
Action Theories over Generalized Databases with Equality Constraints
(Extended Abstract)

Fabio Patrizi and Stavros Vassos
Department of Computer, Control, and Management Engineering (DIAG)

Sapienza University of Rome
Rome, Italy

Abstract
In this work we study action theories of the situa-
tion calculus such that the initial KB is a general-
ized database with equality constraints (GFDBs). We
show that GFDBs characterize the class of definitional
KBs and that they are closed under progression. We
also show that, under conditions, generalized projection
queries can be decided based on an induced transition
system and evaluation of local conditions over states.

Introduction
Situation calculus basic action theories (BATs) (Reiter 2001)
consist of a first-order knowledge base (KB) which de-
scribes the initial state of a given domain, and a set of first-
order axioms that specify how the properties of the domain
change under the effects of actions. Two important reasoning
problems are projection, i.e., predicting whether a condition
would hold if a series of actions were to be performed, and
progression, i.e., updating the KB by a new description that
reflects the current state after actions have been performed.

For the general case it has been shown that second-order
logic may be required to capture the updated KB (Lin and
Reiter 1997; Vassos and Levesque 2013) and an overview of
some special cases where it becomes first-order is studied in
(Vassos and Patrizi 2013). Similarly, answering projection
queries is in the general case undecidable and a few decid-
able cases have been studied, e.g., when the KB is a regu-
lar database (Reiter 2001) or the case of a modified version
of the situation calculus language built using a two-variable
fragment of first-order logic (Gu and Soutchanski 2007).

Notably, the case when the KB has the form of a gen-
eralized database with constraints (Kanellakis, Kuper, and
Revesz 1995), which allows to specify relations with possi-
bly infinitely many tuples, has not been investigated. In this
work we show that for a special type of BATs whose KB
is a generalized database with equality constraints, projec-
tion is decidable and a first-order progression can always be
computed. We then look into richer forms of projection that
may refer to more than one possible evolution of the initial
KB, e.g., capturing properties of the form “after execution
of α1, . . . , αn condition φ always holds in the future” and
specify a condition that ensures decidability also for them.

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

BATs with generalized fluent databases
The situation calculus as presented by Reiter (2001) is a
three-sorted first-order language with equality (and some
limited second-order features). The sorts are used to distin-
guish between actions, situations, and objects. A situation
represents a world history as a sequence of actions. S0 is
used to denote the initial situation where no actions have
occurred. Sequences of actions are built using the function
symbol do, such that do(a, s) denotes the successor situa-
tion resulting from performing action a in situation s. A (re-
lational) fluent is a predicate whose last argument is a situa-
tion, whose value can change from situation to situation. We
also assume a finite number of fluent and action symbols, F
and A, and an infinite number of constants C.

Reiter (2001) investigates the case where the initial
knowledge base (KB) is a definitional theory characterized
as follows:

∧
Fi∈F ∀~xi.F (~xi, S0) ≡ φi(~xi), where φi(~xi),

called the definition for Fi, is an unrestricted first-order for-
mula mentioning no situations. Definitional KBs express
complete information for fluents under the assumption of the
unique-name axioms for constants captured in a set E . For
example the following axiom states that there are exactly
two atoms true for In(x1, x2, S0), namely In(box, it1, S0)
and In(box, it2, S0):

∀x∀y(In(x, y, S0) ≡ (x=box∧(y= it1 ∨y= it2))).

Nonetheless, the definition for a fluent can be any unre-
stricted first-order formula built over the constants in C and
equality. For instance, it could have the following form im-
plying an infinity of ground atoms that are true in S0:

∀x∀y(In(x, y, S0) ≡ (x6=box∧(y= it1 ∨y= it2))).

More complicated definitions can be formed also using
quantification which is actually not adding to the expres-
siveness as first-order theories of equality admit quantifier
elimination (Enderton and Enderton 2001).

We now present definitions from (Kanellakis, Kuper, and
Revesz 1995) in the context of the situation calculus.

Definition 1. An equality constraint is a literal formula xθy
or xθc, where c ∈ C and θ is = or 6=. A generalized k-
tuple over variables x1, . . . , xk is a finite conjunction ψ of
equality constraints whose all variables are free and among
x1, . . . , xk. A generalized relation of arity k is a finite set

650

Proceedings of the Fourteenth International Conference on Principles of Knowledge Representation and Reasoning



R = {ψ1, . . . , ψq}, of generalized k-tuples over x1, . . . , xk.
The formula corresponding to a generalized relation R is
the disjunction ψ1 ∨ · · · ∨ ψq . We will use φR to denote the
quantifier-free formula corresponding to relation R.

We will be dealing with the so-called basic action theo-
ries of the form D = Dap ∪ Dss ∪ Duna ∪ D0 ∪ Σ, where:
Dap is a set of action precondition axioms (APs) andDss is a
set of successor state axioms (SSAs), one per fluent symbol
Fi ∈F , Duna is the set of unique-names axioms for actions,
D0 describes the initial situation S0, and Σ is a set of foun-
dational axioms which formally define legal situations. We
identify BATs over generalized databases as follows.

Definition 2. A setD0 of first-order sentences uniform in S0

is a generalized fluent database (GFDB) iff it has the form∧
Fi∈F ∀~xi.F (~xi, S0) ≡ φi(~xi), where φi(~xi) corresponds

to a generalized relation over ~x, i.e., is a disjunction of con-
junctions of equality constraints. A basic action theoryD is a
basic action theory over a generalized fluent database (BAT-
GFDB) iff it also includes the set of unique-names axioms
for constants E , and D0 is a GFDB.

Theorem 1. Let φ be a definitional KB. There exists a gen-
eralized fluent database φ′ such that E |= φ ≡ φ′.

Kanellakis et. al (1995) show that for such KBs there is
also a decidable procedure for evaluating queries. Note also
that equivalence of generalized fluent databases can also be
decided, formed as an appropriate query. With these tools
available we now proceed to show how solutions for pro-
gression and projection can be obtained for BAT-GFDBs.

Progression of BAT-GFDBs
In order to do a one-step progression of a BAT D with re-
spect to a ground action α we need to replace D0 in D by
a suitable set Dα of sentences uniform in do(α, S0) so that
the original theory D and the theory (D − D0) ∪ Dα are
equivalent with respect to how they describe the situation
do(α, S0) and the situations in the future of do(α, S0).

In a seminal paper Lin and Reiter (1997) gave a model-
theoretic definition for the progression Dα of D0 wrt α and
D that achieves this goal. Finding such a Dα is a difficult
task and it has been shown that second-order logic may be
required in the general case (Lin and Reiter 1997; Vassos
and Levesque 2013). Nonetheless, for the definitional KBs,
and as a consequence also for the special case of generalized
fluent databases, there is a simple way to progress. Note that
an SSA, that has the form F (~x, do(a, s)) ≡ Φ(~x, a, s), char-
acterizes the conditions under which F has a specific value
at situation do(a, s) as a function of situation s and action
a. A progression can then be obtained by replacing fluent
atoms F (~o, S0) in the right-hand side of the SSA by their
definition in the KB (Reiter 2001). It is interesting to look
into how this method works when D0 is a GFDB.

Note that since each Φ(~xi, α, S0) in the right-hand side
of SSAs is in general unrestricted, e.g., may include quan-
tifiers, Dα is not guaranteed to be in the form of a general-
ized fluent database even though D0 is. The point in using a
form like the generalized fluent database is that it allows us
to perform query evaluation using the methods and existing

technologies in constraint databases instead of performing
more general theorem proving. Therefore, we want progres-
sion to preserve the form of D0. The previous substitution
method does well in preserving the form of a definitional
KB but does not preserve the form in the case of a GFDB.

The idea then is to consider generalized tuples as the
“base” formulas that we use to express any generalized flu-
ent relation. This is similar to a regular database where we
would updateD0 into aDα such that for every fluent a finite
list of tuples is specified. Theorem 1 then provides a way to
transform, by means of quantifier elimination, the resulting
Dα of the substitution method into the form of a GFDB.

Theorem 2. Let D be a BAT over a generalized fluent
database and α a ground action. Then there exists a first-
order progression Dα of D0 wrt α and D that is in the form
of a generalized fluent database.

As a result, we can iteratively progress a BAT-GFDB and
characterize the state of any ground situation as a GFDB.

Finally, since every definitional KB can be expressed as
a generalized fluent database, this also illustrates a subtle
detail about progression. Both a progression Dα according
to the substitution method and a progression D′

α accord-
ing to Theorem 2 qualify as logically correct progressions
of D0 and are logically equivalent (under the assumption of
E). Nonetheless, D0 is more of a logical specification of the
changes that need to be made due to action α and D′

α more
of a materialized update of these changes.

Another way to look at it is that the progression based
on the substitution method is purely syntactic (linear to the
size of D0) and does not involve any form of evaluation;
in a sense, the fluents are not updated to a new truth value
but, rather, the new truth values are still specified with re-
spect to the initial situation. As there are to date no imple-
mented systems for performing progression, this difference
is less easy to identify because, as far as the logical specifica-
tion is concerned,D0 is a well-behaved progression. In prac-
tice, though, we would expect that unless a method that goes
along the lines of Theorem 2 is followed, the progressed the-
ory would in fact look much similar to the original theoryD,
and queries over the current state would perform similar to
using a regression technique over the original theory D.

Projection over BAT-GFDBs
The (simple) projection problem is the task of predicting
whether a condition holds at a particular time in the future
after a series of ground actions have been executed (Reiter
2001). The following is a straightforward result.

Theorem 3. LetD be a BAT-GFDB, α1, . . . , αn a sequence
of ground actions, and φ(s) a first-order formula uniform in
s. Then determining whether or not the following holds is
decidable: D |= φ(do(αn, · · · do(α1, S0))) .

This is not a new result and can be proven by means of re-
gression and the fact that E is decidable. Our previous anal-
ysis also shows that simple projection queries over a BAT-
GFDB can be decided by iteratively progressing D0 wrt
α1, . . . , αn according to Th. 2 and then evaluating the query
over the resulting generalized fluent database following the

651



method of (Kanellakis, Kuper, and Revesz 1995). Depend-
ing on the type of queries, and the frequency that actions
occur, either approach may be preferred under conditions.

We now proceed to show a major result about the decid-
ability of richer projection queries over BAT-GFDBs that
may also quantify over future situations. A generalized ver-
sion of the projection problem is when φ may refer to any
number or combination of future situations. For example,
∀s(do(α, S0) v s ⊃ ψ(s)) states that after executing action
α condition ψ(s) will hold in all situations s in the future,
i.e., that it will always remain true.

We consider the language Lp of generalized projection
queries ϕ. Lp is defined on top of the language Ln, whose
formulas φ are as follows: φ := x = c | x = y | F (~x, s) |
F (~x, σ) | ¬φ | φ ∧ φ | ∃x.φ, for F a fluent symbol, c
a constant, and σ a ground situation term. Lp formulas are
defined as: ϕ := φ | ¬ϕ | ϕ∧ϕ | ∃s.σvs∧ϕ, where φ ∈ Ln
is any formula uniform in s or in a ground situation term σ,
whose free variables (if any) are only of sort situation.

We also consider a class of BAT-GFDBs which we callC-
bounded. To define it, let TV be the (finite) set of all gener-
alized tuples ψ that use equality constraints with (only vari-
able) symbols from the finite set of variables V , and s.t. ψ
does not contain multiple occurrences of some equality con-
straint. Notice that since generalized tuples are conjunctions
(thus multiple occurrences of a conjunct do not change their
semantics), TV essentially contains all the possible general-
ized tuples one can build using symbols from V .
Definition 3. Let D be a BAT-GFDB and B a natu-
ral number. A ground situation term σ is said to be
constant-bounded by B in D, C-bounded by B for short,
iff for every fluent Fi(~x, s) ∈ F , it is the case that
D |=

∨
Ψ∈2TV ∃~y.F (~x, σ) ≡

∨
ψ∈Ψ ψ, where: V is parti-

tioned into X and Y , with X the set of variables occurring
in ~x, Y any set of variable symbols such that |Y | = B, and
~y are the free variables of ψ coming from Y . D is said to be
constant-bounded by a finite bound B, C-bounded by B for
short, iff every ground situation term of D that is executable
is also C-bounded by B.

Notice that Ψ above is a set of generalized tuples, thus the
formula

∨
ψ∈Ψ ψ is a generalized relation. Intuitively, Def. 3

requires that the definition of each fluent in σ is a generalized
relation mentioning at most B distinct constants.

For this class of theories, we have the following result.
Theorem 4. Given a BAT-GFDB D that is C-bounded by
some B, and a generalized projection query ϕ that is a sen-
tence in Lp, it is decidable to check whether D |= ϕ.

The proof starts by introducing the notion of transition
system over generalized fluent databases (GFDB-TS). These
are transition systems with states labelled by generalized flu-
ent databases and transitions labelled by ground actions. The
aim of GFDB-TSs is to capture the information, represented
as GFDBs, about both the states associated with the exe-
cutable situations of an action theory, and their transitions,
together with the respective actions. In particular the GFDB-
TS TD induced by an action theory D can be defined, which
accounts for the evolution of the states of the theory starting
from S0.

Then, a definition of satisfaction of Lp sentences wrt
GFDB-TSs is provided, and it is proven that, for any gen-
eralized projection query ϕ, D |= ϕ iff TD |= ϕ. Thus, one
can check whether D |= ϕ by using the induced GFDB-TS
TD instead of the theory D. However, this does not guaran-
tee decidability, as TD is infinite-state, in general.

The final step of the proof consists in defining a proce-
dure to build a finite-state GFDB-TS T̂D such that, for any
sentence ϕ ∈ Lp, TD |= ϕ iff T̂D |= ϕ. The construction
exploits the key observations that if D is C-bounded then:
(i) it is first-order progressable; and (ii) its states can be par-
titioned into finitely many equivalence classes of logically
equivalent GFDBs. Essentially, the procedure amounts to it-
eratively progressing D from S0, by executing all possible
ground actions obtained using a finite subset H ⊆ C of con-
stants, until a state whose label is logically equivalent to that
of some state visited in the past is generated. Once T̂D is
available, checking whether T̂D |= ϕ can be done by apply-
ing a straightforward recursive procedure.

Conclusions
In this paper we looked into situation calculus action the-
ories over generalized fluent databases with equality con-
straints (GFDB), connecting the situation calculus with con-
straint query languages. We showed that GFDBs character-
ize the class of definitional KBs with fluent predicates only,
and that for action theories over such KBs (BAT-GFDBs),
the KBs are closed under progression. Our results show that
simple projection queries over BAT-GFDBs are decidable
in general. Also, extending the notion of boundedness pro-
posed in (De Giacomo, Lespérance, and Patrizi 2012), we
introduced the notion of C-boundedness and showed that,
under this, a wide class of generalized projection queries that
include quantification over situations is decidable.

Acknowledgements The authors acknowledge support of
the EU Project FP7-ICT 318338 (OPTIQUE) and the
Sapienza Award 2013 “Spiritlets” project.

References
De Giacomo, G.; Lespérance, Y.; and Patrizi, F. 2012. Bounded sit-
uation calculus action theories and decidable verification. In Proc.
of KR’12.
Enderton, H., and Enderton, H. B. 2001. A Mathematical Intro-
duction to Logic. Academic Press, 2nd edition.
Gu, Y., and Soutchanski, M. 2007. Decidable reasoning in a mod-
ified situation calculus. In Proc. of IJCAI’07.
Kanellakis, P. C.; Kuper, G. M.; and Revesz, P. Z. 1995. Con-
straint query languages. Journal of Computer and System Sciences
51(1):26–52.
Lin, F., and Reiter, R. 1997. How to progress a database. Artificial
Intelligence 92(1-2):131–167.
Reiter, R. 2001. Knowledge in Action. Logical Foundations for
Specifying and Implementing Dynamical Systems. MIT Press.
Vassos, S., and Levesque, H. J. 2013. How to progress a database
III. Artificial Intelligence 195:203–221.
Vassos, S., and Patrizi, F. 2013. A Classification of First-Order
Progressable Action Theories in Situation Calculus. In Rossi, F.,
ed., Proc. of IJCAI’13.

652




