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Abstract

We develop a clausal resolution-based approach for comput-
ing uniform interpolants of TBoxes formulated in the descrip-
tion logic ALC when such uniform interpolants exist. We
also present an experimental evaluation of our approach and
of its application to the logical difference problem for real-life
ALC ontologies. Our results indicate that in many practical
cases uniform interpolants exist and that they can be com-
puted with the presented algorithm.

Introduction
Ontologies or TBoxes expressed in Description Logics (DL)
provide a common vocabulary for a domain of interest to-
gether with a description of the meaning of the terms built
from the vocabulary and of the relationships between them.
Modern applications of ontologies, especially in the biolog-
ical, medical, or healthcare domain, often demand large and
complex ontologies; for example, the National Cancer Insti-
tute ontology (NCI) consists of more than 60 000 term def-
initions. For developing, maintaining, and deploying such
large-scale ontologies it can be advantageous for ontology
engineers to concentrate on specific parts of an ontology
and ignore or forget the rest. Ignoring parts of an ontol-
ogy can be formalised with the help of predicate forget-
ting and its dual uniform interpolation, which have both
been extensively studied in the AI and DL literature (ten
Cate et al. 2006; Eiter et al. 2006; Herzig and Mengin 2008;
Konev, Walther, and Wolter 2009; Wang et al. 2008; 2010;
2012; Lutz and Wolter 2011).

Forgetting parts of an ontology can be used, for exam-
ple, in the following practical scenarios. Exhibiting hidden
relations: in addition to the explicitly stated connections be-
tween terms, additional relations can also be derived from
ontologies with the help of reasoners. Such inferred con-
nections are often harder to understand or debug. By for-
getting everything but a handful of terms of interest, it then
becomes possible to exhibit inferred relations that were hid-
den initially, potentially simplifying the understanding of
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the ontology structure. Ontology obfuscation: in software
engineering, obfuscation (Collberg, Thomborson, and Low
1998) transforms a given program into a functionally equiv-
alent one that is more difficult to read and understand for
humans for the purpose of preventing reverse engineering.
Forgetting can provide a similar function in the context of
ontology engineering. Terms are often defined with the help
of auxiliary terms which give structure to TBox inclusions.
However, such a structure might be considered proprietary
knowledge that should not be exposed, or it could sim-
ply be of little interest for ontology users. By forgetting
these intermediate auxiliary terms, we obtain an ontology
that is functionally equivalent, yet harder to read, under-
stand, and modify by humans. Further applications of for-
getting can be found in (Konev, Walther, and Wolter 2009;
Lutz, Seylan, and Wolter 2012).

A promising and important application area of forgetting
is the computation of the logical difference between ontol-
ogy versions. Determining whether two versions of a docu-
ment have differences is a standard task in information tech-
nology, and finding differences is particularly relevant for
text processing and software development. Already in these
areas, it is important to be able to identify which changes
are significant and which are not (e.g., a software devel-
oper might want to ignore changes in the formatting style
of the code such as the number of indentation spaces). De-
tecting significant changes is even more important in the set-
ting of Knowledge Representation, where differences in the
knowledge captured by ontologies are often more relevant
than syntactic changes. Arguably, one of the most important
concerns of an ontology engineer when modifying an ex-
isting ontology is to ensure that the introduced changes do
not interfere with the meaning of the terms outside the frag-
ment under consideration. Notice that neither the version
comparison based on the syntactic form of the documents
representing ontologies (Conradi and Westfechtel 1998) nor
methods based on the structural transformations of ontol-
ogy statements (Noy and Musen 2002; Klein et al. 2002;
Jiménez-Ruiz et al. 2011) can be used to identify changes
to the logical meaning of terms in every situation. However,
such a correctness guarantee can be achieved by checking
the equivalence of the ontologies resulting from forgetting
the terms under consideration before and after the changes
occurred.
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In this paper we develop an algorithm based on clausal
resolution for computing uniform interpolants of TBoxes
formulated in the description logicALC which can preserve
all the consequences which do not make use of some given
concept names and which have a quantifier nesting level lim-
ited to some given depth. Subsequently, we present an exper-
imental evaluation of our approach which demonstrates that
in many practical cases uniform interpolants (without limita-
tions on the quantifier nesting depth) exist and that they can
be computed with our algorithm. We also apply our proto-
type tool to compute the logical difference between versions
of ontologies from the biomedical domain.

The material presented here extends earlier work (Ludwig
and Konev 2013). All the missing proofs can be found in the
full version of this paper.1

Related work. Until recently research on uniform inter-
polation and forgetting in the setting of DL mainly has
concentrated on theoretical foundations of forgetting. This
could be partly explained by the high computational com-
plexity of this task and by the fact that uniform interpolants
do not always exist. The notion of forgetting has been in-
troduced by Reiter and Lin (1994). Konev, Walther, and
Wolter (2009) prove tractability of uniform interpolation
for EL TBoxes of a specific syntactic form. Uniform in-
terpolation for general EL-TBoxes has been investigated by
Nikitina and Rudolph (2012).

Wang et al. (2008; 2010; 2012) have developed algo-
rithms for forgetting in expressive description logics. A tight
2-EXPTIME-complete bound on the complexity for decid-
ing the existence of a Σ-uniform interpolant in ALC and a
worst-case triple-exponential procedure for computing a Σ-
uniform interpolant if it exists, have been given by Lutz and
Wolter (2011). Koopmann and Schmidt (2013) have intro-
duced a two-stage resolution-based algorithm for computing
uniform interpolants. As outcome of the first stage, a repre-
sentation of the uniform interpolant in a description logic
with fixpoint operators is computed (such a representation
always exists) Then in the second stage an attempt is made
to eliminate the newly-introduced fixpoints (which may not
succeed). In contrast to this approach, our algorithm has one
stage and it can be guaranteed that a uniform interpolant of
bounded depth is returned.

The notion of the logical difference has been introduced
by Konev, Walther, and Wolter (2008) as a way of capturing
the difference in the meaning of terms that is independent of
the representation of ontologies.

Preliminaries
We start with introducing the description logic ALC. Let
NC and NR be countably infinite and mutually disjoint sets
of concept names and role names. ALC-concepts are built
according to the following syntax rule

C ::= A | > | ¬C | ∃r.C | C uD,
where A ∈ NC and r ∈ NR. As usual, other ALC concept
constructors are introduced as abbreviations: ⊥ stands for

1Available from http://lat.inf.tu-dresden.de/∼michel/
publications/

¬>, C t D stands for ¬(¬C u ¬D) and ∀r.C stands for
¬∃r.¬C. AnALC-TBox T is a finite set ofALC-inclusions
of the form C v D, where C and D are ALC-concepts.
A concept equation C ≡ D is an abbreviation for the two
inclusions C v D and D v C. An ALC-TBox T is acyclic
if all its inclusions are of the formA v C andA ≡ C, where
A ∈ NC and C is an ALC-concept, such that no concept
name occurs more than once on the left-hand side and T
contains no cycle in its definitions, i.e., it does not contain
inclusions A1 ./ C1,. . . , Ak ./ Ck, where ./ ∈ {v,≡},
such that Ai+1 occurs in Ci, for i = 1, . . . , k − 1 and Ak =
A1.

A signature Σ is a finite subset of NC ∪NR. The signature
of a concept C, denoted by sig(C), is the set of concept and
role names that occur in C. If sig(C) ⊆ Σ, we call C a Σ-
concept. We assume that the two previous definitions also
apply to concept inclusions/equations C ./ D with ./ ∈
{v,≡} and to TBoxes T . The size of a concept C is the
length of the string that represents it, where concept names
and role names are considered to be of length one. The size
of an inclusion/equation C ./ D with ./ ∈ {v,≡} is the
sum of the sizes of C and D plus one. The size of a TBox T
is the sum of the sizes of its inclusions.

The semantics of ALC is given by interpretations I =
(∆I , ·I), where the domain ∆I is a non-empty set, and ·I is
a function mapping each concept name A to a subset AI of
∆I , each role name r to a binary relation rI ⊆ ∆I × ∆I .
The extension CI of a concept C is defined by induction as
follows:

>I := ∆I

(¬C)I := ∆I \ CI
(∃r.C)I := { d ∈ ∆I | ∃ e ∈ CI : (d, e) ∈ rI }
(C uD)I := CI ∩DI .

Then I satisfies a concept inclusion C v D, in symbols
I |= C v D, if CI ⊆ DI .

We say that an interpretation I is a model of a TBox T if
I |= C v D for allC v D ∈ T . AnALC-inclusionC v D
follows from (or is entailed by) a TBox T if every model
of T is a model of C v D, in symbols T |= C v D. We
use |= C v D to denote thatC v D follows from the empty
TBox. Finally, a TBox T ′ follows from (or is entailed by) a
TBox T if every model of T is a model of T ′, in symbols
T |= T ′.

We now introduce the main notion that we study in this
paper.
Definition 1. Let T be an ALC-TBox and let Σ ⊆ sig(T )
be a signature. We say that anALC-TBox TΣ is a Σ-uniform
interpolant of the TBox T iff sig(TΣ) ⊆ Σ, T |= TΣ, and for
every ALC Σ-concept inclusion C v D with T |= C v D
it holds that TΣ |= C v D.

Uniform interpolation can be seen as the dual notion of
forgetting: a TBox TΥ is the result of forgetting about a sig-
nature Υ in a TBox T iff TΥ is a uniform interpolant of T
w.r.t. Σ = sig(T ) \ Υ. As the following example shows,
uniform interpolants of ALC-TBoxes do not always exist.
Example 2. Let T = {A v B, B v C u ∃r.B} and
Σ = {A,C, r}. Then there does not exist a Σ-uniform inter-
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polant of T as (in particular) the infinite number of conse-
quences of the form A v ∃r.C, A v ∃r.∃r.C, . . . cannot
be captured by an ALC-TBox T ′ with sig(T ′) ⊆ Σ. On the
other hand, for T ′ = {A v B, B v C u ∃r.B, D ≡ B}
and Σ′ = {A,C,D, r}, a Σ′-uniform interpolant of T ′ is
{A v D, D v C u ∃r.D}.

Uniform interpolation is also related to the notion of log-
ical difference between ontologies.

Definition 3. The Σ-logical difference between ALC-
TBoxes T1 and T2 is the set DiffΣ(T1, T2) of all ALC-
concept inclusions C v D such that sig(C v D) ⊆ Σ,
T1 |= C v D, and T2 6|= C v D.

It is easy to see that DiffΣ(T1, T2) = ∅ if, and only if,
T2 |= T (Σ)

1 where T (Σ)
1 is a Σ-uniform interpolant of T1.

Moreover, if T2 6|= T (Σ)
1 , every inclusion C v D ∈ T (Σ)

1
with T2 6|= C v D can be regarded as a witness of
DiffΣ(T1, T2).

With the exception of acyclic EL-TBoxes, checking
whether the logical difference between two ontologies is
nonempty is at least one exponential harder than reason-
ing (Konev et al. 2012). Additionally, if the set DiffΣ(T1, T2)
is nonempty, it is typically infinite. Therefore, in practice,
the notion of logical difference is primarily used as a theoret-
ical underpinning of its approximations that limit the choice
of inclusions C v D in Definition 3 to Σ-inclusions con-
structed according to some syntactic rules, see e.g. (Jiménez-
Ruiz et al. 2009), (Gonçalves, Parsia, and Sattler 2012).

Computing Uniform Interpolants by
ALC-Resolution

The aim of our work is to investigate a practical approach for
computing uniform interpolants when they exist. Note that
the worst-case optimal procedure given by Lutz and Wolter
(2011) is inherently inefficient as it requires one to explic-
itly construct the internalisation CT of a given TBox T , i.e.
a concept CT of size double exponential in the size of T
having the property that for any inclusion C v D it holds
that T |= C v D iff |= C u CT v D.

Our approach is to introduce a resolution-like calculus for
ALC that derives consequences of a TBox T such that a
concept inclusionC v D is entailed by T iff a contradiction
can be derived from T and C u¬D. Similarly to Herzig and
Mengin (2008), we then show that any derivation can be re-
structured in such a way that inferences on selected concept
names always precede inferences on other concept names.
Then, if the signature Σ is such that sig(T )\Σ only contains
concept names, we generate a set of Σ-consequences T ′
of T by applying the inference rules in a forward chain-
ing manner such that for an arbitrary Σ-inclusion C v D
a contradiction can be derived from T and C u ¬D iff a
contradiction can be derived from T ′ and C u ¬D. Thus, if
the forward-chaining process terminates, T ′ is a Σ-uniform-
interpolant for T .

ALC-Resolution. ALC-resolution operates on ALC for-
mulae in a conjunctive normal form that is defined accord-
ing to the following grammar (which is similar to the normal

form introduced by Herzig and Mengin (2008)):

Literal ::= A | ¬A | ∀r.Clause | ∃r.CNF
Clause ::= Literal | Clause t Clause | ⊥

CNF ::= > | Clause | Clause u CNF

To simplify the presentation, we assume that clauses are sets
of literals and that CNF expressions are sets of clauses. Then
⊥ corresponds to the empty clause and > to the empty set
of clauses. In the following, the calligraphic letters C,D, E
symbolise clauses and F ,G represent sets of clauses. Sim-
ilarly to first-order formulae, every ALC concept can be
transformed into an equivalent set of ALC clauses. The
depth of a clause C, Depth(C), is defined to be the maxi-
mal nesting depth of the quantifiers contained in C.

We additionally assume that every clause is assigned a
type. Clauses obtained from the clausification of TBox in-
clusions are of the type universal, and clauses resulting from
the clausification of inclusions to be tested for entailment by
the TBox are of the type initial. The type of a derived clause
is determined by the types of the clauses from which it is
derived and by the derivation rule that is used.
Example 4. The clausification of T from Example 2 pro-
duces three universal clauses:¬AtB, ¬BtC, ¬Bt∃r.B.

We now introduce the two resolution calculi T and Tu.
The former calculus assumes the TBox to be empty, whereas
the latter takes TBox inclusions into account. Thus, T de-
rives the empty clause from the set of initial clauses stem-
ming from the clausification of an inclusion > v C u ¬D
iff |= C v D; and Tu derives the empty clause from the uni-
versal clauses stemming from the clausification of a TBox T
and the initial clauses stemming from the clausification of an
inclusion > v C u ¬D iff T |= C v D.

The calculus T is defined with the help of the relation⇒α

given in Fig. 1. For every α ∈ NC ∪ {⊥}, the relation ⇒α

associates with a set of clauses N a new clause C which
can be ‘derived’ from the set N by ‘resolving’ on α. T now
consists of the following two inference rules.

C
E (if C ⇒α E) C D

E (if C,D ⇒α E),

where C,D, and E are initial clauses.
The calculus Tu operates initial and universal clauses and

also consists of two rules:
C
E (if C ⇒α E)

C′ D
E ′

(if C′,D ⇒u
α E ′),

where C, C′,D are initial or universal clauses, and C′,D ⇒u
α

E ′ holds iff either C′,D ⇒α E ′, or D is a universal clause
and there exist role names r1, . . . , rn ∈ NR (n ≥ 1) such
that C′,∀r1. . . .∀rn.D ⇒α E ′. (Intuitively, the calculus Tu
allows for inferences with universal clauses at arbitrary nest-
ing levels of quantifiers, which the calculus T does not.)
Then E is a universal clause if C is a universal clause, and
an initial clause otherwise. Similarly, E ′ is a universal clause
if both C′ and D are universal clauses, and an initial clause
otherwise.

We assume that every clause E that results from a T- or
Tu-inference is implicitly simplified by exhaustively remov-
ing all occurrences of literals of the form ∃r.(F ,⊥).
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(rule ⊥) C′1 t ∀r.⊥, C′2 t ∃r.F =⇒⊥ C′1 t C′2
(rule A) C′1 tA, C′2 t ¬A =⇒A C′1 t C′2
(rule ∀∃) C′1 t ∀r.C1, C′2 t ∃r.(C2,F) =⇒α C′1 t C′2 t ∃r.(C2,F , C3), if C1, C2 =⇒α C3
(rule ∀∀) C′1 t ∀r.C1, C′2 t ∀r.C2 =⇒α C′1 t C′2 t ∀r.C3, if C1, C2 =⇒α C3
(rule ∃1) C′ t ∃r.(C1,F) =⇒α C′ t ∃r.(C1,F , C2), if C1 =⇒α C2
(rule ∃2) C′ t ∃r.(C1, C2,F) =⇒α C′ t ∃r.(C1, C2,F , C3), if C1, C2 =⇒α C3
(rule ∀) C′ t ∀r.C1 =⇒α C′ t ∀r.C2, if C1 =⇒α C2

Figure 1: Rules of =⇒α.

Example 5. For the universal clauses from Example 4, we
have for instance,

¬A tB,¬B t ∃r.B ⇒B ¬A t ∃r.B by (rule A).

So, the universal clause ¬A t ∃r.B is derivable by Tu from
¬A t B and ¬B t ∃r.B. As ¬B t C is a universal clause
and

¬Bt∃r.B, ∀r.¬BtC ⇒B ¬Bt∃r.(B,C) by (rule ∀∃),
the universal clause ¬Bt∃r.(B,C) is derivable by Tu from
¬B t ∃r.B and ¬B tC. By applying the inference rules to
old and newly generated clauses, one can conclude that the
universal clauses ¬A t ∃r.(B,C) and ¬A t ∃r.(B, ∃r.B)
are also derivable by Tu from N = {¬A t B, ¬B t
C, ¬B t ∃r.B}.

For x ∈ {T,Tu}, a x-derivation (tree) ∆ built from a set
of clauses N is a finite binary tree in which each leaf is la-
belled with a clause from N and each non-leaf node n is la-
belled with a clause C such that C results from an x-inference
on the parent(s) of n in ∆. We say that ∆ is a derivation
of a clause C if the root of ∆ is labelled with C. A deriva-
tion of the empty clause is called a refutation. Every path
n1, . . . , nm of nodes in ∆ where n1 is a leaf node and nm is
the root node induces an inference path α2, . . . , αm, where
αi ∈ NC ∪ {⊥} (2 ≤ i ≤ m) denotes the concept name, or
⊥, which has been resolved upon to obtain the clause that
is the label of the node ni. For a signature Υ ⊆ NC and a
strict total order � ⊆ Υ×Υ, a derivation ∆ is a (x,Υ,�)-
derivation if for every inference path α1, . . . , αn of ∆ (with
αi ∈ NC ∪{⊥} for every 1 ≤ i ≤ n) there exists 0 ≤ k ≤ n
such that {α1, . . . , αk} ⊆ Υ, αj � αj+1 or αj = αj+1 for
every 1 ≤ j < k, and αj 6∈ Υ for every k < j ≤ n.

We prove that for every unsatisfiable set of initial clauses
there always exists a (T,Υ,�)-refutation by extending the
results and proof methods of Herzig and Mengin (2008).
Theorem 6 (T-Completeness). Let Υ ⊆ NC, let� ⊆ Υ×Υ
be a strict total order on Υ and let C and D be ALC
concepts. Then it holds that |= C v D iff there exists
a (T,Υ,�)-derivation of the empty clause from the initial
clauses Cls(C u ¬D).

A weaker version of this result, stating that any derivation
in T can be reordered so that inferences on concept names
from Υ always precede inferences on other concept names,
or⊥, has been previously announced by Herzig and Mengin
(2008); however, as we show in the full version of the paper,
the proof appears to have some gaps.

To prove completeness for Tu, we observe the following
link between derivations in T and Tu. Let N be a set of
clauses and let

Univ0(N ) = N ;

Univi+1(N ) = Univi(N ) ∪⋃
r∈NR∩sig(N ){ ∀r.C | C ∈ Univi(N ) }

and Univ(N ) =
⋃
i≥0 Univi(N ).

Theorem 7. Let M be a set of initial clauses and let
N be a set of universal clauses. Additionally, let ∆ be a
(T,Υ,�)-refutation fromM∪Univ(N ) such that there ex-
ists n ∈ N with Depth(C) ≤ n for every C ∈ Clauses(∆).
Then there exists a (Tu,Υ,�)-derivation ∆u of the empty
clause from M ∪ N such that Depth(C) ≤ n for every
C ∈ Clauses(∆u).

We then use Theorems 6 and 7 and the fact that every
ALC-TBox can be internalised. Notice that the actual TBox
internalisationCT does not have to be computed as it is only
used for the proof of completeness.

Corollary 8 (Tu-Completeness). Let T be an ALC-TBox,
let Υ ⊆ NC, let � ⊆ Υ×Υ be a strict total order on Υ and
let C and D be ALC concepts. Then it holds that T |= C v
D iff there exists a (Tu,Υ,�)-derivation of the empty clause
from the universal clauses Cls(T ) and the initial clauses
Cls(C u ¬D).

Computing Uniform Interpolants. The procedure UNI-
FORMINTERPOLANT depicted in Algorithm 1 takes as in-
put an ALC-TBox T , a signature Σ ⊆ sig(T ) such that
Σ ∩ NR = sig(T ) ∩ NR and a strict total order � ⊆ Υ × Υ
over Υ = sig(T ) \Σ. Following the outline given by Herzig
and Mengin (2008), after the clausification of T , the proce-
dure iterates over the concept names contained in Υ in de-
scending order according to the relation �. In each iteration
the clause setN is expanded with all possible Tu-inferences
on the current concept name A ∈ Υ. Finally, after iterating
over all the concept names from Υ = sig(T ) \Σ, the opera-
tor ‘Supp’ is applied on the resulting clauses, which replaces
all occurrences of Υ concept names in clauses with > and
then simplifies the resulting CNF.

Example 9. For the clauses obtained in Example 5,
Supp({B},¬AtC) = ¬AtC, Supp({B},¬At∃r.B) =
¬A t ∃r.>, Supp({B},¬A t ∃r.(B,C)) = ¬A t ∃r.C.
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Algorithm 1
1: procedure UNIFORMINTERPOLANT(T , Σ, �)
2: Υ := sig(T ) \ Σ
3: N := Cls(T )
4: while Υ 6= ∅ do
5: A := max�(Υ)
6: N := Res∞Tu,{A}(N )

7: Υ := Υ \ {A}
8: end while
9: return FΣ(T ) = Supp(sig(T ) \ Σ,N )

10: end procedure

One can show that if Algorithm 1 terminates, then for all
ALC Σ-concepts C,D such that there exists a (Tu,Υ,�)-
refutation ∆u from the universal clauses Cls(T ) and the ini-
tial clauses Cls(C u ¬D) it holds that FΣ(T ) |= C v D.
Thus, it follows from Corollary 8 that if Algorithm 1 ter-
minates, it computes a Σ-uniform interpolant of T . How-
ever, Algorithm 1 does not terminate if a uniform inter-
polant does not exist. For example, when applied to T
from Example 2, Algorithm 1 can generate, among oth-
ers, the infinite sequence of universal clauses ¬A t ∃r.C,
¬At∃r.(C,∃r.C), . . . and so on. Moreover, as the TBox T
from Example 2 is a subset of T ′, and so Cls(T ) ⊆ Cls(T ′),
Algorithm 1 will derive, among others, the same clauses
when it is applied on T ′. Thus, in some cases Algorithm 1
does not terminate even though a uniform interpolant exists.

To guarantee termination on all inputs, we focus on the
notion of depth-bounded uniform interpolation (related to
the notion of ‘bounded forgetting’ (Zhou and Zhang 2011)).
Let T be an ALC-TBox and let Σ ⊆ sig(T ) be a signature.
We say that anALC-TBox TΣ is a depth n-bounded uniform
interpolant of the TBox T w.r.t. Σ iff sig(TΣ) ⊆ Σ, T |=
TΣ, and for every ALC Σ-concept inclusion C v D with
T |= C v D and max{Depth(C),Depth(D)} ≤ n it
holds that TΣ |= C v D. Let FΣ,m(T ) be the outcome
of Algorithm 1 where in Step 6 only clauses up to depth m
are generated. The following example shows that it might be
necessary to consider intermediate clauses of a depth m >
n in order to preserve all the Σ-consequences of depth n
entailed by T .

Example 10. Let T = {A v ∃r.C, C v ∃s.>, ¬B v
∀s.⊥}, Σ = {A,B, r, s}, Υ = {C} and � = ∅. Then ev-
ery (Tu,Υ,�)-refutation from the universal clauses Cls(T )
and the initial clauses {A,∀r.¬B} derives the clause ¬A t
∃r.(C,∃s.>).

We establish, however, that by choosing the maximal
depth of derived clauses appropriately, the procedure de-
picted in Algorithm 1 computes uniform interpolants that
preserve consequences up to a specified depth n.

Theorem 11. Let T be an ALC-TBox, Σ ⊆ sig(T ) a sig-
nature such that Σ ∩ NR = sig(T ) ∩ NR, and let n ≥ 0. Set
m = n+2|sub(Cls(T ))|+1 +max{Depth(C) | C ∈ Cls(T ) },
where sub(Cls(T )) is the set of subconcepts of Cls(T ).
Then it holds that FΣ,m(T ) is a depth n-bounded uniform
interpolant of the TBox T w.r.t. Σ.

We can combine this result with the results of (Lutz and
Wolter 2011): for any ALC-TBox T and signature Σ, if a
Σ-uniform interpolant of T exists, then there exists a uni-
form interpolant of depth bounded by 22|T |+1

+ 1. Thus,
if Σ ∩ NR = sig(T ) ∩ NR, there exists m, which can be
computed based on the bound in Theorem 11 and the re-
sults of (Lutz and Wolter 2011), such that FΣ,m(T ) is a Σ-
uniform interpolant of T .

The bound in Theorem 11 can be significantly improved
if the TBox is acyclic. For an acyclic ALC-TBox T we
define ExpansionDepth(T ) = max{Depth(A[T ]) | A ∈
sig(T ) }, where A[T ] denotes the concept obtained by ex-
haustively replacing every conceptB with CB ifB v CB ∈
T or B ≡ CB ∈ T .
Theorem 12. Let T be an acyclicALC TBox, Σ ⊆ sig(T ) a
signature such that Σ∩NR = sig(T )∩NR, and let n ≥ 0. Set
m = ExpansionDepth(T )+n. Then it holds thatFΣ,m(T )
is a uniform interpolant limited to consequence depth n of
the TBox T w.r.t. Σ.

Note that in the description logic EL (i.e. the fragment of
ALC that does not allow ⊥, negation, disjunction, or uni-
versal quantification) the acyclicity of a TBox guarantees
the existence of uniform interpolants (Konev, Walther, and
Wolter 2009) for any signature Σ. Interestingly, this is not
true in the case ofALC. Moreover, as the following example
shows, there exists an acyclic EL-TBox T and a signature Σ
for which no ALC Σ-uniform interpolant exists.
Example 13. Consider Σ = {A,A0, A1, A2, E, r} and
T = {A v ∃r.B, A0 v ∃r.(A1 u B), E ≡ A1 u B u
∃r.(A2uB)}. Then for every n ≥ 0, T entails the inclusion

A0 u
nl

i=1

∀r. . . .∀r.︸ ︷︷ ︸
i

(Au¬E u (A1 tA2)) v ∃r. . . . ∃r.︸ ︷︷ ︸
n

A1.

This infinite sequence of ALC consequences of T cannot
be captured by any ALC Σ-TBox T ′, which can be proved
formally using Theorem 9 of Lutz and Wolter (2011).

Case Study
We have implemented a prototype of an inference compu-
tation architecture using the calculus Tu and the inference
relation ⇒α in Java. However, it turned out that our initial
implementation of Algorithm 1 did not perform well in prac-
tice. This was in particular due to the fact that clauses can
contain sets F of other clauses in existential literals ∃r.F ,
which renders all the possible inferences on clauses from F
‘explicit’. For example, if we resolve the universal clause
which just consists of the existential literal ∃r.(A) with the
universal clauses ¬A t B1, . . . ,¬A t Bn on the concept
name A, then not only the clauses ∃r.(A,B1), ∃r.(A,B2),
∃r.(A,B3),. . . could be derived but all clauses of the form
∃r.(A,G), where G is a subset of {B1, . . . , Bn}.

A common technique to reduce the number of inferences
that have to be made is to use forward- and backward dele-
tion of subsumed clauses (Bachmair and Ganzinger 2001).
However, it is known (Auffray, Enjalbert, and Hébrard 1990)
that the subsumption lemma (stating that if a clause E re-
sults from an inference involving two clauses C and D, and
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Uniform Interpolation Forgetting

|Σ ∩ NC| = 5 |Σ ∩ NC| = 10 |Υ| = 10 |Υ| = 15 |Υ| = 25

Success Avrg # Success Avrg # Success Avrg # Success Avrg # Success Avrg #
Rate (%) Axioms Rate (%) Axioms Rate (%) Axioms Rate (%) Axioms Rate (%) Axioms

AMINO-
ACID v1.2 100 61.40 92 143.35 100 645.67 87 665.24 64 396.98

BHO v0.4 71 30.01 16 52.43 99 2374.73 99 2363.42 91 2383.96
CAO v1.4 100 279.02 100 283.33 100 369.54 100 369.22 10 366.07
CDAO 100 288.21 100 288.42 100 293.48 100 293.41 10 293.02
CHEMBIO v1.1 92 7 1.89 60 94.40 100 295.85 100 293.09 10 293.64
CPRO v0.85 100 585.08 100 533.82 100 307.76 100 309.46 10 316.31
DDI v0.9 100 249.80 100 259.41 100 276.27 100 278.55 10 276.61
DIKB v1.4 2 1591.50 0 - 97 622.67 83 689.44 56 816.39
GRO v0.5 0 - 0 - 94 959.85 91 940.03 79 997.59
IDO 0 - 0 - 94 1202.71 90 1203.78 80 1215.36
LIPRO v1.1 73 7.93 58 13.22 91 2287.24 58 2381.43 45 2297.37
NCI v08.10e 23 887.34 1 1397.00 97 100693.26 98 100611.60 99 100889.50
NEOMARK v4.1 31 19.45 14 27.28 100 338.52 100 333.26 10 324.86
OMRSE 100 485.00 100 485.00 100 485.00 100 485.00 10 485.00
OBIWS v1.1 100 112.56 100 118.70 100 189.66 100 187.71 10 184.13
ONTODM v1.1.1 0 - 0 - 98 1711.40 98 1704.67 93 1693.61
OPL 100 829.41 100 832.93 100 848.60 100 848.99 10 848.73
PROPREO v1.1 41 2.07 19 31.84 100 561.43 100 560.85 99 578.08
RNAO r113 100 355.86 100 362.83 100 439.64 100 439.10 10 439.71
SAO v1.2.4 0 - 0 - 99 2702.23 100 2700.85 98 2715.30
SITBAC v1.3 0 - 0 - 93 508.40 93 537.48 79 595.51
TOK v0.2.1 0 - 0 - 97 496.12 93 529.06 72 567.11
VSO 0 - 0 - 83 348.87 79 397.65 50 371.38

Table 1: Uniform Interpolation and Forgetting for BioPortal Ontologies on Small Signatures.

if there exist clauses C′, D′ such that C′ subsumes C and D′
subsumes D, then either E is subsumed by one of C′, D′, or
a clause E ′ can be derived from C′ and D′ such that E ′ sub-
sumes E) does not hold even in the modal logic K for the
standard minimal subsumption relation ≤s (Auffray, Enjal-
bert, and Hébrard 1990) and ⇒α. To be able to prove that
one can safely discard subsumed clauses, we have modified
the inference relation⇒α by introducing the following ad-
ditional rule (rule ∃f )

C1 t ∀r.D, C2 t ∃r.F =⇒∃f C1 t C2 t ∃r.(F ,D).

We will denote the resulting inference relation by⇒f
α with

α ∈ NC ∪ {⊥,∃f}. One can then prove that a variant of
the subsumption lemma holds for the relations ≤s and⇒f

α,
which allows us to employ forward- and backward deletion
of subsumed clauses in our implementation.

In order to further speed up computations, we first extract
the locality-based>⊥∗ Σ-module (Cuenca Grau et al. 2008;
Sattler, Schneider, and Zakharyaschev 2009) for a given
TBox T . The locality-based module entails the same Σ-
inclusions as the TBox T but it is often considerably smaller
in size. We also rely on ontologies to have structure: if a
concept name occurs in several inclusions, it is likely that it
occurs in the same syntactic pattern. We therefore transform
clause sets as follows.

1. If the clause set contains some clauses C1tDΥ, . . . , Cmt
DΥ such that for every 1 ≤ i ≤ m we have sig(Ci)∩Υ =
∅, we rewrite them intoXtDΥ, whereX ≡ C1u. . .uCm,
perform forgetting on Υ symbols and then replaceX with
its definition.

2. If the clause set contains a clause C t∃r.(FΥ,G1)t . . .t
∃r.(FΥ,Gm) where sig(Gi)∩Υ = ∅ for every 1 ≤ i ≤ m,
we rewrite it into C t ∃r.(FΥ, Y ), where Y ≡ G1 t . . . t
Gm, perform forgetting on Υ and then replace Y with its
definition.

Experimental setting. All experiments were conducted
on PCs equipped with an Intel Core i5-2500K CPU running
at 3.30GHz. 15 GiB of RAM were allocated to the Java VM
and an execution timeout of 60 CPU minutes was imposed
on each problem. Whenever necessary we pre-processed
the ontologies we used for our experiments as follows. For
a given ontology T , we first rewrote concept disjointness
statements and role domain/range restrictions into ALC in-
clusions and then removed any remaining axiom which con-
tained non-ALC concept (or role) constructors to obtain the
ALC-fragment of T . We used Algorithm 1 to forget concept
names one by one i.e. for Υ = {A1, . . . , An}, Algorithm 1
was applied iteratively on A1, . . . , An, and we did not im-
pose a bound on the depth of clauses; so the computed clause
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Computing DiffΣ(Ti+1, Ti) Computing DiffΣ(Ti, Ti+1)

Successful/ Success Average # Successful/ Success Average #
Total Runs Rate (%) of Witnesses Total Runs Rate (%) of Witnesses

BDO 3/5 60 12.33 5/5 100 211.40
CHEMINF 25/26 96 7.00 26/26 100 2.26
COGAT 4/4 100 272.00 3/4 75 4.00
JERM 8/13 61 7.00 9/13 69 9.33
NCI 101/108 93 787.10 105/108 97 906.20
NEMO 14/15 93 13.35 15/15 100 33.46
NPO 12/18 66 27.08 12/18 66 5.58
OMRSE 11/11 100 0.54 11/11 100 0.00
OPL 4/4 100 18.75 4/4 100 2.25
SIO 18/35 51 0.00 19/35 54 0.00

Table 3: Computing the Logical Difference between Ontology Versions on their Common Signature.

|Σ ∩ NC| Success
Rate (%)

Avrg #
Axioms

DIKB
5 85 7.482

10 60 14.033

15 44 25.114

NCI

5 82 1.62

10 64 2.65

50 65 21.369

100 56 41.089

150 41 63.146

Table 2: Computing Uniform Interpolants of DIKB v1.4 and
of NCI v08.10e Limited to Expansion Depth 3.

sets contain depth n-bounded uniform interpolants for every
n > 0. Thus, in all the experiments reported on we com-
puted true Σ-uniform interpolants (i.e. not a depth-bounded
variant). The correctness of our extensions to Algorithm 1
can be shown by model-theoretic arguments.
Experiments with small signatures. We applied our uniform
interpolation tool to compute uniform interpolants w.r.t.
small concept signatures Σ ⊆ sig(T ) with sig(T ) ∩ NR =
Σ ∩ NR for 21 small to medium size ontologies taken from
the BioPortal repository2. The number of axioms in the se-
lected ontologies ranges from 192 (for the Ontology of Med-
ically Related Social Entries) to 2702 (for the Subcellular
Anatomy Ontology). To make the experiments more inter-
esting, we also included version 08.10e of the National Can-
cer Institute Thesaurus (NCI). For each considered sample
size x and terminology T we generated 100 signatures Σ
by randomly choosing x concept names from sig(T ) and by
adding all the role names from sig(T ) to Σ. The results that
we obtained are shown in Table 1.

In the left half of Table 1 one can see that the number of
2All ontologies used for the experiments reported on in this sec-

tion can be accessed from the BioPortal repository:
http://bioportal.bioontology.org/ontologies

successful computations decreased while the size of Σ∩NC

was increasing, which seems to be due to the fact that the
>⊥∗ Σ-modules then contain more symbols that lead to a
large number of inferences. Most uniform interpolants that
we obtained are relatively small and contain a lot of expres-
sions of the form ∃r1 . . . ∃rn.>. In some cases the process
of forgetting certain intermediate concept names generated a
few hundred clauses that were simplified or deleted in the re-
maining computation steps. The success rate, however, var-
ied significantly from one ontology to another. To further
investigate this phenomenon, we computed uniform inter-
polants for a fragment of version 08.10e of NCI and for
a fragment of version 1.4 of the Drug Interaction Knowl-
edge Base (DIKB) that are of expansion depth 3 (that is,
we removed all the axioms from both ontologies that led
to an expansion depth greater than 3). The resulting DIKB
fragment is a small acyclic terminology that contains 120
concept names, 27 roles names, and 127 axioms. The NCI
fragment is also an acyclic terminology with 53571 concept
names, 78 role names and 62494 axioms (of which 2362
are of the form A ≡ C). The results obtained are shown in
Table 2. Limiting the expansion depth drastically improved
the performance of our prototype implementation with the
success rate for signatures containing 5 randomly selected
concept names rising from 2% to 85% in the case of DIKB
and from 23% to 82% in the case of NCI. For NCI our tool
was capable of handling signatures containing up to 150 ran-
domly selected concept names.

As proof of concept for ontology obfuscation, we applied
our uniform interpolation tool on (a fragment of) the Lipid
Ontology (LIPRO) to forget 45 concept names which are in-
termediate concept names in the ontology’s induced concept
hierarchy, i.e. those concept names group certain subcon-
cepts together to give structure to the ontology. LIPRO is an
acyclic terminology with 593 axioms, 574 concept names
and one role name. The maximal size of an axiom is 50.
It then took 192 CPU seconds to compute the uniform in-
terpolant, which contains 3415 axioms that have a maximal
size of 283. The uniform interpolant that we computed thus
approximately contains 6 times more axioms than the origi-
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Figure 2: Logical Difference between NCI Versions i and i+ 1 (Top) and Versions i+ 1 and i (Bottom).

nal ontology and the maximal axiom size has increased by a
factor of 6 as well. Notice that most of the original structure
of the ontology has been destroyed while preserving all the
consequences entailed by the retained concept names.

Finally, in the right half of Table 1 we report on our suc-
cess rate for forgetting a small number of concept names.
Notice that our prototype implementation performs signifi-
cantly better in this scenario. This observation suggests that
our tool is suitable for checking whether a change made to
an ontology interferes with the meaning of the terms out-
side the (typically small) fragment under consideration in
the context of computing the logical difference between two
versions of an ontology.

Computing the Logical Difference. We selected 10 on-
tologies that have at least 5 submissions and whose expres-
sivity is at least ALC, including 109 versions of the NCI
Thesaurus, from the BioPortal repository.

For every pair of consecutive versions Ti and Ti+1,
where version i + 1 represents the more recent version,
and every considered signature Σ, we computed both
DiffΣ(Ti, Ti+1) and DiffΣ(Ti+1, Ti). We used the reasoner
FaCT++ v1.6.2 (Tsarkov and Horrocks 2006) to determine
whether any axiom C v D ∈ T (Σ)

i is a witness of
DiffΣ(Ti, Ti+1), where T (Σ)

i is the Σ-uniform interpolant
of Ti computed with our tool (similarly for DiffΣ(Ti+1, Ti)).
Note that the signatures Σ we used for the experiments con-
tained (at least) all the roles present in Ti due to the limita-
tions of our uniform interpolation procedure. However, such
a restriction does not limit the applicability of logical differ-
ence in the sense that differences involving role names can
still be detected. Note further that the results we obtained
here are not directly comparable with the logical difference
computed for description logics of the EL family (Konev,
Walther, and Wolter 2008; Konev et al. 2012) as illustrated
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DiffΣ(NCIv08.09d,NCIv08.10e) DiffΣ(NCIv05.03d,NCIv05.05d) DiffΣ(NCIv05.12f,NCIv06.01c)
|(sig(T ) \ Σ)

∩NC|
Success
Rate (%)

Avrg #
Witnesses

Success
Rate (%)

Avrg #
Witnesses

Success
Rate (%)

Avrg #
Witnesses

5 100 446.01 100 47 458.14 100 11 564.71

10 99 446.05 100 47 456.66 97 11 595.85

20 100 445.95 100 47 453.26 94 11 671.79

50 88 445.73 100 47 436.72 84 11 849.16

100 88 445.67 100 47 403.76 70 12 468.64

DiffΣ(NCIv08.10e,NCIv08.09d) DiffΣ(NCIv05.05d,NCIv05.03d) DiffΣ(NCIv06.01c,NCIv05.12f)
|(sig(T ) \ Σ)

∩NC|
Success
Rate (%)

Avrg #
Witnesses

Success
Rate (%)

Avrg #
Witnesses

Success
Rate (%)

Avrg #
Witnesses

5 98 2338.89 96 1347.92 99 13 704.29

10 98 2338.45 98 1348.47 100 13 788.15

20 97 2347.08 95 1348.66 95 13 841.52

50 92 2340.72 86 1351.56 87 14 062.52

100 86 2385.88 74 1354.04 80 14 504.40

Table 4: Computing the Logical Difference between Versions of NCI.

by Example 13.
In our first experiment we used Σ = (sig(Ti) ∩

sig(Ti+1))∪NR. This test captures any change to the mean-
ing of the terms common to both versions. The results of
computing the logical difference are given in Table 3. No-
tice that the success rate of computing DiffΣ(Ti, Ti+1) was
slightly higher than the one of the converse direction. This
observation can probably be attributed to the fact that these
cases correspond to knowledge contained in an older ver-
sion being removed from a newer one, which does not seem
to happen often.

Interestingly, we could observe one of the highest success
rates among all our experiments whilst computing logical
differences for distinct versions of NCI. This can possibly
be explained by the fact that versions of NCI are released
frequently and changes to the ontology are hence introduced
gradually. Figure 2 depicts the number of witnesses that cor-
respond to the logical difference between consecutive ver-
sions of NCI on their common signature. Gonçalves, Parsia,
and Sattler (2012) provide a comprehensive analysis of the
changes between 14 consecutive versions of NCI using vari-
ous techniques, ranging from a manual inspection of the log
files to approximations of the logical difference. Versions
05.12f, 06.01c, and 06.08d were identified as having the
highest number of differences. In our experiments, the high-
est number of logical difference witnesses were also present
in NCI version 06.01c; the computations for versions 05.12f
and 06.08d did not finish in time.

Furthermore, to make the experiments more challenging
for the reasoner, we focused on comparing version i with
version i+ 1, and vice versa, on the 2 pairs of NCI versions
for which the highest number of difference witnesses was
identified in the first experiment. We also included version
08.10e as this is the last acyclicALC TBox in the corpus. We
performed tests on randomly generated large signatures Σ
with Σ ∩ NR = sig(T ) ∩ NR. In that way the computed

uniform interpolants remained rather large as well.
For each sample size x ∈ {5, 10, 20, 50, 100} we gener-

ated 100 signatures by randomly choosing |sig(T )∩NC|−x
concept names from sig(T ) and by including all the role
names from sig(T ). The results that we obtained are now
shown in Table 4.

One can observe that as the size of sig(T ) \ Σ increased,
i.e. more symbols had to be forgotten from the >⊥∗ Σ-
modules, the success rate dropped slightly. Overall, the av-
erage number of witnesses and the average maximal size of
the witnesses remained comparable throughout the different
sample sizes. Also, the axioms generated by the computa-
tion of the uniform interpolant did not pose a problem for
FaCT++ as computing the logical difference for a given sig-
nature never took more than 20 seconds in our experiments.

Conclusion
In this paper we presented an approach based on clausal
resolution for computing uniform interpolants of ALC-
TBoxes T w.r.t. signatures Σ ⊆ sig(T ) that contain all the
role names present in T . We proved that whenever the sat-
uration process under ALC-resolution terminates, the algo-
rithm computes a uniform interpolant. To guarantee termi-
nation on all inputs, we introduced a depth-bounded version
of our algorithm. We showed that by choosing an appropri-
ate bound on the depth of clauses, one can axiomatise all
Σ-inclusions implied by the given TBox up to a specified
depth. Combined with a known bound on the size of uniform
interpolants, our depth-bounded procedure always computes
a uniform interpolant if it exists.

In the second part of this paper we investigated how of-
ten our unrestricted resolution-based algorithm terminates
with a uniform interpolant by applying our prototype imple-
mentation on a number of case studies. Our findings suggest
that despite a high computational complexity uniform inter-
polants can be computed in many practical cases. The com-
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putation procedure could further benefit from better redun-
dancy elimination techniques, which, together with extend-
ing our approach to forgetting role names, constitutes future
work. It would also be interesting to explore proof strategies
for our resolution calculi that guarantee termination when
uniform interpolants exist.
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