).
Proposition 2 If smallest(N,n, ϕ(n)) ∧ N > 0, then
ϕ(N)∧¬ϕ(N −1). Furthermore, if ϕ(n) has the following
property
∃n[(∀m.m > n→ ϕ(m))∧ (∀m.m ≤ n→ ¬ϕ(m))] (1)

then
smallest(N,n, ϕ(n)) ≡ ϕ(N) ∧ ¬ϕ(N − 1).

Proof: If smallest(N,n, ϕ(n)), then ϕ(N) and ∀m.m <
N → ¬ϕ(m). SinceN > 0, thus ¬ϕ(N−1). Now suppose
that ϕ(N)∧ϕ(N − 1). By (1), for some natural number M ,

[(∀m.m > M → ϕ(m)) ∧ (∀m.m ≤M → ¬ϕ(m))].

This means that M = N − 1, and smallest(N,n, ϕ(n)).

A simple class of programs
Consider the following simple class of programs:
E ::= array(E,...,E) |

operator(E,...,E)
B ::= E = E |

boolean-op(B,...,B)
P ::= array(E,...,E) = E |

if B then P else P |
P; P |
while B do P

Here arrays are program variables, and operators are func-
tions. The difference between the two is that the former
can occur in the left hand side of an assignment and their
values be changed while the latter cannot. Notice that in-
stead of, for example in the case of two dimensional array,
the notation of “array[i][j]” commonly used in programming
languages to refer to an array element, we use the notation
“array(i,j)” more commonly used in mathematics and logic.

As one can see, programs here are constructed using as-
signments, sequences, if-then-else, and while loops. Other
constructs such as if-then and for-loop can be defined using
these constructs. For instance, “if B then P” can be defined
as “if B then P else X=X”.

Given a program P and a set ~X of program variables in-
cluding all variables used in P , we define inductively the set
of axioms for P and ~X , written A(P, ~X), as follows:
• If P is

V(E1,...,Ek) = E

then A(P, ~X) consists of following axioms that say that
only the value of V(E1,...,Ek) is possibly changed:

V ′(~x) = if (x1 = E1 ∧ · · · ∧ xk = Ek) then E
else V (~x),

X ′(~y) = X(~y), X ∈ ~X and X different from V

where ~x = (x1, ..., xk), and k is the arity of the program
variable (array) V . Recall that by our convention, these
variables are universally quantified.

• If P is

if B then P1 else P2

then A(P, ~X) is constructed from A(P1, ~X) and
A(P2, ~X) as follows:

B → ϕ, for each ϕ ∈ A(P1, ~X),

¬B → ϕ, for each ϕ ∈ A(P2, ~X).

• If P is

P1; P2

Then A(P, ~X) is constructed from A(P1, ~X) and
A(P2, ~X) by connecting the outputs of P1 with the inputs
of P2 as follows:

ϕ(~X ′/~Y), for each ϕ ∈ A(P1, ~X),

ϕ(~X/~Y), for each ϕ ∈ A(P2, ~X),

339

where ~Y = (Y1, ..., Yk) is a tuple of new program vari-
ables (array names) such that each Yi is of the same ar-
ity as Xi in ~X , ϕ(~X ′/~Y) is the result of replacing in ϕ
each occurrence of X ′i by Yi, and similarly for ϕ(~X/~Y).
By renaming if necessary, we assume here that A(P1, ~X)

and A(P2, ~X) have no common program variables except
those in ~X .
• If P is
while B do P1

Then A(P, ~X) is constructed by adding an index parame-
ter n to all functions and predicates inA(P1, ~X) to record
their values after the body P1 has been executed n times.
Formally, it consists of the following axioms:

ϕ[n], for each ϕ ∈ A(P1, ~X),

Xi(~x) = Xi(~x, 0), for each Xi ∈ ~X

smallest(N,n,¬B[n]),

X ′i(~x) = Xi(~x,N), for each Xi ∈ ~X

where n is a new natural number variable not already in
ϕ, and N a new constant not already used in A(P1, ~X),
and for each formula or term α, α[n] denotes the value
of α after the body P1 has been executed n times, and
is obtained from α by performing the following recursive
substitutions:
– for each Xi in ~X , replace all occurrences of
X ′i(e1, ..., ek) by Xi(e1[n], ..., ek[n], n+ 1), and

– for each program variable X in α, replace all occur-
rences of X(e1, ..., ek) by X(e1[n], ..., ek[n], n). No-
tice that this replacement is for every program variable
X , including those temporary program variables not in
~X , but introduced during the construction ofA(P1, ~X).

While we have used A(P, ~X) to denote “the” set of ax-
ioms for P and ~X , the construction above does not yield
a unique set of axioms as the new program variables (func-
tions in our first-order language) introduced when construct-
ing axioms for program sequences are not unique. However,
A(P, ~X) is unique upto the renaming of these new program
variables. In particular, any two different sets of these ax-
ioms are logically equivalent when considering only pro-
gram variables from ~X , i.e. when the new program vari-
ables are “forgotten”. More precisely, given two theories Σ1

and Σ2, we say that they are equivalent when considering a
subset Ω of their vocabularies if any model M1 of Σ1 can
be modified into a model M2 of Σ2 such that M1 and M2

agree on Ω, and conversely any model of Σ2 can be similarly
modified into a model of Σ1.

It is easy to see the following “local” property of our con-
struction, similar to the “frame rule” in separation logic.

Proposition 3 Let ~Y be a tuple of program variables that
are not in P and not used in A(P, ~X). Then considering
only ~X ∪ ~Y , A(P, ~X ∪ ~Y) is equivalent to the union of
A(P, ~X) and the set of following “frame axioms”:

Y ′(~y) = Y (~y), for each Y ∈ ~Y

The construction rule for a sequence P ;Q can also be
modified so that new program variables only need to be in-
troduced for those that occur in both P and Q.

Proposition 4 Let ~X be a tuple of program variables in-
cluding those used in either P or Q, and ~V = (V1, ..., Vk)
the tuple of program variables used in both P and Q (thus
a subset of ~X). When considering only ~X , A(P ;Q, ~X) is
equivalent to the set of following axioms:

ϕ(~V ′/~Y), for each ϕ ∈ A(P, ~X),

ϕ(~V /~Y), for each ϕ ∈ A(Q, ~X),

where ~Y = (Y1, ..., Yk) is a tuple of new program variables
such that each Yi is of the same arity as Vi in ~V . Again
we assume that, by renaming if necessary, A(P, ~X) and
A(Q, ~X) have no common program variables other than
those in ~X .

The following important property about our axiomatiza-
tion says that we do not need to wait until we have the full
set of axioms to do simplification. During the construction
of the axioms for a program, we can simplify first the ax-
ioms for its subprograms. This greatly simplifies the above
recursive procedure for constructing axioms of a program.

Proposition 5 Let ~X be a tuple of program variables, in-
cluding all those that occur in program P . For any subpro-
gram P ′, if T is equivalent to A(P ′, ~X) when considering
only ~X , then if we use T instead of A(P ′, ~X) in comput-
ing A(P, ~X), the resulting theory is equivalent to A(P, ~X)

when considering only ~X as well.

Notice that in the above proposition, when we use T in-
stead of A(P ′, ~X) in computing A(P, ~X), we assume that
we will also rename program variables when necessary to
avoid name conflicts. For example, if P is P1;P2, and a
theory equivalent to A(P1, X) is

X ′ = Y ∧ Y = X + 1. (2)

If A(P2, X) also mentions the temporary variable Y , then
we need to rename either the Y in (2) or the Y in A(P2, X)
when constructing A(P,X).

Before we consider more interesting examples, we illus-
trate our construction of A(P, ~X) using two simple pro-
grams.

A simple sequence
Consider the following program P and two program vari-
ables X1 and X2 (notice that X1 is used in P , but X2 is
not):

X1 = 1; X1 = X1+1

A(X1 = 1, (X1, X2)) is the set of the following two sen-
tences

X ′1 = 1,

X ′2 = X2

340

and A(X1 = X1 + 1, (X1, X2)) the set of following two
sentences:

X ′1 = X1 + 1,

X ′2 = X2

Thus A(P, (X1, X2)) is

Y1 = 1,

Y2 = X2,

X ′1 = Y1 + 1,

X ′2 = Y2

Eliminating the helper names (temporary program variables)
Y1 and Y2, we get X ′1 = 2 and X ′2 = X2.

A simple loop
Consider the following program P with a simple loop.
while I < N do
if X < A(I) then X = A(I);
I = I+1

Notice that the program variables are X , A, I , and N .
Among them, A is unary (a list), and the rest are 0-ary (con-
stants).

Let P1 be the body of the loop. A(P1, (X,A, I,N)) is the
set of following sentences (Y1, Y2, Y3, Y4 are helper names):

Y1 = if X < A(I) then A(I) else X,
Y2(x) = if X < A(I) then A(x) else A(x),

Y3 = if X < A(I) then I else I,
Y4 = if X < A(I) then N else N,
X ′ = Y1,

A′(x) = Y2(x),

I ′ = Y3 + 1,

N ′ = Y4.

Instead of using this set to compute A(P, (X,A, I,N)), by
Proposition 5, we can simplify it first by eliminating the
helper names Y1, Y2, Y3, Y4, and get the following equiva-
lent set of axioms:

X ′ = if X < A(I) then A(I) else X,
A′(x) = A(x),

I ′ = I + 1,

N ′ = N.

Thus A(P, (X,A, I,N)) is

X(0) = X,

A(x, 0) = A(x),

I(0) = I,

N(0) = N,

X(n+ 1) = if X(n) < A(I(n), n) then A(I(n), n)

else X(n),

A(x, n+ 1) = A(x, n),

I(n+ 1) = I(n) + 1,

N(n+ 1) = N(n),

smallest(M,n,¬I(n) < N(n)),

X ′ = X(M),

A′(x) = A(x,M),

I ′ = I(M),

N ′ = N(M).

Clearly A(x) and N do not change: A(x, n) = A(x) and
N(n) = N . So we get the following sentences by expanding
the smallest macro:

X(0) = X,

I(0) = I,

X(n+ 1) = if X(n) < A(I(n)) then A(I(n))

else X(n),

I(n+ 1) = I(n) + 1,

I(M) ≥ N,
n < M → I(n) < N,

X ′ = X(M),

A′(x) = A(x),

I ′ = I(M),

N ′ = N.

Now suppose that initially I = 0. Solving the recurrence:

I(0) = 0,

I(n+ 1) = I(n) + 1

we have I(n) = n. It is also easy to see that M = N , so we
can eliminate I(n) and M and get the following axioms:

X(0) = X,

X(n+ 1) = if X(n) < A(n) then A(n)

else X(n),

X ′ = X(N),

A′(x) = A(x),

I ′ = N,

N ′ = N.

An example assertion to prove about the program is the fol-
lowing

0 ≤ n < N → X ′ ≥ A(n), (3)
which is equivalent to

0 ≤ n < N → X(N) ≥ A(n),

which is easily proved by induction on N using the recur-
rence about X(n+ 1).

Partial and total correctness
A program is partially correct w.r.t. a specification if the
program satisfies the specification when it terminates. It is
totally correct if it is partially correct and terminates.

In our framework, a program P with variables ~X is repre-
sented by a set of sentences, A(P, ~X). Whatever properties
that one wants to show about P are proved using this set

341

of sentences. A partial correctness corresponds to proving a
sentence about ~X and ~X ′ from A(P, ~X). An example is the
assertion (3) above for the simple loop. On the other hand,
termination of a program is proved by showing that the new
natural number constants introduced by the loops and used
in the smallest macro expressions are well-defined. For
instance, for the above simple loop, the smallest macro is
smallest(M,n,¬I(n) < N(n)). The fact that there is in-
deed a natural number M that satisfies this macro expres-
sion follows from Proposition 1 and the fact that I(N) ≥ N
holds.

If a loop does not terminate, then its smallest macro will
cause a contradiction. For instance, consider the following
loop:

while I < M do
if I>0 then I = I+1.

If initially I = 0 and M > 0, then it will loop forever. Our
axioms for the loop are:

I ′ = I(N) ∧M ′ = M,

I(0) = I,

I(n+ 1) = if I(n) > 0 then I(n) + 1 else I(n),

n < N → I(n) < M,

I(N) ≥M.

If we add I = 0∧ 0 < M to these axioms, we will conclude
∀n.I(n) < M , which contradicts the last axiom I(N) ≥
M .

Related work
Our formalization of the simple loop above also illustrates
the difference between our approach and Hoare’s logic, ar-
guably the dominant approach for reasoning about non-
parallel imperative computer programs. To begin with, an
assertion like (3) would be represented by a triple like

{I = 0}P{∀m(0 ≤ m < N → X ≥ A(m))}

in Hoare’s logic. To prove this assertion, one would need to
find a suitable “loop invariant”, a formula that if true initially
will continue to be true after each iteration. In general, there
are infinite number of such loop invariants. The key is to
find one that, in conjunction with the negation of the loop
condition, can entail the postcondition in the assertion. For
this simple loop, the following is such a loop invariant:

∀m(I0 ≤ m < I → X ≥ A(m)).

Finding suitable loop invariants is at the heart of Hoare’s
logic, and it is not surprising that there has been much
work on discovering loop invariants (e.g. (Wegbreit 1974;
Bjørner, Browne, and Manna 1997; Ernst et al. 2001; 2007;
Nguyen et al. 2012)).

In comparison, our proof of (3) uses ordinary mathemati-
cal induction and recurrences on I(n) and X(n).

Another difference between our approach and Hoare’s
logic is that Hoare’s logic is a set of general rules about pro-
gram assertions, while we provide a translation from pro-
grams to first-order theories with quantification over natural

numbers. Once the translation is done, assertions about it
are proved with respect to the translated first-order theory,
without reference to the original program. This is similar
to Pnueli’s temporal logic approach to program semantics
(Pnueli 1981). According to a common classification used
in formal method community (cf. (Kozen and Tiuryn 1990;
Emerson 1990)): approaches like Hoare’s logic and dynamic
logic are exogenous in that they have programs explicitly in
the language, while temporal logic approach to program se-
mantics is typically endogenous in that a fixed program is
often assumed and a program execution counter part of the
specification language. Our approach is certainly not ex-
ogenous. It is a little endogenous as we use natural num-
bers to keep track of loop iterations, but not as endogenous
as typical temporal logic specifications which requires pro-
gram counters to be part of states. In particular, our mapping
from programs to theories is compositional, build up from
the structure of the program. Barringer et al. (1984) pro-
posed a compositional approach using temporal logic, but
only in the style of Hoare’s logic, using Hoare triples. How-
ever, a caveat is that so far temporal logic approach to pro-
gram semantics has been mainly for concurrent programs,
while what we have proposed is for non-parallel programs.
Given the close relationship between temporal logics and
first-order logic with a linear order, if there are no nested
loops, then our translation can be reformulated in a temporal
logic. It is hard to see how this can be done when there are
nested loops, as this will lead to nested time lines, modeled
here by predicates with multiple natural number arguments.
Of course, one can always construct a transition graph of
a program, and model it in a temporal logic. But then the
structure of the original program is lost.

We are certainly not the first to use first-order logic with a
linear order to model dynamic systems. For instance, it has
been used to model Turing machines in the proof of Trakht-
enbrot’s theorem in finite model theory (see, e.g. (Libkin
2004)).

A closely related work is Charguéraud’s characteris-
tic formulas for functional programs (Charguéraud 2010;
2011). However, these formulas are higher-order formulas
that reformulate Hoare’s rules by quantifying over precon-
ditions and postconditions.

Our use of natural numbers as “indices” to model itera-
tions is similar to Wallace’s use of natural numbers to model
rule applications in his semantics for logic programs (Wal-
lace 1993).

While we use natural numbers to formalize loops,
Levesque et al. (1997) used second-order logic to capture
Golog programs with loops in the situation calculus. Re-
cently, Lin (2014) showed that under the foundational ax-
ioms of the situation calculus, Golog programs can be de-
fined in first-order logic as well. However, the crucial differ-
ence between the work here and the work in the situation cal-
culus on Golog is that our axioms try to capture the changes
of states in terms of values of program variables, while the
semantics of Golog programs is more about defining legal
sequences of executions. To illustrate the difference here,
consider a program consists of assignments that make no
change (nil actions). For this program, it would still be non-

342

trivial to define sequences of legal executions, although it
does not matter which sequences are legal as none of them
change the values of program variables. Another difference
is that we consider only assignments and deterministic pro-
grams, while Golog programs allow any actions that can be
axiomatized by successor state axioms, and can have nonde-
terministic choices.

However, perhaps the best way to show the correctness of
our axiomatization is to connect it with Golog in the situa-
tion calculus. Given a program P , and a tuple ~X of program
variables that include all those used in P , we can consider
each X in ~X as a functional fluent in the situation calculus,
and write successor state axioms for these fluents, assum-
ing that the assignments used in P are the only actions. We
can then show that M is a model of A(P, ~X) iff there is
a situation calculus model W such that for each X ∈ ~X ,
XM = XW (S0), and (X ′)M = XW (S1), where S1 is such
that W |= Do(P, S0, S1) (a program P here can be consid-
ered as a Golog complex action in a straightforward way).
We omit the detail here as this should present no conceptual
difficulties.

Cohen’s integer division algorithm
For a more complex example, consider the following pro-
gram P which implements the well-known Cohen’s inte-
ger division algorithm (Cohen 1990) (our program below is
adapted from (Nguyen et al. 2012)). It has two loops, one
nested inside another.

// X and Y are two input integers
Q=0; // quotient
R=X; // remainder
while (R >= Y) do {
A=1;
B=Y;
while (R >= 2*B) do {
A = 2*A;
B = 2*B;

}
R = R-B;
Q = Q+A

}
// return Q = X/Y;

The program variables are A,B,Q,R,X, Y , where X

and Y are inputs, and Q is the output. Let ~X =
(A,B,Q,R,X, Y). There are two loops. Let’s name the
inner loop Inner, and outer loop Outer. When computing
A(P, ~X), we again consider only equivalence under ~X and
use Proposition 5 to simplify the process.

It is easy to see that A(P, ~X) is equivalent to the union
of A(Outer, ~X) and {Q = 0 ∧ R = X}. To com-
pute A(Outer, ~X), we compute first A(Inner, ~X), which
is equivalent to the set of following sentences:

A(n+ 1) = 2A(n),

B(n+ 1) = 2B(n),

Q(n+ 1) = Q(n),

R(n+ 1) = R(n),

X(n+ 1) = X(n),

Y (n+ 1) = Y (n),

A(0) = A,

B(0) = B,

Q(0) = Q,

R(0) = R,

X(0) = X,

Y (0) = Y,

smallest(N,n,R(n) < 2B(n)),

A′ = A(N),

B′ = B(N),

Q′ = Q(N),

R′ = R(N),

X ′ = X(N),

Y ′ = Y (N).

Solving the recurrences, we have

A(n) = 2nA,

B(n) = 2nB,

Q(n) = Q,

R(n) = R,

X(n) = X,

Y (n) = Y

smallest(N,n,R < 2n+1B),

A′ = 2NA,

B′ = 2NB,

Q′ = Q,

R′ = R,

X ′ = X,

Y ′ = Y.

We can now eliminate terms like A(n) and B(n), expand
the smallest macro expression, and obtain A(Inner, ~X) as
the set of following sentences:

R < 2N+1B,

m < N → R ≥ 2m+1B,

A′ = 2NA,

B′ = 2NB,

Q′ = Q,

R′ = R,

X ′ = X,

Y ′ = Y.

Thus the set of sentences for the body of the loop Outer is
equivalent to the set of the following sentences:

R < 2N+1Y,

m < N → R ≥ 2m+1Y,

343

A′ = 2N ,

B′ = 2NY,

Q′ = Q+A′,

R′ = R−B′,
X ′ = X,

Y ′ = Y.

Thus A(Outer, ~X) ∪ {Q = 0, R = X} is equivalent to

R(n) < 2N(n)+1Y (n),

m < N(n)→ R(n) ≥ 2m+1Y (n),

A(n+ 1) = 2N(n),

B(n+ 1) = 2N(n)Y (n),

Q(n+ 1) = Q(n) + 2N(n),

R(n+ 1) = R(n)− 2N(n)Y (n),

X(n+ 1) = X(n),

Y (n+ 1) = Y (n),

A(0) = A,

B(0) = B,

Q(0) = 0,

R(0) = X,

X(0) = X,

Y (0) = Y,

smallest(M,n,R(n) < Y (n)),

A′ = A(M),

B′ = B(M),

Q′ = Q(M),

R′ = R(M),

X ′ = X(M),

Y ′ = Y (M).

Now get rid of X(n) and Y (n) as they do not change:
X(n) = X and Y (n) = Y , get rid of A and B as they are
irrelevant now, and expand the smallest macro expression,
we obtain A(P, ~X) as the set of following sentences:

R(n) < 2N(n)+1Y,

m < N(n)→ R(n) ≥ 2m+1Y,

Q(n+ 1) = Q(n) + 2N(n),

R(n+ 1) = R(n)− 2N(n)Y,

Q(0) = 0,

R(0) = X,

R(M) < Y,

m < M → R(m) ≥ Y,
Q′ = Q(M),

R′ = R(M).

From these axioms, we can show the correctness of Cohen’s
algorithm by proving the following two properties:

0 ≤ R′ < Y,

X = Q′Y +R′.

For the first property, R′ < Y trivially follows from the
condition of the Outer loop. For R′ ≥ 0, we have R′ =
R(M) = R(M − 1)− 2N(M−1)Y . By the axiom

m < N(n)→ R(n) ≥ 2m+1Y,

let n = M−1 andm = N(M−1)−1, we haveR(M−1) ≥
2(N(M−1)−1)+1Y = 2N(M−1)Y . Thus R′ ≥ 0. For the
second property, we have

Q′Y +R′

= Q(M)Y +R(M)

= (Q(M − 1) + 2N(M−1))Y +R(M − 1)− 2N(M−1)Y

= Q(M − 1)Y +R(M − 1)

= · · · = Q(0)Y +R(0) = X.

Again this is partial correctness. To prove the termination,
we need to show that the new terms introduced by the small-
est macro expressions are all well-defined. For this program,
it means that M (the outer loop counter) is bounded, and for
every n, N(n) (the inner loop counter for each outer loop
iteration) is bounded. By Proposition 1, these can be proved
by showing the following two properties:

∃m.R(m) < Y,

∀n∃m.R(n) < 2m+1Y.

Again we remark that we relied on mathematical induc-
tion in our proof and made no use of loop invariants. Notice
also that our proof actually shows that for integer division,
any program of the following form is correct:

// X and Y are two input integers
Q=0; // quotient
R=X; // remainder
while (R >= Y) do {
A=1;
B=Y;
while (R >= k*B) do {
A = k*A;
B = k*B;

}
R = R-B;
Q = Q+A

}
// return Q = X/Y;

where k > 1 can be any constant.

Functions
One may ask how general our proposed approach is. Can
it be done for programs with more complex structures like
pointers, functions, classes, concurrency? We believe so.
We have extended it to pointers and functions. Classes
should present no problem as they are basically user defined
types. While we have not done it for concurrency, we believe
it can be done as well given that we were able to provide a
first-order axiomatization of ConGolog (Lin 2014). In this
section, we describe how the same approach can be used to
axiomatize programs with user defined functions.

344

In practice, a program consists of a set of functions. To
illustrate how we can handle functions, including recursive
functions, consider the following class of programs:

E ::= array(E,...,E) |
operator(E,...,E) |
function(E,...,E) |

B ::= E = E |
boolean-op(B,...,B)

Body ::= array(E,...,E) = E |
if B then P else P |
P; P |
while B do P |
return E

F ::= function(variable,...,variable)
{ Body }

P ::= F | P; P

Thus a program is a collection of functions. Presum-
ably, one of them is the “main” function, the one that will
be executed first when the program is run. In some pro-
gramming languages, these functions can communicate by
sharing some global variables. To simplify things a bit, we
assume here that there are no global variables, and that all
program variables in the body of a function must occur in
the parameter list of the function.

If P is F1; · · · ;Fk, then the set of axioms for P is the
union of the sets of axioms for Fi, 1 ≤ i ≤ k, with renaming
of program variables in them if needed to avoid conflict of
names.

Given a function definition f(~X){Body}, the set of sen-
tences for it, written A(f), is

∀~xϕ(~X/~x)(Result′/f(~x)), ϕ ∈ A(Body, ~X ∪ {Result}),
where
• ϕ(~X/~x)(Result′/f(~x)) is the result of replacing in ϕ

eachXi in ~X by xi,X ′i by a new function name g(~x), and
Result′ by f(~x). We assume that Result is a reserved
word used to denote the value of the function. Notice that
once we replace each Xi by a variable xi, X ′i , the value
of Xi when the function exits, is no longer relevant. Here
we just replace it by a dummy new function g.

• A(Body, ~X ∪{Result}) is defined as before, except that
when Body is return E, the axioms are

Result′ = E,

X ′i(~x) = Xi(~x), Xi is a program variable.

Notice that according to our axiomatization here, while the
body of a function may execute the return statement multiple
times, only the last time matters. For example, given
foo() { return 1; return 2 }

only the second return statement is meaningful, and the
function is captured by the axiom foo() = 2. One could ar-
gue that it does not make sense for more than one instances
of the return statement to be executed, and it is the program-
mer’s responsibility to make sure that this does not happen.
Alternatively, one can assume that as soon as a return state-
ment is executed, the function exits. This can be modeled

by introducing a special flag Exit, and replace each return
statement by

if -Exit then {return E; Exit = true}

For a more meaningful example, consider the following
two mutually defined functions isEven and isOdd:

isEven(N) {
if N=0 then return true

else return -isOdd(N-1) }
isOdd(N) {
if N=0 then return false

else return -isEven(N-1) }

Suppose that we denote the body of isEven(N) by
Body1, and that of isOdd(N) by Body2. Then
A(Body1, (N,Result)) consists of the following axioms:

N ′ = N,

Result′ = if N = 0 then true else -isOdd(N − 1)

and similarly for A(Body2, (N,Result)):

N ′ = N,

Result′ = if N = 0 then false else -isEven(N − 1)

Thus A(isOdd) ∪A(isEven) is

f(x) = x,

isEven(x) = if x = 0 then true else -isOdd(x− 1),

g(x) = x,

isOdd(x) = if x = 0 then false else -isEven(x− 1),

where f and g are two new functions used to denote the
values of x when the functions isEven(x) and isOdd(x),
respectively, return. They are irrelevant, so the two corre-
sponding axioms can be deleted. By induction on n, it is
easy to prove that the following hold for all n ≥ 0:

isEven(2n) = true,

isOdd(2n) = false,

isEven(2n+ 1) = false,

isOdd(2n+ 1) = true.

Now consider the following program with a type defini-
tion:

List ::= [] | a::List

length(X:List) {
if X=[] then return 0
else return length(tail(X))+1}

tail(X:List) {
if X=[] then return []
else if X=a::X1 then return X1}

append(X:List, Y:List) {
if X=[] then return Y
else if X=a::X1

then return a::append(X1,Y)}

To model the data type List, we introduce a correspond-
ing List sort in our first-order language, and write (x :List)

345

to mean that x is of sort List. In first-order terms, the defi-
nition of List yields the following axioms:

(∀x :List).x = [] ∨ ∃a(∃y :List)x = a ::y,

∀a, b(∀x, y :List).a ::x = b ::y → (a = b ∧ x = y),

∀a(∀x :List)[] 6= a ::x,

and the three functions yield the following axioms:

(∀x :List).length(x) = if x = [] then 0

else length(tail(x)) + 1,

(∀x :List).tail(x) = if x = [] then []

else if ∃a(∃y :List)x = a ::y then y,
(∀x, y :List).append(x, y) = if x = [] then y

else if ∃a(∃x1 :List)x = a ::x1
then a ::append(x1, y).

With these axioms, one can prove, for example length(a ::
b :: []) = 2. However, they are not sufficient for proving
general properties like the following simple one:

(∀x, y :List)length(append(x, y)) = length(x)+length(y).

To prove properties like this, we need induction on lists.
This can be done by using a second-order axiom on sort
List, similar to the one on natural numbers. However, since
we already have natural numbers, this is not necessary. We
can introduce lists of n elements, and define a list to be a list
of n elements, for some n. This way, we can use mathemati-
cal induction on natural numbers to prove inductive proper-
ties about lists. We show how this is done here. We intro-
duce a binary predicate List(x, n), meaning that x is a list
with exactly n elements:

(∀x :List)∃n.List(x, n),

List(x, 0) ≡ x = [],

List(x, n+ 1) ≡ (∃a)(∃y :List).x = a ::y ∧ List(y, n)

We first show that if x is a list, then there is a unique n such
that List(x, n) holds:

List(x, n) ∧ List(x,m)→ m = n. (4)

Suppose x is a list, and List(x,m) and List(x, n) are true.
We do simultaneous induction on n and m. If n = 0, then
x = []. If m 6= 0, then for some k, m = k + 1 and x = [] =
a :: y for some a and list y, a contradiction with one of our
axioms about lists. Thusm = 0 as well. Similarly, ifm = 0,
then n = 0 as well. Suppose n = k1 + 1 and m = k2 + 1,
and suppose inductively that for any i, j < max{m,n}, we
have that

List(y, i) ∧ List(y, j)→ i = j

for any list y. We then have x = y1 :: z1 for some list z1
such that List(z1, k1) holds, and x = y2 :: z2 for some list
z2 such that List(z2, k2) holds. From y1 :: z1 = y2 :: z2, we
have z1 = z2, thus by the inductively assumption, k1 = k2.
So m = n. This concludes the inductive step, thus the proof
of (4).

Using (4), we can then prove the induction schema on
lists: for any formula ϕ(x),
ϕ([])∧∀a(∀x :List)(ϕ(x)→ ϕ(a ::x))→ (∀x :List)ϕ(x).

Suppose the premise is true and for some list x, ¬ϕ(x). Sup-
pose x is a shortest such list: if List(x, n) then for any list y,
if List(y,m)∧m < n, then ϕ(y) holds. Notice that the ex-
istence of such an x follows from (4). Suppose List(x, n).
If n = 0, then x = [], which satisfies ϕ, a contradiction.
Suppose n = m + 1, then there are some a and y such that
x = a :: y ∧ List(y,m). By our assumption about x, ϕ(y)
holds. By the premise, ϕ(a :: y) holds as well, a contradic-
tion.

The same idea can be used to axiomatize in first-order
logic other inductively defined data structures such as trees.

For recursive functions, a challenge is to distinguish be-
tween cycles and undefined values. Consider the following
example.
foo(X) { if X=0 then return foo(X)

else if x=1 then return 1}
With our axiomatization, the set of axioms for foo(x) is
equivalent to a single fact foo(1) = 1. It leaves completely
open the possible values for foo(x) when x 6= 1. One
could argue whether this is a right formalization. But opera-
tionally, there is a difference between function calls foo(0)
and foo(2): calling foo(0) will cause a cycle, but calling
foo(2) will terminate without any value being returned. The
former causes stack overflow and the latter abnormal exit.

In the following, we provide an axiomatization of func-
tions that can differentiate these two cases address. The key
idea is to keep a counter of the number of times a recursive
function has been called.

Let f1, f2, ..., fk be functions that are mutually defined
recursively: fi(X1, ..., Xm){Bi}. Extend these functions
with one more argument:

fi(X1, ..., Xm,M) {if M = 0 then Bi0 else Bi1}
where
• Bi0 is the result of replacing each function call
fj(T1, ..., Tm) in Bi by Cycle, and
• Bi1 is the result of replacing each function call
fj(T1, ..., Tm) in Bi by fj(T1, ..., Tm,M − 1).
• M is a natural number, and Cycle is a new constant.
The set A(fi) of axioms for fi is then

fi(~x) = y ≡ ∃n∀m ≥ n.fi(~x,m) = y.

Consider again function foo() defined above. We have
foo(X,M) { if M=0 then
{if X=0 then return Cycle else
if X=1 then return 1} else

{if X=0 then return foo(X,M-1) else
if X=1 then return 1}

and the following axioms for foo(X) and foo(X,M):
foo(x) = y ≡ ∃m∀n ≥ m.foo(x, n) = y,

foo(0, 0) = Cycle,

foo(1, 0) = 1,

foo(0, n+ 1) = foo(0, n),

foo(1, n+ 1) = 1

346

Thus ∀n.foo(0, n) = Cycle and ∀n.foo(1, n) = 1. So
foo(0) = Cycle and foo(1) = 1. The axioms again leave
open the possible values for foo(x) when x is not equal to
0 or 1.

Concluding remarks
My goal is to have a translator from a full programming lan-
guage like C or Java to first-order logic. In this paper, I show
how this is possible for a core procedural programming lan-
guage with loops and functions. Instead of loop invariants
used in Hoare’s logic, the approach relies on mathematical
induction and recurrences. I show that even for programs
with nested while loops such as Cohen’s integer division,
typical properties about them can be proved effectively us-
ing their corresponding first-order theories.

The complexity of the translated first-order theory from a
program depends on the domain that the program is about.
If all program variables are propositional, then the resulting
first-order theory is decidable for proving both partial and
total correctness of the program with respect to any given
propositional specification. If the program is about natural
numbers and involves addition and multiplication, then we
may need full arithmetic to reason about it. If the program
is about predicting the trajectory of a planet, then a theory
of physics is needed in order to prove anything interesting
about it. How to integrate logical reasoning with a domain
theory has long been a challenge in AI as well as in computer
science. I hope that with this work, more KR researchers
will take up this challenge and start to contribute to program
verification. As a step in this direction, we plan to develop
a reasoner for programs about mathematics by integrating a
logic solver with Mathematica1, which has a programmable
set of powerful tools for solving problems in mathematics.
For instance, it can easily solve the recurrences that we have
seen in this paper.

References
Barringer, H.; Kuiper, R.; and Pnueli, A. 1984. Now you
may compose temporal logic specifications. In STOC, 51–
63.
Bjørner, N.; Browne, A.; and Manna, Z. 1997. Automatic
generation of invariants and intermediate assertions. Theor.
Comput. Sci. 173(1):49–87.
Charguéraud, A. 2010. Program verification through char-
acteristic formulae. In ACM Sigplan Notices, volume 45 (9),
321–332. ACM.
Charguéraud, A. 2011. Characteristic formulae for the veri-
fication of imperative programs. In ACM SIGPLAN Notices,
volume 46 (9), 418–430. ACM.
Cohen, E. 1990. Programming in the 1990s: An Introduc-
tion to the Calculation of Programs. Springer-Verlag.
Dijkstra, E. W., and Scholten, C. S. 1990. Predicate Calcu-
lus and Program Semantics. New York: Springer-Verlag.
Dijkstra, E. 1976. A Discipline of Programming. Englewood
Cliffs, N.J.: Prentice Hall.

1http://www.wolfram.com/mathematica/

Emerson, E. A. 1990. Temporal and modal logic. In Hand-
book of Theoretical Computer Science, Volume B: Formal
Models and Sematics (B), 995–1072. Elsevier.
Ernst, M. D.; Cockrell, J.; Griswold, W. G.; and Notkin, D.
2001. Dynamically discovering likely program invariants
to support program evolution. Software Engineering, IEEE
Transactions on 27(2):99–123.
Ernst, M. D.; Perkins, J. H.; Guo, P. J.; McCamant, S.;
Pacheco, C.; Tschantz, M. S.; and Xiao, C. 2007. The
daikon system for dynamic detection of likely invariants.
Science of Computer Programming 69(1):35–45.
Harel, D. 1979. First-Order Dynamic Logic. New York:
Springer-Verlag: Lecture Notes in Computer Science 68.
Hoare, C. 1969. An axiomatic basis for computer program-
ming. Comm. ACM.
Kozen, D., and Tiuryn, J. 1990. Logics of programs. In
Handbook of Theoretical Computer Science, Volume B: For-
mal Models and Sematics (B). Elsevier. 789–840.
Levesque, H.; Reiter, R.; Lespérance, Y.; Lin, F.; and Scherl,
R. 1997. GOLOG: A logic programming language for dy-
namic domains. Journal of Logic Programming, Special is-
sue on Reasoning about Action and Change 31:59–84.
Libkin, L. 2004. Elements of Finite Model Theory. Springer.
Lin, F. 2014. A first-order semantics for Golog and Con-
Golog under a second-order induction axiom for situations.
In Proceedings of KR 2014.
Nguyen, T.; Kapur, D.; Weimer, W.; and Forrest, S. 2012.
Using dynamic analysis to discover polynomial and array
invariants. In Proceedings of 34th International Conference
on Software Engineering (ICSE 2012), 683–693. IEEE.
Pnueli, A. 1981. The temporal semantics of concurrent pro-
grams. Theor. Comput. Sci. 13:45–60.
Reynolds, J. C. 2002. Separation logic: A logic for shared
mutable data structures. In Proceedings of 17th Annual
IEEE Symposium on Logic in Computer Science, 55–74.
IEEE.
Wallace, M. G. 1993. Tight, consistent, and computable
completions for unrestricted logic programs. Journal of
Logic Programming 15:243–273.
Wegbreit, B. 1974. The synthesis of loop predicates. Com-
munications of the ACM 17(2):102–113.

347

