
Ontology-Based Monitoring of Dynamic Systems∗

Franz Baader
Theoretical Computer Science, TU Dresden
Nöthnitzer Str. 46, 01062 Dresden, Germany

baader@tcs.inf.tu-dresden.de

Abstract

Our understanding of the notion “dynamic system” is a rather
broad one: such a system has states, which can change over
time. Ontologies are used to describe the states of the system,
possibly in an incomplete way. Monitoring is then concerned
with deciding whether some run of the system or all of its
runs satisfy a certain property, which can be expressed by a
formula of an appropriate temporal logic. We consider differ-
ent instances of this broad framework, which can roughly be
classified into two cases. In one instance, the system is as-
sumed to be a black box, whose inner working is not known,
but whose states can be (partially) observed during a run of
the system. In the second instance, one has (partial) knowl-
edge about the inner working of the system, which provides
information on which runs of the system are possible.
In this paper, we will review some of our recent work that can
be seen as instances of this general framework of ontology-
based monitoring of dynamic systems. We will also mention
possible extensions towards probabilistic reasoning and the
integration of mathematical modeling of dynamical systems.

Introduction
In this paper we use the term “dynamic system” to denote
a system that shows dynamic behavior in that it changes its
states over time. Here “system” is seen in a broad sense,
encompassing both man-made systems and natural systems:
it may be a computer system, air traffic observed by radar,
a patient in an intensive care unit, or a biological cell. We
make no general assumptions about the form of the system’s
states, except that the states can be described using an ap-
propriate ontology language. These descriptions may be in-
complete (partial) in the sense that they do not uniquely de-
termine a single state, but only restrict the possible states to
a subset of all states.

In the case of a black box system, we have no informa-
tion on how the system works internally, i.e., we do not
know which state is transformed into which other state. In
this setting, we assume that the system is observed by cer-
tain “sensors” (e.g., heart-rate and blood pressure monitors

∗Partially supported by the Cluster of Excellence “Center for
Advancing Electronics Dresden” and the Collaborative Research
Center 912 “Highly Adaptive Energy-Efficient Computing.”
Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

for a patient), and the results of sensing are stored in a fact
base expressed using the given ontology language. Based on
the information stored in the fact base, the monitor is sup-
posed to detect certain predefined situations (e.g., heart-rate
very high and blood pressure low), which require a reaction
(e.g., fetch a doctor or give medication). More precisely, sen-
sor readings are available for different points in time, and
thus we obtain a time-stamped sequence of fact bases, each
describing (possibly in an incomplete way) the state of the
system at the respective time point. The situations to be de-
scribed may be concerned with not just one state of the sys-
tem, but a sequence of states (e.g., blood pressure decreas-
ing and heart-rate increasing for a certain time). To describe
such situations, the ontology language needs to be combined
with an appropriate temporal logic.

In the case of a white box system, we have some knowl-
edge about the inner working of the system, i.e., we have
a specification of how states of the system are transformed
into each other. This description may, however, be non-
deterministic in the sense that a given state may not have
a uniquely determined successor state, but a set of possible
successor states. Given a (possibly incomplete) description
of an initial state, the specification then determines a set of
possible runs of the system, and we may ask whether some
or all of these runs satisfy a certain property, formulated in
an appropriate temporal logic.

Of course, we may also have a combination of both set-
tings, where a (partial) specification of the system is avail-
able, and in addition one can observe the system during one
of its runs.

In the following, we will review some of our recent work
that can be seen as instances of the general framework
of ontology-based monitoring of dynamic systems outlined
above. Because of space limitations, we cannot introduce the
technical definitions and results in detail. For these and also
for detailed descriptions of related work we refer the reader
to the cited papers. The ontology languages used in these pa-
pers are based on description logics. Again, we do not intro-
duce them in detail, but refer the reader to “The Description
Logic Handbook” (Baader et al. 2003) for a comprehensive
introduction. We will finish this short paper with mention-
ing possible extensions of the described approaches towards
probabilistic reasoning and the integration of mathematical
modeling of dynamical system.

678

Proceedings of the Fourteenth International Conference on Principles of Knowledge Representation and Reasoning



Monitoring Black Box Systems
As mentioned in the introduction, an important ingredient
of such a monitoring approach is an appropriate temporal
logic, which enables the specification of situations whose
definition depends on several of the observed states of the
system.

The temporal logic ALC-LTL
Motivated by a situation awareness application (Baader et
al. 2009), in which the system was air and marine traffic
observed by radar, we have introduced the temporalized de-
scription logic ALC-LTL (Baader, Ghilardi, and Lutz 2008;
2012) as such a logic. It combines the ontology language
ALC with the propositional linear temporal logic LTL. Since
the temporal structure underlying LTL are the natural num-
bers, this means that we consider a discrete flow of time.
In contrast to propositional LTL, the states are not propo-
sitional valuations, but ALC interpretations, i.e., relational
structures with unary predicates (concepts) and binary pred-
icates (roles).

An important design decision for ALC-LTL was, on the
one hand, to restrict the application of temporal operators to
ALC axioms, i.e., terminological axioms of the formC v D
and assertional axioms of the form C(a) and r(a, b), where
C,D are concepts, r a role, and a, b individuals. From a
syntactic point of view,ALC-LTL is obtained from proposi-
tional LTL by allowing the use of ALC axioms in place of
propositional variables. For example, theALC-LTL formula

♦�(UScitizen v ∃insured by.HealthInsurer)

says that there is a future time point from which on US citi-
zens will always have health insurance, and the formula

♦
(
(∃finding.Concussion)(BOB) ∧
Conscious(BOB)U(∃procedure.Examination)(BOB)

)
says that, sometime in the future, Bob will have a concus-
sion with no loss of consciousness between the concussion
and the examination. However, what cannot be expressed in
ALC-LTL is the general concept of a concussion with no
loss of consciousness since expressing this concept would
require the application of temporal operators within the con-
cept:

∃finding.Concussion u
Conscious U∃procedure.Examination.

On the other hand, the second important design deci-
sion was to allow for rigid concepts and roles, i.e., con-
cepts/roles whose interpretation does not vary over time.
For example, the concept Human and the role has father
should probably be rigid since a human being will stay a
human being and have the same father over his/her life-
time, whereas Conscious should be a flexible concept (i.e.,
not rigid) since someone that is conscious at the moment
need not always by conscious. Similarly, insured by should
be modeled as a flexible role. Using a logic that can-
not enforce rigidity of concepts/roles may result in un-
intended models, and thus prevent certain useful infer-
ences to be drawn. For example, the concept description

∃has father.Humanu♦ (∀has father.¬Human) is only un-
satisfiable if both has father and Human are rigid. It should
be noted that rigid concepts and roles provide some infor-
mation about the inner working of the system since they tell
us that their interpretation cannot be changed by state tran-
sitions.

While rigid concepts and roles increase the expressive
power of the formalism, they are problematic from a compu-
tational point of view. In fact, in a logic that allows the appli-
cation of temporal operators within concepts, rigid roles can
even cause undecidability (Gabbay et al. 2003). In ALC-
LTL, rigid concepts and roles are less harmful, but they
still increase the complexity of reasoning: the satisfiability
problem in ALC-LTL is 2-ExpTime-complete if both rigid
concepts and roles are allowed; NExpTime-complete if only
rigid concepts, but no rigid roles are allowed; and ExpTime-
complete if neither concepts nor roles may be rigid.

These results are relevant for the monitoring of dynamic
systems since it is easy to see that the monitoring problem
can indeed be expressed as a satisfiability problem in ALC-
LTL: assume that ψ is an ALC-LTL formula expressing a
critical situation (e.g., the formula talking about Bob from
above); that φt is an ALC-LTL formula describing the ob-
servations made until time point t (e.g., observations made at
certain time points by nurses or heart-rate sensors, and com-
piled into an ALC-LTL formula using the next-operator);
and φ is a conjunction of terminological axioms expressing
(atemporal) background information (e.g., a medical ontol-
ogy). Then the critical situation can be detected by testing
whether the ALC-LTL formula �φ∧ φt ∧¬ψ is satisfiable.

Runtime verification
A potential problem with the monitoring approach sketched
above is that the size of the formula φt increases with every
additional time point at which an observation is made, and
thus one needs to solve ever larger satisfiability problems.
For propositional LTL, this problem has been addressed in
the runtime verification community: for a given LTL formula
ψ a monitor Mψ (i.e., a deterministic finite automaton with
state output) is constructed whose size depends only on the
formula describing the critical situation, and not on the num-
ber of time points (Bauer, Leucker, and Schallhart 2011).
At each time point, the observations lead to a transition of
the monitor, and the output of the state reached through this
transition says whether ψ has been violated or not.

Building on results from (Baader, Ghilardi, and Lutz
2008; 2012), we have shown in (Baader, Bauer, and Lipp-
mann 2009) that this approach can be extended from propo-
sitional LTL to ALC-LTL. The main advantage of this ex-
tension over the propositional case is, on the one hand, that
one can employ ontologies defining the important concepts
of the application domain (e.g., concepts defined in a med-
ical ontology) to describe critical situations. On the other
hand, in contrast to runtime verification for propositional
LTL, where for every time point one assumes to have com-
plete information about the values of the propositional vari-
ables, the approach developed in (Baader, Bauer, and Lipp-
mann 2009) can also deal with incomplete information. Im-
proving on the results in (Baader, Bauer, and Lippmann

679



∃systolic pressure.High pressure v ∃finding.Hypertension
∃finding.Hypertension u ∃history.Hypertension v ∃risk.Myocardial infarction

systolic pressure(BOB,P1), High pressure(P1),
history(BOB, H1), Hypertension(H1), Male(BOB)

Figure 1: An ontology and a fact base

2009), where some of the monitor constructions were triple-
exponential, we show in (Baader and Lippmann 2014) that,
for a given ALC-LTL formula ψ, a monitor Mψ of double-
exponential size can be constructed in double-exponential
time. In general, this double-exponential blow-up cannot be
avoided, even in the propositional case.

Temporalizing ontology-based data access
In (Baader, Borgwardt, and Lippmann 2013), we introduce
an extension of ALC-LTL where conjunctive queries using
concepts and roles as predicates can be used in place ofALC
axioms. For example, the conjunctive query

∃y.risk(x, y) ∧Myocardial infarction(y) ∧Male(x)

asks for male patients that are at risk to have a heart attack.
The obvious difference to ALC axioms is the use of vari-
ables in conjunctive queries. On the one hand, there are the
free variables (called answer variables): for these (x in the
example) one wants to find named individuals such that re-
placing the variable by the individual name makes the query
true. On the other hand, there are existentially quantified
variables, which may refer to unnamed individuals. In our
example, the myocardial infarction y need not have an ex-
plicit name in the fact base. Answering such queries w.r.t. an
ontology is called ontology-based data access. Here one as-
sume that one has a fact base, consisting of assertions, and an
ontology, consisting of terminological axioms. As an exam-
ple, assume that the fact base contains the assertions about
the patient Bob shown in the lower part of Figure 1, which
say that Bob has high blood pressure (obtained from sensor
data), and is male and has a history of hypertension (ob-
tained from the patient record). In addition, we have an on-
tology that says that patients with high blood pressure have
hypertension and that patients that currently have hyperten-
sion and also have a history of hypertension are at risk for a
heart attack, as shown in the upper part of Figure 1. The sit-
uation we want to recognize for a given patient x is whether
this patient is a male person that is at risk for a heart attack,
which is described by the conjunctive query from above.
Given the information in the fact base and the axioms in the
ontology, we can derive that Bob satisfies this query. Obvi-
ously, without the ontology this answer could not be derived.

The complexity of OBDA, i.e., the complexity of check-
ing whether a given tuple of individuals is an answer of a
conjunctive query in a fact base w.r.t. an ontology, has been
investigated in detail for cases where the ontology is ex-
pressed in an appropriate description logic. One can either
consider the combined complexity, which is measured in the
size of the whole input (consisting of the query, the ontology,
and the fact base), or the data complexity, which is mea-
sured in the size of the fact base only (i.e., the query and

the ontology are assumed to be of constant size). The un-
derlying assumption is that query and ontology are usually
relatively small, whereas the size of the data may be huge. In
the database setting (where there is no ontology and closed
world assumption is used), answering conjunctive queries
is NP-complete w.r.t. combined complexity and in AC0

w.r.t. data complexity. For OBDA w.r.t. ALC ontologies,
the complexity is considerably higher: ExpTime-complete
w.r.t. combined complexity and coNP-complete w.r.t. data
complexity (Calvanese, De Giacomo, and Lenzerini 1998;
Lutz 2008; Calvanese et al. 2006).

In (Baader, Borgwardt, and Lippmann 2013), we have ex-
tended these results to temporal conjunctive queries, which
are obtained from LTL by replacing propositional variables
with conjunctive queries. The complexity again depends on
whether rigid concepts/roles are allowed or not. For the com-
bined complexity, the obtained complexity results are iden-
tical to the ones for ALC-LTL, though the upper bounds are
considerably harder to show. For data complexity, we ob-
tain the same complexity as for atemporal OBDA (coNP-
complete) if no rigid roles are allowed. With rigid roles, we
have an ExpTime upper bound (in contrast to 2-ExpTime
for combined complexity), but can only show a coNP lower
bound.

Monitoring White Box Systems
In this setting, one assumes that one has some knowledge
about the inner working of the system, i.e., a (possibly in-
complete) specification of how states of the system are trans-
formed into each other. In principle, such a specification
could be provided by an appropriate temporal logic. How-
ever, there are some problems with this approach. First, such
a specification may require a temporalized description logic
in which temporal operators can be applied within concepts,
which may cause computational problems. Second, in ad-
dition to saying what changes during a state transition, one
also needs to specify what does not change. This so-called
frame problem has been investigated in detail in the rea-
soning about actions community. In (Baader et al. 2005;
Baader, Lippmann, and Liu 2010) we have introduced ac-
tion formalisms based on description logics, which inherit
Reiter’s solution to the frame problem from situation calcu-
lus (Reiter 2001).

Based on an action theory defined in such a formalism,
one can specify the inner working of a system (e.g., an au-
tonomous robot) using the action programming language
Golog (de Giacomo, Lespérance, and Levesque 2000). In
this setting, rather than monitoring a single run of the sys-
tem, we are interested in the verification problem: show that
certain (temporal) properties are satisfied by any run of the

680



program. The first attempt to solve the verification problem
for action theories based on description logics can be found
in (Baader, Liu, and ul Mehdi 2010). However, instead of
examining the actual execution sequences of a given Golog
program, this approach considers infinite sequences of ac-
tions that are accepted by a given Büchi automaton B. If this
automaton over-approximates the program, i.e. all possible
execution sequences of the program are accepted by B, then
any property that holds in all the sequences accepted by B
is also a property that is satisfied by any execution of the
program. As logic for specifying properties of infinite se-
quences of actions, the approach again uses ALC-LTL. In
(Baader and Zarrieß 2013), we improve on the results in
(Baader, Liu, and ul Mehdi 2010) by directly considering
all (finite and infinite) sequences of actions that are runs of
a given Golog program.

Future Research
One important topic for future research are extensions to-
wards probabilistic reasoning. Probabilities may come into
our framework of ontology-based monitoring of dynamic
systems for a variety of reasons: sensors used to populate
the fact base may be erroneous with some probability; based
on the observed run of the system, one may compute pro-
jections into the future, which are again equipped with a
probability; the application of an action may have proba-
bilistic outcomes (the action may, e.g., succeed only with
some probability).

Another interesting topic is the integration of numerical
sensor values. In the black box setting, these values can
be represented using description logics with concrete do-
mains (Lutz 2003), which may, however, cause computa-
tional problems. In the white box setting, one needs ap-
proaches for describing how the numerical values change of
time. One possibility for expressing this is to use systems of
differential equations, as done in mathematical modeling of
dynamical systems (Scheinerman 2012).

References
Baader, F., and Lippmann, M. 2014. Runtime verification
using a temporal description logic revisited. LTCS-Report
14-01, Chair of Automata Theory, Institute of Theoretical
Computer Science, Technische Universität Dresden, Ger-
many. See http://lat.inf.tu-dresden.de/research/reports.html.
Baader, F., and Zarrieß, B. 2013. Verification of Golog pro-
grams over description logic actions. In Proc. FroCoS’13,
LNCS 8152, 181–196. Springer-Verlag.
Baader, F.; Bauer, A.; and Lippmann, M. 2009. Runtime
verification using a temporal description logic. In Proc. Fro-
CoS’09, LNCS 5749, 149–164. Springer-Verlag.
Baader, F.; Calvanese, D.; McGuinness, D.; Nardi, D.; and
Patel-Schneider, P., eds. 2003. The Description Logic
Handbook: Theory, Implementation and Applications. Cam-
bridge, UK: Cambridge University Press.
Baader, F.; Lutz, C.; Miličić, M.; Sattler, U.; and Wolter, F.
2005. Integrating description logics and action formalisms:
First results. In Proc. AAAI’05, 572–577. AAAI Press.

Baader, F.; Bauer, A.; Baumgartner, P.; Cregan, A.; Gabal-
don, A.; Ji, K.; Lee, K.; Rajaratnam, D.; and Schwitter, R.
2009. A novel architecture for situation awareness systems.
In Proc. Tableaux’09, LNCS 5607, 77–92. Springer-Verlag.
Baader, F.; Borgwardt, S.; and Lippmann, M. 2013. Tem-
poralizing ontology-based data access. In Proc. CADE-24,
LNCS 7898, 330–344. Springer-Verlag.
Baader, F.; Ghilardi, S.; and Lutz, C. 2008. LTL over de-
scription logic axioms. In Proc. KR’08, 684–694. AAAI
Press.
Baader, F.; Ghilardi, S.; and Lutz, C. 2012. LTL over de-
scription logic axioms. ACM Trans. Comput. Log. 13(3).
Baader, F.; Lippmann, M.; and Liu, H. 2010. Using causal
relationships to deal with the ramification problem in action
formalisms based on description logics. In Proc. LPAR’10,
LNCS 6397, 82–96. Springer–Verlag.
Baader, F.; Liu, H.; and ul Mehdi, A. 2010. Verifying prop-
erties of infinite sequences of description logic actions. In
Proc. ECAI’10, 53–58. IOS Press.
Bauer, A.; Leucker, M.; and Schallhart, C. 2011. Runtime
verification for LTL and TLTL. ACM Trans. Softw. Eng.
Methodol. 20(4).
Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini, M.;
and Rosati, R. 2006. Data complexity of query answering in
description logics. In Proc. KR’06, 260–270. AAAI Press.
Calvanese, D.; De Giacomo, G.; and Lenzerini, M. 1998.
On the decidability of query containment under constraints.
In Proc. PODS’98, 149–158. ACM Press.
de Giacomo, G.; Lespérance, Y.; and Levesque, H. J. 2000.
Congolog, a concurrent programming language based on the
situation calculus. Artif. Intell. 121(1-2):109–169.
Gabbay, D.; Kurusz, A.; Wolter, F.; and Zakharyaschev, M.
2003. Many-dimensional Modal Logics: Theory and Appli-
cations. Elsevier.
Lutz, C. 2003. Description logics with concrete domains—
a survey. In Advances in Modal Logics Volume 4, 265–296.
King’s College Publications.
Lutz, C. 2008. The complexity of conjunctive query an-
swering in expressive description logics. In Proc. IJCAR’08,
LNCA 5195, 179–193. Springer-Verlag.
Reiter, R. 2001. Knowledge in Action: Logical Foundations
for Specifying and Implementing Dynamical Systems. The
MIT Press.
Scheinerman, E. R. 2012. Invitation to Dynamical Systems.
Dover Publications.

681




