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Abstract

Reiter’s original proposal for default logic is unsatisfac-
tory for open default theories because of Skolemization and
grounding. In this paper, we reconsider this long-standing
problem and propose a new world view semantics for first-
order default logic. Roughly speaking, a world view of a first-
order default theory is a maximal collection of structures sat-
isfying the default theory where the default part is fixed by
the world view itself. We show how this semantics general-
izes classical first-order logic and first-order answer set pro-
gramming, and we discuss its connections to Reiter’s seman-
tics and other related semantics. We also argue that first-order
default logic under the world view semantics provides a rich
framework for integrating classical logic based and rule based
formalisms in the first-order case.

Introduction
As a predominant approach for nonmonotonic reasoning,
default logic has attracted many researchers since Reiter’s
seminal work (Reiter 1980). Reiter’s semantics targets on
general first-order default theories in two steps. First, an ex-
tension semantics is defined for closed default theories in
which no free variable occurs in any default rules. Then,
general default theories with free variables (also called open
default theories) are converted into closed ones by Skolem-
ization and grounding so that the above extension semantics
can be applied.

However, as pointed out by Poole (1987) and many other
researchers (Lifschitz 1990; Baader and Hollunder 1995;
Kaminski 1995; 1999), Reiter’s semantics may lead to coun-
terintuitive phenomena for open default theories. For in-
stance, Lifschitz (1990) proposed an example with a single
default rule :M¬P (x)

¬P (x) and a single first-order assertion P (a).
One should expect that we have the following information
hidden in the default theory

8x (P (x)$ (x = a)).

However, in Reiter’s extension semantics, the default rule
will only be grounded on a and another Skolem constant c
different than a. Therefore, one can only conclude P (a) ^
9x ¬P (x).
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The unsatisfactory performance of Reiter’s original se-
mantics for open first-order default theories is indeed a seri-
ous semantic issue. As pointed out by Reiter himself (1980),

“the genuinely interesting cases involve open defaults.”
In this paper, we reconsider this long standing problem

and propose a new world view semantics. Instead of first-
order theories, we use collections of structures sharing the
same domain and function interpretations (called views) as
the candidate solution concept. Roughly speaking, a world
view of a first-order default theory is a maximal view (col-
lection of structures) satisfying the default theory where the
default part is fixed by the world view itself. Although re-
lated, this semantics is essentially different from Reiter’s
extension semantics, even for closed default theories. How-
ever, they coincide on some restricted classes.

Our work is also strongly motivated from the attempt to
combine classical logic based formalisms and rule based
formalisms, particularly the recent development in ontol-
ogy engineering for adding rules onto the description log-
ics layer (Baader and Hollunder 1995; Motik et al. 2006;
Eiter et al. 2008; Motik and Rosati 2010; Lukasiewicz 2010;
Zhou and Zhang 2012). We argue that default logic provides
a rich framework for this task. First, we show that it gen-
eralizes both classical logic and first-order answer set pro-
gramming. Then, we show how default logic can handle both
monotonic reasoning and nonmonotonic reasoning and flex-
ibly switch between open world reasoning and closed world
reasoning.

The main contribution of this paper is to provide a new
world view semantics for first-order default logic. Although
this is a long standing problem, we believe that research
in this direction will further deepen our understandings and
shed new insights in
• default logic and nonmonotonic reasoning,
• dealing with free variables in complex knowledge repre-

sentation formalisms, and
• integration of classical logic based and rule based for-

malisms in the first-order case.

Syntax
We assume that the readers are familiar with the basic no-
tions and notations in classical first-order logic. A (first-
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order) default rule (rule for short if clear from the context)
is of the following form

↵1 | . . . | ↵n

 �1, . . . ,�m

, Not �1, . . . , Not �l, (1)
where ↵

i

, 1  i  n, �
j

, 1  j  m and �
k

, 1  k  l are
first-order formulas. A default theory is a set of rules of the
form (1).

Intuitively, rule (1) means that if an agent believes that
every �

j

, 1  j  m is true, and the agent does not believe
that any of �

k

, 1  k  l is true, then the agent must believe
that at least one of ↵

i

, 1  i  n is true.
Given a rule r of the form (1), the set {↵1, . . . ,↵n

}
is called the head of r, denoted by Head(r); the set
{�1, . . . ,�m

} is called the positive body of r, denoted
by Pos(r); the set {Not �1, . . . , Not �l} is called the
negative body of r, denoted by Neg(r);1 also the set
{�1, . . . ,�m

, Not �1, . . . , Not �l} is called the body of r,
denoted by Body(r). Clearly, Body(r) = Pos(r)[Neg(r).

Notice that the form (1) follows the well adopted syntactic
form of rules in logic programming (in particular answer set
programming), which actually differs from Reiter’s original
syntax of default rules as follows

↵(�!x ) : M�1(�!x ), . . . ,M�
m

(�!x )

!(�!x )
, (2)

where ↵(�!x ), �
i

(�!x ), 1  i  m and !(�!x ) are formulas
and �!x is the set of free variables occurred in all these for-
mulas. Intuitively, a rule of form (2) means that if an agent
believes that ↵(�!x ) is true and her/his beliefs are consistent
with any of �

j

, 1  j  m, then the agent must believe that
!(�!x ) is true. In addition, in Reiter’s original syntax, a de-
fault theory is a pair (D,W ), where D is a set of rules of the
form (2) and W = {S1, . . . , Sk

, . . .} is a set of sentences.
Our syntax is actually a generalization of Reiter’s syntac-

tic form in the sense that a rule of the Reiter’s form
↵(�!x ) : M�1(�!x ), . . . ,M�

m

(�!x )

!(�!x )
, (3)

can be rewritten as
!(�!x ) ↵(�!x ), Not ¬�1(�!x ), . . . , Not ¬�

m

(�!x ) (4)
in form (1), and a sentence S 2 W in a default theory
(D,W ) can be simply rewritten as

S  
in form (1). Notice that the component M�

j

(�!x ) in
form (2) is actually corresponding to Not ¬�

j

(�!x ) but not
Not �

j

(�!x ) in (4). Here, ¬ is the classical negation operator.
We say that a rule r of the form (1) is a fact if Pos(r) =

Neg(r) = ;, a constraint if Head(r) = ;, positive if
Neg(r) = ;, a logic programming rule if all formulas
occurred in r (i.e. ↵

i

, 1  i  n, �
j

, 1  j  m,
�
k

, 1  k  l) are atoms, closed if all formulas occurred
in r are closed.

We say that a default theory is a classical theory if every
rule in it is a fact, a logic program if every rule in it is a
logic programming rule, normal if every rule in it is normal,
closed if every rule in it is closed.

1The head, the positive body and the negative body of a default
rule are also called consequent/conclusion, prerequisite and justifi-
cation respectively in the literature.

Defining the World View Semantics
We start to define the world view semantics for first-order
default logic.
Definition 1 (Configuration). Let ⌧ be a vocabulary. A con-

figuration of ⌧ is a tuple � = (A, cA1 , · · · , cAm, fA
1 , · · · , fA

l

),
where A is the domain, cA1 , · · · , cAm are the constant map-
pings and fA

1 , · · · , fA
l

are the function interpretations.
A configuration � can be extended into a structure M

by interpreting the predicates. In this case, we say that �
is the configuration of M, and conversely, M is a structure
on �. We use �M to denote the configuration of M. Then
notion of configuration is analogous to the notion of pre-
interpretation introduced by Kaminski (1995).
Definition 2 (View). A view of a vocabulary ⌧ is a collec-
tion of ⌧ -structures with the same configuration, i.e., sharing
the same domain, constant mappings and function interpre-
tations. More precisely, let � be a configuration, a view W
on � is a collection M1, . . . ,Mt

, . . . of structures such that
for all t, �Mt = �.

Here, we say that � is the configuration of W . Sometimes
we use �W to denote the configuration of W for better read-
ability. Intuitively, a view represents an agent’s belief in the
sense that each structure in the view is corresponding to a
possible world.

We now define the satisfaction relation between views as-
sociated with assignments and default rules. Let r be a rule
of the form (1), W = {M1, . . . ,Mt

, . . .} a view and ⌘
an assignment. We say that W satisfies r on ⌘, denoted by
W |= r[⌘], if

(†) W |= Pos(r)[⌘] and W6| = Neg(r)[⌘] implies that
W |= Head(r)[⌘].

As the default part (i.e. the negative body) of a default rule
plays a role of assumption, we also need a different notion
to define the satisfaction relation by fixing this part. Let r
be a rule of the form (1), W = {M1, . . . ,Mt

, . . .} and
W 0 = {M0

1, . . . ,M0
t

, . . .} two views, and ⌘ an assignment.
We say that W 0

satisfies r on ⌘ by fixing the default part
with W , denoted by (W 0,W) |= r[⌘], if

(‡) W 0 |= Pos(r)[⌘] and W6|= Neg(r)[⌘] implies that
W 0 |= Head(r)[⌘].

Let ⇧ be a default theory, ⌘ an assignment and W and
W 0 two views. We say that W satisfies ⇧ on ⌘, denoted by
W |=⇧[ ⌘], if for all r 2 ⇧, W |= r[⌘]. We say that W
satisfies ⇧, denoted by W |= ⇧, if for all assignments ⌘,
W |=⇧[ ⌘]. We say that W 0

satisfies ⇧ on ⌘ by fixing the
default part with W , denoted by (W 0,W) |=⇧[ ⌘], if for
all r 2 ⇧, (W 0,W) |= r[⌘]. We say that W 0

satisfies ⇧ by
fixing the default part with W , denoted by (W 0,W) |= ⇧, if
for all assignments ⌘, (W 0,W) |=⇧[ ⌘].

The following property holds straightforwardly from the
definitions.
Proposition 1. Let ⇧ be a default theory and W a view.

Then, (W,W) |= ⇧ iff W |= ⇧.

Definition 3 (World View). Let ⇧ be a default theory and
W a view. We say that W is a world view of ⇧ if W |= ⇧
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and there does not exist another view W 0 such that W ⇢ W0

and (W 0,W) |= ⇧.
Intuitively, a world view of a default theory is a maximal

collection of structures satisfying the default theory, where
the default part is fixed by the world view itself. Definition
3 can be presented in an alternative way closer to Reiter’s
original fixed-point definition. Let ⇧ be a default theory and
W a view such that W |= ⇧, by �(W), we denote the maxi-
mal view (in terms of set inclusion) satisfying the following
conditions:
• W ✓�(W).
• (�(W),W) |= ⇧.
Notice that a drawback of this definition is that one needs
to assure that such a �(W) always exists (although this is
indeed the case under our context). Clearly, W is a world
view of ⇧ iff W is the fixed point of the operator �, i.e.,
W =�( W).

The world view semantics has many origins from the lit-
erature. The term world view is borrowed from (Gelfond
1994), although the semantics is defined in a very differ-
ent manner. Definition 3 actually follows the well known
Gelfond-Lifschitz reduct semantics for propositional answer
set programming, that is, an answer set of a propositional
logic program is a maximal set of propositional atoms sat-
isfying the reduct of the program relative to this set. Here,
(W 0,W) |= ⇧ is analogous to W 0 |= ⇧W , where ⇧W is
the reduct of ⇧ relative to W . However, we cannot use the
notation of reduct ⇧W here in our world view semantics as
it is not a real program or default theory.

Of course, Definition 3 shares some basic ideas of Reiter’s
original semantics. On one side, the default part plays a role
of assumptions, which is fixed by a candidate. On the other
side, the world view semantics can also be defined in a fixed
point style as shown before. However, the main difference
between the world view semantics and Reiter’s original se-
mantics is that the solution concept for the former is defined
upon views (i.e. collections of structures), while the one for
the latter is defined upon first-order theories (i.e. collections
of sentences). Note that collections of structures and first-
order theories correspond to each other in the sense that all
the models of a first-order theory form a collection of struc-
tures. We shall discuss later in the paper why we need to
define upon collections of structures rather than collections
of sentences for first-order open default theories, and the de-
tailed relationships between the world view semantics and
Reiter’s original one.

Relationships to Reiter’s Semantics
In this section, we study the relationships between the world
view semantics and Reiter’s extension semantics (Reiter
1980). Clearly, for open default theories, the world view se-
mantics is very different from Reiter’s extension semantics.
In fact, this is indeed the case even for closed default theo-
ries as well. The key reason why these two semantics behave
quite differently, even for closed default theories, is that all
views are forced to have the same configuration. This is be-
cause a configuration itself includes some information, for
instance, the domain size and the mapping of terms.

Nevertheless, these two semantics coincide if we only
consider the first-order sentences whose satisfiability is in-
dependent of a configuration. We say that a first-order sen-
tence � is configuration independent if that � is consistent
implies that � has a model on every configuration. We say
that a closed default theory is configuration independent if
all formulas occurring in every rule in the default theory are
configuration independent.
Theorem 1. Let ⇧ be a configuration independent closed

default theory. If a first-order theory E is an extension of ⇧,

then for any configuration �, the set of models of E on � is

a world view of ⇧. Conversely, if a view W on a configura-

tion � is a world view of ⇧, then there exists an extension E
of ⇧ such that W is the set of models of E on �.

Corollary 2. Let ⇧ be a propositional default theory. Then,

a formula F is equivalent to an extension of ⇧ iff the set of

models of F is a world view of ⇧.

Classical First-Order Logic + First-Order
Answer Set Programming

In this section, we show how the world view semantics gen-
eralizes both classical first-order logic and first-order answer
set programming. We also argue that first-order default logic
provides a rich framework for integrating them.
Theorem 3. Let S be a set of first-order sentences and � a

configuration such that S has models on �. Then, S has a

unique world view on �, which is the class of all models of

S on �.

Next, we show that the stable model semantics for first-
order answer set programming is a special case of the world
view semantics for first-order default theories as well. A
first-order logic program is a special case of first-order de-
fault rules except that the formulas occurring in rules are
atoms. The semantics for first-order logic programs can be
defined through by a transformation into second-order logic
(Ferraris, Lee, and Lifschitz 2011; Zhou and Zhang 2011).
Theorem 4. Let ⇧ be a logic program. If a structure M is

a stable model of ⇧, then M+
is a world view of ⇧, where

M+
contains all structures on the same configuration big-

ger than M.

2
Conversely, if a view W is a world view of ⇧,

then the structure on the same configuration that interprets

each predicate P as

T
M2W PM

is a stable model of ⇧.

Theorems 3 and 4 show that both classical first-order logic
and first-order answer set programming can be considered
as special cases of first-order default logic. Moreover, we
argue that default logic not only generalizes classical logic
and answer set programming but also integrates them in a
natural way. In the propositional case, propositional default
logic provides an ideal framework for integrating classical
propositional logic and propositional answer set program-
ming. Lifted into the first-order case, first, the syntax of first-
order default theory combines the syntax of both classical
logic and logic programming. For semantics, Theorem 3 and

2We say that a structure M0 is bigger than another structure M
if for all predicates P , PM ✓ PM0

.
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Theorem 4 show respectively that classical first-order logic
and first-order disjunctive logic programming under the sta-
ble model semantics can be viewed as special cases of first-
order default logic. Moreover, classical logic and logic pro-
gramming actually form two different dimensions of first-
order default logic, where the classical logic dimension is
corresponding to the interrelationships among structures in
a world view and the logic programming dimension is cor-
responding to the interrelationships among different world
views.

Related Work

A number of alternative semantics have been proposed
to address the unsatisfactory semantics for open defaults
(Poole 1987; Lifschitz 1990; Baader and Hollunder 1995;
Kaminski 1995; 1999). As far as we know, this problem
was firstly reported by Poole (1987), who also provided an
alternative solution by using Hilbert’s "-symbol. However,
Baader and Hollunder (1995) pointed out that, although im-
proved, this semantics is still not that satisfactory as it cannot
escape from Skolemization. Instead, Baader and Hollunder
considered a weak semantics, in which default rules only
apply to known individuals.

The idea of using collections of structures as the solution
concept for default logic is not new. This was presented by
Guerreiro and Casanova for closed default theories (Guer-
reiro and Casanova 1990), and later extended by Lifschitz
for open default theories restricted to a fixed universe (Lif-
schitz 1990). Lifschitz fixed a pre-given universe and ex-
tended the language by introducing a new constant for each
element in the universe. An extension of a default theory
is then defined as the set of sentences satisfied by a class
of structures, which is a fixed point of an operator similar
to Reiter’s � operator but defined on classes of structures.
Kaminski pointed out some problems with Lifschitz’s ap-
proach, for instance, a default theory is not equivalent to
its grounded version under the domain closure assumption
(Kaminski 1995). Instead, Kaminski modified Lifschitz’s se-
mantics by fixing a pre-given infinite Herbrand universe as
well as the interpretations of functions (Kaminski 1995).

In fact, the world view semantics can be regarded as
a modification of Lifschitz’s and Kaminski’s approaches.
However, there are three major differences. First, we do not
introduce any new universe and we do not need to extend
the language by introducing a new constant for each domain
element in the new universe. Second, we do not ground on
Herbrand universe nor on any other domains. Finally, we do
not use the notion Th(W ) to denote the set of sentences sat-
isfied by a structure or a class of structures. Although this
notion is well defined, one has to be very careful as not
every class of structures is corresponding to a set of first-
order sentences. We regard the world view semantics as a
purely model theoretical approach. Similar to the classical
first-order semantics, the notions and notations used in the
world view semantics are merely restricted in the language
of the default theory.

Conclusion
The main contribution of this paper is the world view seman-
tics for first-order default logic. Roughly speaking, a world
view of a default theory is a maximal class of structures shar-
ing the same configuration and satisfying the default theory,
where the default part is fixed by the world view itself. A
major rationale for using collections of structures as the so-
lution concept is that first-order theories, such as extensions,
are not powerful enough to capture all information hidden in
a first-order default theory. The world view semantics is es-
sentially different from Reiter’s original proposal, even for
closed default theories. Nevertheless, they coincide on con-
figuration independent closed default theories. First-order
default logic under the world view semantics provides a rich
framework for knowledge representation and reasoning as it
not only generalizes but also integrates classical first-order
logic and first-order answer set programming.
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