
The Parameterized Complexity of Reasoning Problems Beyond NP

Ronald de Haan∗ and Stefan Szeider∗
Institute of Information Systems
Vienna University of Technology

dehaan@kr.tuwien.ac.at stefan@szeider.net

Abstract

Today’s propositional satisfiability (SAT) solvers are ex-
tremely powerful and can be used as an efficient back-end
for solving NP-complete problems. However, many funda-
mental problems in knowledge representation and reasoning
are located at the second level of the Polynomial Hierarchy
or even higher, and hence polynomial-time transformations to
SAT are not possible, unless the hierarchy collapses. Recent
research shows that in certain cases one can break through
these complexity barriers by fixed-parameter tractable (fpt) re-
ductions which exploit structural aspects of problem instances
in terms of problem parameters.
In this paper we develop a general theoretical framework
that supports the classification of parameterized problems
on whether they admit such an fpt-reduction to SAT or not.
We instantiate our theory by classifying the complexities of
several case study problems, with respect to various natural pa-
rameters. These case studies include the consistency problem
for disjunctive answer set programming and a robust version
of constraint satisfaction.

1 Introduction
Over the last two decades, propositional satisfiability (SAT)
has become one of the most successful and widely applied
techniques for the solution of NP-complete problems. To-
day’s SAT-solvers are extremely efficient and robust, in-
stances with hundreds of thousands of variables and clauses
can be solved routinely. In fact, due to the success of SAT, NP-
complete problems have lost their scariness, as in many cases
one can efficiently encode NP-complete problems to SAT and
solve them by means of a SAT-solver (Gomes et al., 2008;
Biere et al., 2009; Sakallah and Marques-Silva, 2011; Malik
and Zhang, 2009). However, many important computational
problems, most prominently in knowledge representation and
reasoning, are located above the first level of the Polyno-
mial Hierarchy (PH) and thus considered “harder” than SAT.
Hence we cannot hope for polynomial-time reductions from
these problems to SAT, as such transformations would cause
the (unexpected) collapse of the PH.

∗Supported by the European Research Council (ERC), project
239962 (COMPLEX REASON), and the Austrian Science Fund
(FWF), project P26200 (Parameterized Compilation).
Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Realistic problem instances are not random and often con-
tain some kind of “hidden structure.” Recent research suc-
ceeded to exploit such hidden structure to break the complex-
ity barriers between levels of the PH, for problems that arise
in disjunctive answer set programming (Fichte and Szeider,
2013) and abductive reasoning (Pfandler, Rümmele, and Szei-
der, 2013). The idea is to exploit problem structure in terms of
a problem parameter, and to develop reductions to SAT that
can be computed efficiently as long as the problem parameter
is reasonably small. The theory of parameterized complexity
(Downey and Fellows, 1999; Flum and Grohe, 2006; Nieder-
meier, 2006) provides exactly the right type of reduction suit-
able for this purpose, called fixed-parameter tractable reduc-
tions, or fpt-reductions for short. Now, for a suitable choice
of the parameter, one can aim at developing fpt-reductions
from the hard problem under consideration to SAT.

Such positive results go significantly beyond the state-of-
the-art of current research in parameterized complexity. By
shifting the scope from fixed-parameter tractability to fpt-
reducibility (to SAT), parameters can be less restrictive and
hence larger classes of inputs can be processed efficiently.
Therefore, the potential for positive tractability results is
greatly enlarged. In fact, there are some known reductions
that, in retrospect, can be seen as fpt-reductions to SAT. A
prominent example is Bounded Model Checking (Biere et
al., 1999), which can be seen as an fpt-reduction from the
model checking problem for linear temporal logic (LTL),
which is PSPACE-complete, to SAT, where the parameter is
an upper bound on the size of a counterexample. Bounded
Model Checking is widely used for hardware and software
verification at industrial scale (Biere, 2009).
New Contributions The aim of this paper is to establish a
general theoretical framework that supports the classification
of hard problems on whether they admit an fpt-reduction
to SAT or not. The main contribution is the development
of a new hardness theory that can be used to provide evi-
dence that certain problems do not admit an fpt-reduction
to SAT, similar to NP-hardness which provides evidence
against polynomial-time tractability (Garey and Johnson,
1979) and W[1]-hardness which provides evidence against
fixed-parameter tractability (Downey and Fellows, 1999).

At the center of our theory are two hierarchies of parame-
terized complexity classes: the ∗-k hierarchy and the k-∗ hier-
archy. We define the complexity classes in terms of weighted
variants of the quantified Boolean satisfiability problem with

82

Proceedings of the Fourteenth International Conference on Principles of Knowledge Representation and Reasoning

para-ΣP
2 para-ΠP

2

∃∗∀k-W[P]

...

∃∗∀k-W[1]

para-NP

W[1]

∀∗∃k-W[P]

...

∀∗∃k-W[1]

para-co-NP

co-W[1]

para-∆P
2

para-DP∃k∀∗ ∀k∃∗

FPT = para-P

Figure 1: The parameterized complexity classes of the ∗-k
and k-∗ hierarchies (bold) in relation to existing classes. Ar-
rows indicate inclusion relations. Dashed arrows indicate
previously known relations. The classes highlighted in gray
allow fpt-reductions to SAT; the other classes are unlikely to
allow this.

one quantifier alternation, which is canonical for the sec-
ond level of the PH. For the classes in the k-∗ hierarchy,
the (Hamming) weight of the assignment to the variables in
the first quantifier block is bounded by the parameter k, the
weight of the second quantifier block is unrestricted (“∗”).
For the classes in the ∗-k hierarchy it is the other way around,
the weight in the second block restricted by k and the first
block is unrestricted. Both hierarchies span various degrees
of hardness between the classes para-NP and para-co-NP
at the bottom and para-ΣP

2 at the top (para-C contains all
parameterized problems that, after fpt-time preprocessing,
ultimately belong to complexity class C (Flum and Grohe,
2003)). Figure 1 illustrates the relationship between the vari-
ous parameterized complexity classes under consideration.

To illustrate the usefulness of our theory, we consider as
a running example the fundamental problem of answer set
programming which asks whether a disjuncive logic pro-
gram has a stable model. This problem is ΣP

2-complete (Eiter
and Gottlob, 1995), and exhibits completeness or hardness
for various of our complexity classes; see Table 1 for an
overview. As a second case study, we will classify the com-
plexity of a robust version of constraint satisfaction (Abram-
sky, Gottlob, and Kolaitis, 2013). In addition we were able
to identify many other natural problems that populate our
new complexity classes. We refer to a technical report cor-
responding to this paper which contains full proofs of all
results, contains a compendium of problems, and is available
on arXiv (http://arxiv.org/abs/1312.1672).

2 Preliminaries
2.1 Parameterized Complexity Theory
We introduce some core notions from parameterized com-
plexity theory. For an in-depth treatment we refer to other
sources (Downey and Fellows, 1999; Flum and Grohe, 2006;
Niedermeier, 2006). A parameterized problem L is a sub-
set of Σ∗ × N for some finite alphabet Σ. For an in-
stance (I, k) ∈ Σ∗ × N, we call I the main part and k
the parameter. The following generalization of polynomial

time computability is commonly regarded as the tractability
notion of parameterized complexity theory. A parameter-
ized problem L is fixed-parameter tractable if there exists
a computable function f and a constant c such that there
exists an algorithm that decides whether (I, k) ∈ L in
time O(f(k)||I||c), where ||I|| denotes the size of I . Such
an algorithm is called an fpt-algorithm, and this amount of
time is called fpt-time. FPT is the class of all fixed-parameter
tractable decision problems. If the parameter is constant, then
fpt-algorithms run in polynomial time where the order of the
polynomial is independent of the parameter. This provides a
good scalability in the parameter in contrast to running times
of the form ||I||k, which are also polynomial for fixed k, but
are already impractical for, say, k > 3.

Parameterized complexity also offers a hardness theory,
similar to the theory of NP-hardness, that allows researchers
to give strong theoretical evidence that some parameter-
ized problems are not fixed-parameter tractable. This the-
ory is based on the Weft hierarchy of complexity classes
FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ W[SAT] ⊆ W[P], where
all inclusions are believed to be strict. For a hardness the-
ory, a notion of reduction is needed. Let L ⊆ Σ∗ × N
and L′ ⊆ (Σ′)∗ × N be two parameterized problems. An fpt-
reduction fromL toL′ is a mappingR : Σ∗×N→ (Σ′)∗×N
from instances of L to instances of L′ such that there ex-
ist some computable function g : N → N such that for
all (I, k) ∈ Σ∗ × N: (i) (I, k) is a yes-instance of L
if and only if (I ′, k′) = R(I, k) is a yes-instance of L′,
(ii) k′ ≤ g(k), and (iii) R is computable in fpt-time. We
write L ≤fpt L

′ if there is an fpt-reduction from L to L′.
The parameterized complexity classes W[t], t ≥ 1,

W[SAT] and W[P] are based on the satisfiability problems of
Boolean circuits and formulas. We consider Boolean circuits
with a single output gate. We call input nodes variables. We
distinguish between small gates, with fan-in ≤ 2, and large
gates, with fan-in > 2. The depth of a circuit is the length
of a longest path from any variable to the output gate. The
weft of a circuit is the largest number of large gates on any
path from a variable to the output gate. We let Nodes(C)
denote the set of all nodes of a circuit C. A Boolean formula
can be considered as a Boolean circuit where all gates have
fan-out ≤ 1. We adopt the usual notions of truth assignments
and satisfiability of a Boolean circuit. We say that a truth
assignment for a Boolean circuit has weight k if it sets ex-
actly k of the variables of the circuit to true. We denote the
class of Boolean circuits with depth u and weft t by Γt,u. We
denote the class of all Boolean circuits by Γ, and the class
of all Boolean formulas by Φ. For any class C of Boolean
circuits, we define the following parameterized problem.

p-WSAT[C]
Instance: A Boolean circuit C ∈ C, and an integer k.
Parameter: k.
Question: Does there exist an assignment of weight k
that satisfies C?

We denote closure under fpt-reductions by [·]fpt.
The classes W[t] are defined by letting W[t] =
[{ p-WSAT[Γt,u] : u ≥ 1 }]fpt for all t ≥ 1. The
classes W[SAT] and W[P] are defined by letting W[SAT] =
[p-WSAT[Φ]]fpt and W[P] = [p-WSAT[Γ]]fpt.

83

Parameterized complexity theory also offers complexity
classes for problems that lie higher in the polynomial hier-
archy. Let K be a classical complexity class, e.g., NP. The
parameterized complexity class para-K is then defined as the
class of all parameterized problems L ⊆ Σ∗ × N, for some
finite alphabet Σ, for which there exist an alphabet Π, a com-
putable function f : N→ Π∗, and a problem P ⊆ Σ∗ ×Π∗

such that P ∈ K and for all instances (x, k) ∈ Σ∗ × N
of L we have that (x, k) ∈ L if and only if (x, f(k)) ∈ P .
Intuitively, the class para-C consists of all problems that are
in C after a precomputation that only involves the parame-
ter (Flum and Grohe, 2003). The class para-NP can also be
defined via nondeterministic fpt-algorithms.

2.2 The Polynomial Hierarchy
There are many natural decision problems that are not con-
tained in the classical complexity classes P and NP. The
Polynomial Hierarchy (Meyer and Stockmeyer, 1972; Stock-
meyer, 1976; Wrathall, 1976; Papadimitriou, 1994) con-
tains a hierarchy of increasing complexity classes ΣP

i , for
all i ≥ 0. We give a characterization of these classes based
on the satisfiability problem of various classes of quantified
Boolean formulas. A quantified Boolean formula is a for-
mula of the form Q1X1Q2X2 . . . QmXmψ, where each Qi

is either ∀ or ∃, the Xi are disjoint sets of propositional
variables, and ψ is a Boolean formula over the variables
in
⋃m

i=1Xi. The quantifier-free part of such formulas is
called the matrix of the formula. Truth of such formulas is
defined in the usual way. Let γ = {x1 7→ d1, . . . , xn 7→ dn}
be a function that maps some variables of a formula ϕ to
other variables or to truth values. We let ϕ[γ] denote the
application of such a substitution γ to the formula ϕ. We
also write ϕ[x1 7→ d1, . . . , xn 7→ dn] to denote ϕ[γ]. For
each i ≥ 1 we define the following decision problem.

QSATi
Instance: A quantified Boolean formula ϕ =
∃X1∀X2∃X3 . . . QiXiψ, where Qi is a universal quan-
tifier if i is even and an existential quantifier if i is odd.
Question: Is ϕ true?

Input formulas to the problem QSATi are called ΣP
i -

formulas. For each nonnegative integer i ≤ 0, the com-
plexity class ΣP

i can be characterized as the closure of the
problem QSATi under polynomial-time reductions (Stock-
meyer, 1976; Wrathall, 1976). The ΣP

i -hardness of QSATi
holds already when the matrix of the input formula is re-
stricted to 3CNF for odd i, and restricted to 3DNF for even i.
Note that the class ΣP

0 coincides with P, and the class ΣP
1

coincides with NP. For each i ≥ 1, the class ΠP
i is defined as

co-ΣP
i .

2.3 Fpt-reductions to SAT
Every problem in NP ∪ co-NP can be solved with one call to
a SAT solver, and every problem in DP = {L1 ∩ L2 : L1 ∈
NP, L2 ∈ co-NP } can be solved with two calls to a SAT
solver. The Boolean Hierarchy (Cai and Hemachandra, 1986)
contains all problems that can be solved with a constant
number of calls to a SAT solver. On the other hand, (under
complexity theoretic assumptions) there are problems in ∆P

2

that cannot be solved efficiently with a constant number of
calls to a SAT solver. Hence, in particular, by showing that
a parameterized problem is in para-NP or para-co-NP (see
Section 2.1) we establish that the problem admits an fpt-
reduction to SAT (see Figure 1 and Table 1).

In addition, we could consider the class of parameter-
ized problems that can be solved by an fpt-algorithm that
makes f(k) many calls to a SAT solver, for some function f .
This notion opens another possibility to obtain (parameter-
ized) tractability results for problems beyond NP (cf. De Haan
and Szeider, 2014).

2.4 Answer Set Programming
We will use the logic programming setting of answer set
programming (ASP) (cf. Marek and Truszczynski, 1999;
Brewka, Eiter, and Truszczynski, 2011) as a running exam-
ple in the remainder of the paper. A disjunctive logic pro-
gram (or simply: a program) P is a finite set of rules of the
form r = (a1 ∨ · · · ∨ ak ← b1, . . . , bm, not c1, . . . ,not cn),
for k,m, n ≥ 0, where all ai, bj and cl are atoms. A rule is
called disjunctive if k > 1, and it is called normal if k ≤ 1
(note that we only call rules with strictly more than one dis-
junct in the head disjunctive). A rule is called negation-free
if n = 0. A program is called normal if all its rules are
normal, and called negation-free if all its rules are negation-
free. We let At(P) denote the set of all atoms occurring in
P . By literals we mean atoms a or their negations not a.
With NF(r) we denote the rule (a1∨· · ·∨ak ← b1, . . . , bm).
The (GL) reduct of a program P with respect to a set M
of atoms, denoted PM , is the program obtained from P by:
(i) removing rules with not a in the body, for each a ∈ M ,
and (ii) removing literals not a from all other rules (Gelfond
and Lifschitz, 1991). An answer set A of a program P is
a subset-minimal model of the reduct PA. The following
decision problem is concerned with the question of whether
a given program has an answer set.

ASP-CONSISTENCY
Instance: A disjunctive logic program P .
Question: Does P have an answer set?

Many implementations of answer set programming already
employ SAT solving techniques, e.g., Cmodels (Giunchiglia,
Lierler, and Maratea, 2006), ASSAT (Lin and Zhao, 2004),
and Clasp (Gebser et al., 2007). Work has also been done on
translations from ASP to SAT, both for classes of programs
that allow reasoning within NP or co-NP (Ben-Eliyahu and
Dechter, 1994; Fages, 1994; Lin and Zhao, 2004; Janhunen
et al., 2006) and for classes of programs for which reasoning
is beyond NP and co-NP (Janhunen et al., 2006; Lee and
Lifschitz, 2003; Lifschitz and Razborov, 2006). We hope
that our work provides new means for a theoretical study of
these and related approaches to ASP.

3 Parameterizations for ASP
ASP-CONSISTENCY is ΣP

2-complete in general, and can
therefore (under complexity theoretic assumptions) not be
reduced to SAT in polynomial time. With the aim of identi-
fying fpt-reductions from ASP-CONSISTENCY to SAT, we
consider several parameterizations.

84

Parameter Complexity
normality-bd size para-NP-complete

(Fichte and Szeider, 2013)

contingent atoms para-co-NP-complete (Prop 1)

contingent rules ∃k∀∗-complete (Thms 7 and 8)

disjunctive rules ∃∗∀k-W[1]-hard (Thm 14)

max atom occurrence para-ΣP
2-complete (Cor 16)

Table 1: Complexity results for different parameterizations
of ASP-CONSISTENCY.

Fichte and Szeider (2013) identified one parameteriza-
tion of ASP-CONSISTENCY under which the problem is con-
tained in para-NP. This parameterization is based on the no-
tion of backdoors to normality for disjunctive logic programs.
A set X of atoms is a normality-backdoor for a program P if
deleting the atoms x ∈ X and their negations not x from the
rules of P results in a normal program. ASP-CONSISTENCY
is contained in para-NP, when parameterized by the size of a
smallest normality-backdoor of the input program.

Two other parameterizations that we consider are related to
atoms that must be part of any answer set of a program P . We
identify a subset Comp(P) of compulsory atoms, that any an-
swer set must include. Given a program P , we let Comp(P)
be the smallest set such that: (i) if (w ← not w) is a rule
of P , then w ∈ Comp(P); and (ii) if (b ← a1, . . . , an) is a
rule of P , and a1, . . . , an ∈ Comp(P), then b ∈ Comp(P).
We then let the set Cont(P) of contingent atoms be those
atoms that occur in P but are not in Comp(P). We call a
rule contingent if it contains contingent atoms in the head.
(In fact, we could use any polynomial time computable algo-
rithm A that computes for every program P a set CompA(P)
of atoms that must be included in any answer set of P .)

The following are candidates for additional parameters
that could result in fpt-reductions to SAT: (i) the number of
disjunctive rules in the program (i.e., the number of rules
with strictly more than one disjunct in the head); (ii) the num-
ber of contingent atoms in the program; and (iii) the number
of contingent rules in the program. We will often denote
the parameterized problems based on ASP-CONSISTENCY
and these parameters (i) ASP-CONSISTENCY(#disj.rules),
(ii) ASP-CONSISTENCY(#cont.atoms) and (iii) ASP-
CONSISTENCY(#cont.rules), respectively.

The question that we would like to answer is which (if
any) of these parameterizations allows an fpt-reduction to
SAT. Tools from classical complexity theory seem unfit to
distinguish these parameters from each other and from the
parameterization by Fichte and Szeider: if the parameter
values are given as part of the input, the problem remains
ΣP

2-complete in all cases; if we bound the parameter values
by a constant, then in all cases the complexity of the problem
decreases to the first-level of the PH (a proof of this can
be found in the technical report). However, some of the
parameterizations allow an fpt-reduction to SAT, whereas
others seemingly do not.

Also the existing tools from parameterized complexity
theory are unfit to distinguish between these different param-
eterizations of ASP-CONSISTENCY. Practically all existing

parameterized complexity classes that can be used to show
that an fpt-reduction is unlikely to exist (such as the classes
of the W-hierarchy) are located below para-NP. Therefore,
these classes do not allow us to differentiate between prob-
lems that are in para-NP and problems that are not.

However, using the parameterized complexity classes de-
veloped in this paper we will be able to make the distinc-
tion between parameterizations that allow an fpt-reduction
to SAT and parameterizations that seem not to allow this.
Furthermore, our theory relates the latter ones in such a
way that an fpt-reduction to SAT for any of them gives
us an fpt-reduction to SAT for all of them. As can be
seen in Table 1, ASP-CONSISTENCY(#cont.atoms) can be
fpt-reduced to SAT, whereas we have evidence that this is
not possible for ASP-CONSISTENCY(#disj.rules) and ASP-
CONSISTENCY(#cont.rules).

We will use ASP-CONSISTENCY together with the various
parameterizations discussed above as a running example,
which allows us to demonstrate the developed theoretical
tools. We begin with showing a positive result for ASP-
CONSISTENCY(#cont.atoms).

Proposition 1. ASP-CONSISTENCY(#cont.atoms) is
para-co-NP-complete.

Proof. Hardness for para-co-NP follows from the reduc-
tion of Eiter and Gottlob (1995, Theorem 3). We show
membership in para-co-NP. Let P be a program that con-
tains k many contingent atoms. We sketch an fpt-reduction
to SAT for the problem whether P has no answer set.
There are 2k candidate sets that could be an answer set,
namely N ∪ Comp(P) for each N ⊆ Cont(P). For each
such setMN = N ∪Comp(P) it can be checked in determin-
istic polynomial time whether MN is a model of PMN , and
it can be checked by an NP-algorithm whether MN is not a
minimal model of PMN . Therefore, by the NP-completeness
of SAT, for each N ⊆ Cont(P), there exists a propositional
formula ϕN that is satisfiable if and only if MN is not a
minimal model of PMN . All together, the statement that for
no N ⊆ Cont(P) the set N ∪ Comp(P) is an answer set
holds true if and only if the disjunction

∨
N⊆Cont(P) ϕN is

satisfiable.

4 The Hierarchies ∗-k and k-∗
We are going to define two hierarchies of parameterized
complexity classes that will act as intractability classes in
our hardness theory. All classes will be based on weighted
variants of the satisfiability problem QSAT2. An instance
of the problem QSAT2 has both an existential quantifier and
a universal quantifier block. Therefore, there are several
ways of restricting the weight of assignments. Restricting
the weight of assignments to the existential quantifier block
will result in the k-∗ hierarchy, and restricting the weight of
assignments to the universal quantifier block will result in the
∗-k hierarchy. The two hierarchies are based on the following
two parameterized decision problems. Let C be a class of
Boolean circuits. The problem ∃k∀∗-WSAT(C) provides the
foundation for the k-∗ hierarchy.

85

∃k∀∗-WSAT(C)
Instance: A Boolean circuit C ∈ C over two disjoint
sets X and Y of variables, and an integer k.
Parameter: k.
Question: Does there exist a truth assignment α to X
with weight k such that for all truth assignments β to Y
the assignment α ∪ β satisfies C?

Similarly, the problem ∃∗∀k-WSAT(C) provides the foun-
dation for the ∗-k hierarchy.

∃∗∀k-WSAT(C)
Instance: A Boolean circuit C ∈ C over two disjoint
sets X and Y of variables, and an integer k.
Parameter: k.
Question: Does there exist a truth assignment α to X
such that for all truth assignments β to Y with weight k
the assignment α ∪ β satisfies C?

For convenience, instances to these two problems con-
sisting of a circuit C over sets X and Y of vari-
ables and an integer k, we will denote by (∃X.∀Y.C, k).
We now define the following parameterized complexity
classes, that together form the k-∗ hierarchy. We let
∃k∀∗-W[t] = [{ ∃k∀∗-WSAT(Γt,u) : u ≥ 1 }]fpt, we
let ∃k∀∗-W[SAT] = [∃k∀∗-WSAT(Φ)]fpt, and we let
∃k∀∗-W[P] = [∃k∀∗-WSAT(Γ)]fpt.

We define the classes of the ∗-k hierarchy similarly. We
let ∃∗∀k-W[t] = [{ ∃∗∀k-WSAT(Γt,u) : u ≥ 1 }]fpt,
we let ∃∗∀k-W[SAT] = [∃∗∀k-WSAT(Φ)]fpt, and we let
∃∗∀k-W[P] = [∃∗∀k-WSAT(Γ)]fpt. Note that these defini-
tions are analogous to those of the parameterized complexity
classes of the W-hierarchy (Downey and Fellows, 1999).

We can define dual classes for each of the parameter-
ized complexity classes in the k-∗ and ∗-k hierarchies.
These co-classes are based on problems complementary
to the problems ∃k∀∗-WSAT and ∃∗∀k-WSAT, i.e., these
problems have as yes-instances exactly the no-instances of
∃k∀∗-WSAT and ∃∗∀k-WSAT, respectively. Equivalently,
these complementary problems can be considered as vari-
ants of ∃k∀∗-WSAT and ∃∗∀k-WSAT where the existential
and universal quantifiers are swapped, and are therefore de-
noted with ∀k∃∗-WSAT and ∀∗∃k-WSAT. We use a similar
notation for the dual complexity classes, e.g., we denote
co-∃∗∀k-W[t] by ∀∗∃k-W[t].

5 The Class ∃k∀∗

In this section, we consider the k-∗ hierarchy. It turns out that
this hierarchy collapses entirely into a single parameterized
complexity class. This class we will denote by ∃k∀∗. As
we will see, the class ∃k∀∗ turns out to be quite robust. We
start this section with showing that that the k-∗ hierarchy
collapses. We discuss how this class is related to existing
parameterized complexity classes, and we show how it can
be used to show the intractability of a variant of the answer
set existence problem whose complexity the existing theory
cannot classify properly.

5.1 Collapse of the k-∗ hierarchy
Theorem 2 (Collapse of the k-∗ hierarchy). ∃k∀∗-W[1] =
∃k∀∗-W[2] = . . . = ∃k∀∗-W[SAT] = ∃k∀∗-W[P].

Proof. Since by definition ∃k∀∗-W[1] ⊆ ∃k∀∗-W[2] ⊆
. . . ⊆ ∃k∀∗-W[P], it suffices to show that ∃k∀∗-W[P] ⊆
∃k∀∗-W[1]. We show this by giving an fpt-reduction from
∃k∀∗-WSAT(Γ) to ∃k∀∗-WSAT(3DNF). Since 3DNF ⊆
Γ1,3, this suffices. We remark that this reduction is based
on the standard Tseitin transformation that transforms arbi-
trary Boolean formulas into 3CNF by means of additional
variables.

Let (ϕ, k) be an instance of ∃k∀∗-WSAT(Γ) with ϕ =
∃X.∀Y.C. Assume without loss of generality that C con-
tains only binary conjunctions and negations. Let o denote
the output gate of C. We construct an instance (ϕ′, k) of
∃k∀∗-WSAT(3DNF) as follows. The formula ϕ′ will be over
the set of variables X ∪ Y ∪ Z, where Z = { zr : r ∈
Nodes(C) }. For each r ∈ Nodes(C), we define a subfor-
mula χr. We distinguish three cases. If r = r1 ∧ r2, then
we let χr = (zr ∧ ¬zr1) ∨ (zr ∧ ¬zr2) ∨ (zr1 ∧ zr2 ∧ ¬zr).
If r = ¬r1, then we let χr = (zr ∧ zr1) ∨ (¬zr ∧ ¬zr1).
If r = w, for some w ∈ X ∪ Y , then we let χr =
(zr ∧¬w)∨ (¬zr ∧w). Now we define ϕ′ = ∃X.∀Y ∪Z.ψ,
where ψ =

∨
r∈Nodes(C) χr ∨ zo. It is straightforward to

verify that this reduction is correct.
As mentioned above, in order to simplify notation, we

will use ∃k∀∗ to denote the class ∃k∀∗-W[1] = . . . =
∃k∀∗-W[P]. Also, we will denote ∃k∀∗-WSAT(Γ) by
∃k∀∗-WSAT. We make some observations about the rela-
tion of ∃k∀∗ to existing parameterized complexity classes.
It is straightforward to see that ∃k∀∗ ⊆ para-ΣP

2. In polyno-
mial time, any formula ∃X.∀Y.ψ can be transformed into a
ΣP

2-formula that is true if and only if for some assignment α
of weight k to the variables X the formula ∀Y.ψ[α] is true.
Trivially, para-co-NP ⊆ ∃k∀∗. To summarize, we obtain
the following inclusions: para-co-NP ⊆ ∃k∀∗ ⊆ ΣP

2, and
para-NP ⊆ ∀k∃∗ ⊆ ΠP

2. This immediately leads to the
following result.
Proposition 3. If ∃k∀∗ ⊆ para-NP, then NP = co-NP.

A natural question to ask is whether para-NP ⊆ ∃k∀∗. The
following result indicates that this is unlikely.
Proposition 4. If para-NP ⊆ ∃k∀∗, then NP = co-NP.

Proof (sketch). Let SAT be the language of satisfiable propo-
sitional formulas, and UNSAT the language of unsatisfiable
propositional formulas. The parameterized problem P =
{ (ϕ, 1) : ϕ ∈ SAT } is in para-NP. Since the parameter value
is constant for all instances of P , an fpt-reduction from P
to ∃k∀∗-WSAT can be transformed into an polynomial time
reduction from SAT to UNSAT.

This implies that ∃k∀∗ is very likely to be a strict subset
of para-ΣP

2.

Corollary 5. If ∃k∀∗ = para-ΣP
2, then NP = co-NP.

The following result shows another way in which the class
∃k∀∗ relates to the existing complexity class co-NP. Let P
be a parameterized decision problem, and let c ≥ 1 be an
integer. We say that the c-th slice of P , denoted Pc, is the
(unparameterized) decision problem {x : (x, c) ∈ P }.

86

Proposition 6. Let P be a parameterized problem complete
for ∃k∀∗, and let c ≥ 1 be an integer. Then Pc is in co-NP.
Moreover, there exists some integer d ≥ 1 such that P1 ∪
· · · ∪ Pd is co-NP-complete.

A proof of this statement can be found in the technical
report.

5.2 Answer set programming and completeness
for the k-∗ hierarchy

Now that we defined this new intractability class ∃k∀∗ and
that we have some basic results about it in place, we are able
to prove the intractability of a variant of our running example
problem. In fact, we show that one variant of our running
example is complete for the class ∃k∀∗.
Theorem 7. ASP-CONSISTENCY(#cont.rules) is ∃k∀∗-
hard.
Proof. We give an fpt-reduction from ∃k∀∗-WSAT(3DNF).
This reduction is a parameterized version of a reduction
of Eiter and Gottlob (1995, Theorem 3). Let (ϕ, k) be
an instance of ∃k∀∗-WSAT(3DNF), where ϕ = ∃X.∀Y.ψ,
X = {x1, . . . , xn}, Y = {y1, . . . , ym}, ψ = δ1 ∨ · · · ∨ δu,
and δ` = l`1 ∧ l`2 ∧ l`3 for each 1 ≤ ` ≤ u. We con-
struct a disjunctive program P . We consider the sets X
and Y of variables as atoms. In addition, we introduce fresh
atoms v1, . . . , vn, z1, . . . , zm, w, and xji for all 1 ≤ j ≤ k,
1 ≤ i ≤ n. We let P consist of the following rules:

xj1 ∨ · · · ∨ x
j
n ← for 1 ≤ j ≤ k; (1)

← xji , x
j′

i for 1 ≤ i ≤ n, 1 ≤ j < j′ ≤ k; (2)
yi ∨ zi ←, w ← yi, zi for 1 ≤ i ≤ m; (3)
yi ← w, zi ← w for 1 ≤ i ≤ m; (4)
xi ← w, vi ← w for 1 ≤ i ≤ n; (5)
xi ← xji for 1 ≤ i ≤ n, 1 ≤ j ≤ k; (6)
vi ← not x1i , . . . ,not x

k
i for 1 ≤ i ≤ n; (7)

w ← σ(l`1), σ(l
`
2), σ(l

`
3) for 1 ≤ ` ≤ u; (8)

w ← not w. (9)

Here we let σ(xi) = xi and σ(¬xi) = vi for each 1 ≤ i ≤ n;
and we let σ(yj) = yj and σ(¬yj) = zj for each 1 ≤ j ≤ m.
Intuitively, vi corresponds to ¬xi, and zj corresponds to ¬yj .
The main difference with the reduction of Eiter and Gottlob is
that we use the rules in (1), (2), (6) and (7) to let the variables
xi and vi represent an assignment of weight k to the variables
in X . The rules in (5) ensure that the atoms vi and xi are
compulsory. It is straightforward to verify that Comp(P) =
{w}∪{xi, vi : 1 ≤ i ≤ n }∪{ yi, zi : 1 ≤ i ≤ m }. Notice
that P has exactly k contingent rules, namely the rules in (1).
A full proof that (ϕ, k) ∈ ∃k∀∗-WSAT if and only if P has
an answer set can be found in the technical report.
Theorem 8. ASP-CONSISTENCY(#cont.rules) is in ∃k∀∗.
Proof. We show membership in ∃k∀∗ by reducing ASP-
CONSISTENCY(#cont.rules) to ∃k∀∗-WSAT. Let P be a
program, where r1, . . . , rk are the contingent rules of P
and where At(P) = {d1, . . . , dn}. We construct a quan-
tified Boolean formula ϕ = ∃X.∀Y ∪ Z ∪W.ψ such that
(ϕ, k) ∈ ∃k∀∗-WSAT if and only if P has an answer set.

In order to do so, we firstly construct a Boolean formula
ψP (z1, . . . , zn, z

′
1, . . . , z

′
n) (or, for short: ψP) over variables

z1, . . . , zn, z
′
1, . . . , z

′
n such that for any M ⊆ At(P) and

any M ′ ⊆ At(P) holds that M is a model of PM ′
if

and only if ψP [αM ∪ αM ′] evaluates to true, where αM :
{z1, . . . , zn} → {0, 1} is defined by letting αM (zi) = 1
if and only if di ∈ M , and αM ′ : {z′1, . . . , z′n} → {0, 1}
is defined by letting αM ′(z′i) = 1 if and only if di ∈ M ′,
for all 1 ≤ i ≤ n. We define ψP =

∧
r∈P (ψ1

r ∨ ψ2
r),

where ψ1
r = (z′

i31
∨ · · · ∨ z′i3c) and ψ2

r = ((zi11 ∨ · · · ∨
zi1a) ← (zi21 ∧ · · · ∧ zi2b)) for r = (di11 ∨ · · · ∨ di1a ←
di21 , . . . , di2b ,not di31 , . . . ,not di3c). It is easy to verify that
ψP satisfies the required property.

We now introduce the set X of existentially quantified
variables of ϕ. For each contingent rule ri of P we let
ai1, . . . , a

i
`i

denote the atoms that occur in the head of ri.
For each ri, we introduce variables xi0, x

i
1, . . . , x

i
`i

, i.e., X =

{xij : 1 ≤ i ≤ k, 0 ≤ j ≤ `i }. Furthermore, for each atom
di, we add universally quantified variables yi, zi and wi, i.e.,
Y = { yi : 1 ≤ i ≤ n }, Z = { zi : 1 ≤ i ≤ n }, and
W = {wi : 1 ≤ i ≤ n }.

We then construct ψ as follows:

ψ = ψX ∧
(
ψ1
Y ∨ ψW ∨ ψmin

)
∧ (ψ1

Y ∨ ψ2
Y);

ψX =
∧

1≤i≤k

(∨
0≤j≤`i

xij ∧
∧

0≤j<j′≤`i
(¬xij ∨ ¬xij′)

)
;

ψ1
Y =

∨
1≤i≤k
1≤j≤`i

ψi,j
y ∨

∨
di∈Cont(P)

ψdi
y ∨

∨
di∈Comp(P)

¬yi;

ψdm
y = (ym ∧ ¬xi1j1 ∧ · · · ∧ ¬x

iu
ju

)
if {xij : 1 ≤ i ≤ k, 1 ≤ j ≤ `i, aij = dm } =

{ai1j1 , . . . , a
iu
ju
}, and

ψdm
y = ⊥

if {xij : 1 ≤ i ≤ k, 1 ≤ j ≤ `i, aij = dm } = ∅;
ψi,j
y = (xij ∧ ¬ym) where aij = dm;
ψ2
Y = ψP (y1, . . . , yn, y1, . . . , yn);

ψW =
∨

1≤i≤n
(wi ↔ (yi ↔ zi));

ψmin = ψ1
min ∨ ψ2

min ∨ ψ3
min;

ψ1
min =

∨
1≤i≤n

(zi ∧ ¬yi) ;

ψ2
min = (¬w1 ∧ · · · ∧ ¬wm); and

ψ3
min = ¬ψP (z1, . . . , zn, y1, . . . , yn).

The idea behind this construction is the following. The vari-
ables in X represent guessing at most one atom in the head
of each contingent rule to be true. Such a guess represents a
possible answer setM ⊆ At(P) (a proof of this can be found
in the technical report). The formula ψX ensures that for
each 1 ≤ i ≤ k, exactly one xij is set to true. The formula
ψ1
Y filters out every assignment in which the variables Y are

not set corresponding to M . The formula ψ2
Y filters out every

assignment corresponding to a candidate M ⊆ At(P) such
that M 6|= P . The formula ψW filters out every assignment
such that wi is not set to the value (yi XOR zi). The formula
ψ1

min filters out every assignment where the variables Z cor-
respond to a set M ′ such that M ′ 6⊆ M . The formula ψ2

min
filters out every assignment where the variables Z correspond
to the set M , by referring to the variables wi. The formula
ψ3

min, finally, ensures that in every remaining assignment, the

87

variables Z do not correspond to a set M ′ ⊆ M such that
M ′ |= P . A full proof that P has an answer set if and only
if (ϕ, k) ∈ ∃k∀∗-WSAT can be found in the technical report.

Corollary 9. ASP-CONSISTENCY(#cont.rules) is ∃k∀∗-
complete.

6 The ∗-k Hierarchy
We now turn our attention to the ∗-k hierarchy. Unlike in the
k-∗ hierarchy, in the canonical quantified Boolean satisfiabil-
ity problems of the ∗-k hierarchy, we cannot add auxiliary
variables to the second quantifier block whose truth assign-
ment is not restricted. Therefore, because of similarity to the
W-hierarchy, we believe that the classes of the ∗-k hierarchy
are distinct. We will mainly focus on the first level of the
∗-k hierarchy. We begin with proving some basic properties.
The main result in this section is a normalization result for
∀∗∃k-W[1].
Proposition 10. If para-co-NP ⊆ ∃∗∀k-W[P], then NP =
co-NP.

Proof (sketch). With an argument similar to the one in the
proof of Proposition 4, a polynomial-time reduction from
UNSAT to SAT can be constructed. An additional technical
observation needed for this case is that SAT is in NP also
when the input is a Boolean circuit.

Next, we show that the problem ∃∗∀k-WSAT is already
∃∗∀k-W[1]-hard when the input circuits are restricted to for-
mulas in c-DNF, for any constant c ≥ 2. In order to make
our life easier, we switch our perspective to the co-problem
∀∗∃k-WSAT when stating and proving the following results.
Note that the proofs of the following results make heavy use
of the original normalization proof for the class W[1] by
Downey and Fellows (1995; 1999).
Lemma 11. For any u ≥ 1, ∀∗∃k-WSAT(Γ1,u) ≤fpt

∀∗∃k-WSAT(s-CNF), where s = 2u + 1.

Proof (sketch). The reduction is completely analogous to
the reduction used in the proof of Downey and Fellows
(1995, Lemma 2.1), where the presence of universally quan-
tified variables is handled in four steps. In Steps 1 and 2, in
which only the form of the circuit is modified, no changes are
needed. In Step 3, universally quantified variables can be han-
dled exactly as existentially quantified variables. Step 4 can
be performed with only a slight modification, the only differ-
ence being that universally quantified variables appearing in
the input circuit will also appear in the resulting clauses that
verify whether a given product-of-sums or sum-of-products
is satisfied. It is straightforward to verify that this reduc-
tion with the mentioned modifications works for our pur-
poses.
Theorem 12. ∀∗∃k-WSAT(2CNF) is ∀∗∃k-W[1]-complete.

Proof (sketch). Clearly ∀∗∃k-WSAT(2CNF) is in
∀∗∃k-W[1], since a 2CNF formula can be considered
as a constant-depth circuit of weft 1. To show that
∀∗∃k-WSAT(2CNF) is ∀∗∃k-W[1]-hard, we give an fpt-
reduction from ∀∗∃k-WSAT(Γ1,u) to ∀∗∃k-WSAT(2CNF),
for arbitrary u ≥ 1. By Lemma 11, we know that we can

reduce ∀∗∃k-WSAT(Γ1,u) to ∀∗∃k-WSAT(s-CNF), for
s = 2u + 1. We continue the reduction in multiple steps.
In each step, we let C denote the circuit resulting from the
previous step, and we let Y denote the universally quantified
and X the existentially quantified input variables of C, and
we let k denote the parameter value. We only briefly describe
the last two steps, since these are completely analogous to
constructions in the work of Downey and Fellows (1999).
Step 1: contracting the universally quantified vari-
ables. This step transforms C into a CNF formula C ′ such
that each clause contains at most one variable in Y such
that (C, k) is a yes-instance if and only if (C ′, k) is a yes-
instance. We introduce new universally quantified variables
Y ′ containing a variable y′A for each set A of literals over
Y of size at least 1 and at most s. Now, it is straightfor-
ward to construct a set D of polynomially many ternary
clauses over Y and Y ′ such that the following property holds.
An assignment α to Y ∪ Y ′ satisfies D if and only if for
each subset A = {l1, . . . , lb} of literals over Y it holds that
α(l1) = α(l2) = . . . = α(lb) = 1 if and only if α(y′A) = 1.
Note that we do not directly add the set D of clauses to the
formula C ′.

We introduce k − 1 many new existentially quantified
variables x?1, . . . , x

?
k−1. We add binary clauses to C ′ that

enforce that the variables x?1, . . . , x
?
k−1 all get the same truth

assignment. Also, we add binary clauses to C ′ that enforce
that each x ∈ X is set to false if x?1 is set to true.

We introduce |D| many existentially quantified variables,
including a variable x′′d for each clause d ∈ D. For each d ∈
D, we add the following clauses to C ′. Let d = (l1, l2, l3),
where each li is a literal over Y ∪ Y ′. We add the clauses
(¬x′′d ∨ ¬l1), (¬x′′d ∨ ¬l2) and (¬x′′d ∨ ¬l3), enforcing that
the clause d cannot be satisfied if x′′d is set to true.

We then modify the clauses of C as follows. Let c =
(lx1 , . . . , l

x
s1 , l

y
1 , . . . , l

y
s2) be a clause of C, where lx1 , . . . , l

x
s1

are literals over X , and ly1 , . . . , l
y
s2 are literals over Y . We

replace c by the clause (lx1 , . . . , l
x
s1 , x

?
1, y
′
B), where B =

{ly1 , . . . , lys2}. Clauses c of C that contain no literals over the
variables Y remain unchanged.

The idea of this reduction is the following. If x?1 is set
to true, then exactly one of the variables x′′d must be set to
true, which can only result in an satisfying assignment if the
clause d ∈ D is not satisfied. Therefore, if an assignment
α to the variables Y ∪ Y ′ does not satisfy D, there is a
satisfying assignment of weight k that sets both x?1 and x′′d
to true, for some d ∈ D that is not satisfied by α. Otherwise,
we know that the value α assigns to variables y′A corresponds
to the value α assigns to

∧
a∈A a, for A ⊆ Lit(Y). Then any

satisfying assignments of weight k for C is also a satisfying
assignments of weight k for C ′.
Step 2: making C antimonotone in X . This step trans-
forms C into a circuit C ′ that has only negative occurrences
of existentially quantified variables, and transforms k into
k′ depending only on k, such that (C, k) is a yes-instance if
and only if (C ′, k′) is a yes-instance. The reduction is com-
pletely analogous to the reduction in the proof of Downey
and Fellows (1999, Theorem 10.6).
Step 3: contracting the existentially quantified vari-
ables. This step transforms C into a circuit C ′ in CNF

88

that contains only clauses with two variables in X and no
variables in Y and clauses with one variable in X and one
variable in Y , and transforms k into k′ depending only on
k, such that (C, k) is a yes-instance if and only if (C ′, k′)
is a yes-instance. The reduction is completely analogous to
the reduction in the proof of Downey and Fellows (1999,
Theorem 10.7).
Corollary 13. For any fixed integer r ≥ 2, the problem
∃∗∀k-WSAT(r-DNF) is ∃∗∀k-W[1]-complete.

6.1 Answer set programming and hardness for
the ∗-k hierarchy

We now turn to another variant of our running example prob-
lem.
Theorem 14. ASP-CONSISTENCY(#disj.rules) is
∃∗∀k-W[1]-hard.
Proof. We give an fpt-reduction from ∃∗∀k-WSAT(3DNF),
which we know to be ∃∗∀k-W[1]-hard from Corollary 13.
This is, like the reduction in the proof of Theorem 7
above, a parameterized version of a reduction of Eiter
and Gottlob (1995, Theorem 3). Let (ϕ, k) be an in-
stance of ∃∗∀k-WSAT(3DNF), where ϕ = ∃X.∀Y.ψ, X =
{x1, . . . , xn}, Y = {y1, . . . , ym}, ψ = δ1 ∨ · · · ∨ δu, and
δ` = l`1 ∧ l`2 ∧ l`3 for each 1 ≤ ` ≤ u. By step 2 in the proof
of Theorem 12, we may assume without loss of generality
that all universally quantified variables y1, . . . , ym occur only
positively in ψ. We construct a disjunctive program P . We
consider the variables X and Y as atoms. In addition, we in-
troduce fresh atoms v1, . . . , vn, w, and yji for all 1 ≤ j ≤ k,
1 ≤ i ≤ m. We let P consist of the following rules:

xi ← not vi for 1 ≤ i ≤ n; (10)
vi ← not xi for 1 ≤ i ≤ n; (11)
yj1 ∨ · · · ∨ y

j
m ← for 1 ≤ j ≤ k; (12)

yi ← yji for 1 ≤ i ≤ m, 1 ≤ j ≤ k; (13)
yji ← w for 1 ≤ i ≤ m, 1 ≤ j ≤ k; (14)
w ← yji , y

j′

i for 1 ≤ i ≤ m, 1 ≤ j < j′ ≤ k; (15)
w ← σ(l`1), σ(l

`
2), σ(l

`
3) for 1 ≤ ` ≤ u; (16)

w ← not w. (17)

Here we let σ(¬xi) = vi for each 1 ≤ i ≤ n; we let σ(xi) =
xi for each 1 ≤ i ≤ n; and we let σ(yi) = yi for each
1 ≤ i ≤ m. Intuitively, vi corresponds to ¬xi. The main
difference with the reduction of Eiter and Gottlob is that we
use the rules in (12)–(15) to let the variables yi represent an
assignment of weight k to the variables in Y . Note that P
has k disjunctive rules, namely the rules (12). A full proof
that (ϕ, k) ∈ ∃∗∀k-WSAT if and only if P has an answer set
can be found in the technical report.

This hardness result holds even for the case where each
atom occurs only a constant number of times in the input
program. In order to show this, we consider the follow-
ing polynomial-time transformation on disjunctive logic pro-
grams. Let P be an arbitrary program, and let x be an atom of
P that occurs ` ≥ 3 many times. We introduce new atoms xj
for all 1 ≤ j ≤ `. We replace each occurrence of x in P by a
unique atom xj . Then, to P , we add the rules (xj+1 ← xj),
for all 1 ≤ j < `, and the rule (x1 ← x`). We call the
resulting program P ′. It is straightforward to verify that P
has an answer set if and only if P ′ has an answer set.

Proposition 15. ASP-CONSISTENCY(#disj.rules) is
∃∗∀k-W[1]-hard, even when each atom occurs at most 3
times.

Proof. The transformation described above can be repeatedly
applied to ensure that each atom occurs at most 3 times. Since
this transformation does not introduce new disjunctive rules,
the result follows by Theorem 14.

Repeated application of the described transformation also
gives us the following result.

Corollary 16. ASP-CONSISTENCY(max.atom.occ.) is
para-ΣP

2-complete.

7 Robust Constraint Satisfaction
Next, we consider another application of our hardness the-
ory to a reasoning problem that originates in the domain
of knowledge representation. We consider the class of ro-
bust constraint satisfaction problems, introduced recently by
Gottlob (2012) and Abramsky, Gottlob, and Kolaitis (2013).
These problems are concerned with the question of whether
every partial assignment of a particular size can be extended
to a full solution, in the setting of constraint satisfaction prob-
lems. As we will see, a natural parameterized variant of this
class of problems is complete for the class ∀k∃∗.

A CSP instance N is a triple (X,D,C), where X is a
finite set of variables, the domain D is a finite set of values,
and C is a finite set of constraints. Each constraint c ∈ C
is a pair (S,R), where S = Var(c), the constraint scope, is
a finite sequence of distinct variables from X , and R, the
constraint relation, is a relation over D whose arity matches
the length of S, i.e., R ⊆ Dr where r is the length of S.

Let N = (X,D,C) be a CSP instance. A partial in-
stantiation of N is a mapping α : X ′ → D defined on
some subset X ′ ⊆ X . We say that α satisfies a con-
straint c = ((x1, . . . , xr), R) ∈ C if Var(c) ⊆ X ′ and
(α(x1), . . . , α(xr)) ∈ R. If α satisfies all constraints of N
then it is a solution of N . We say that α violates a constraint
c = ((x1, . . . , xr), R) ∈ C if there is no extension β of α
defined on X ′ ∪ Var(c) such that (β(x1), . . . , β(xr)) ∈ R.

Let k be a nonnegative integer. We say that a CSP instance
N = (X,D,C) is k-robustly satisfiable if for each instan-
tiation α : X ′ → D defined on some subset X ′ ⊆ X of
k many variables (i.e., |X ′| = k) that does not violate any
constraint in C, it holds that α can be extended to a solution
for the CSP instance (X,D,C). Now consider the following
parameterized problem.

ROBUST-CSP-SAT
Instance: A CSP instance (X,D,C), and a nonnegative
integer k.
Parameter: k.
Question: Is (X,D,C) k-robustly satisfiable?

We show that this problem is complete for ∀k∃∗.
Theorem 17. ROBUST-CSP-SAT is in ∀k∃∗.

Proof. We give an fpt-reduction from ROBUST-CSP-SAT
to ∀k∃∗-WSAT. Let (X,D,C, k) be an instance of ROBUST-
CSP-SAT, where (X,D,C) is a CSP instance, X =
{x1, . . . , xn}, D = {d1, . . . , dm}, and k is an integer. We

89

construct an instance (ϕ, k) of ∀k∃∗-WSAT. For the formula
ϕ, we use propositional variables Z = { zij : 1 ≤ i ≤ n, 1 ≤
j ≤ m } and Y = { yij : 1 ≤ i ≤ n, 1 ≤ j ≤ m }. Intu-
itively, the variables zij will represent an arbitrary assignment
α that assigns values to k variables inX . Any variable zij rep-
resents that variable xi gets assigned value dj . The variables
yij will represent the solution β that extends the arbitrary
assignment α. Similarly, any variable yij represents that vari-
able xi gets assigned value dj . We then let ϕ = ∀Z.∃Y.ψ
with ψ = (ψZ

proper∧¬ψZ
violate)→ (ψY,Z

corr ∧ψY
proper∧

∧
c∈C ψ

Y
c).

We will describe the subformulas of ϕ below, as well as the
intuition behind them. We start with the formula ψZ

proper.
This formula represents whether for each variable xi at
most one value is chosen for the assignment α. We let
ψZ

proper =
∧

1≤i≤n
∧

1≤j<j′≤m(¬zij ∨ ¬zij′). Next, we con-
sider the formula ψZ

violate. This subformula encodes whether
the assignment α violates some constraint c ∈ C. We let
ψZ

violate =
∨

c=(S,R)∈C
∧

d∈R
∨

z∈Ψd,c , where we define the

set Ψd,c ⊆ Z as follows. Let c = ((xi1 , . . . , xir), R) ∈ C
and d = (dj1 , . . . , djr) ∈ R. Then we let Ψd,c = { zi`j : 1 ≤
` ≤ r, j 6= j` }. Intuitively, the set Ψd,c contains the
variables zij that represent those variable assignments in
α that prevent that β satisfies c by assigning Var(c) to
d. Then, the formula ψY

proper ensures that for each vari-
able xi exactly one value dj is chosen in β. We define:
ψY

proper =
∧

1≤i≤n[
∨

1≤j≤m yij ∧
∧

1≤j<j′≤m(¬yij ∨ ¬yij′)].
Next, the formula ψY,Z

corr ensures that β is indeed an extension
of α. We define: ψY,Z

corr =
∧

1≤i≤n
∧

1≤j≤m(zij → yij). Fi-
nally, for each c ∈ C, the formula ψY

c represents whether β
satisfies the constraint c. Let c = ((xi1 , . . . , xir), R) ∈ C.
We define ψY

c =
∨

(dj1
,...,djr)∈R

∧
1≤`≤r y

i`
j`

. A full
proof that (X,D,C, k) ∈ ROBUST-CSP-SAT if and only
if (ϕ, k) ∈ ∀k∃∗-WSAT can be found in the technical report.

In order to prove ∀k∃∗-hardness, we need the following
technical lemma.
Lemma 18. Let (ϕ, k) be an instance of ∃k∀∗-WSAT with
ϕ = ∃X.∀Y.ψ. In polynomial time, we can construct
an equivalent instance (ϕ′, k) of ∃k∀∗-WSAT with ϕ′ =
∃X.∀Y ′.ψ′, such that for any assignment α : X → {0, 1}
that has weight m 6= k, it holds that ∀Y ′.ψ′[α] is true.
Proof (sketch). We introduce a set Z of additional univer-
sally quantified variables, and use these to verify whether k
many existentially quantified variables are set to true. We
do so by constructing a propositional formula χ containing
variables inX and Z that is satisfiable if and only if exactly k
many variables inX are set to true. We let χ′ = (∃Z.χ)→ ψ.
We then know that ∀Y.χ′[α] is true for all truth assign-
ments α : X → {0, 1} of weight m 6= k. Moreover, the for-
mula ∀Y.χ′ is equivalent to the formula ∀Y ∪Z.(¬χ)∨ψ.
Theorem 19. ROBUST-CSP-SAT is ∀k∃∗-hard, even when
the domain size |D| is restricted to 2.

Proof. We give an fpt-reduction from ∀k∃∗-WSAT(3CNF)
to ROBUST-CSP-SAT. Let (ϕ, k) be an instance of

∀k∃∗-WSAT(3CNF), with ϕ = ∀X.∃Y.ψ, and ψ = c1 ∧
· · · ∧ cu. By Lemma 18, we may assume without loss
of generality that for any assignment α : X → {0, 1} of
weight m 6= k, we have that ∃Y.ψ[α] is false. We construct
an instance (Z,D,C, k) of ROBUST-CSP-SAT as follows.
We define the set Z of variables by Z = X ∪ Y ′, where
Y ′ = { yi : y ∈ Y, 1 ≤ i ≤ 2k+ 1 }, and we let D = {0, 1}.
We will define the set C of constraints below, by representing
them as a set of clauses whose length is bounded by f(k),
for some fixed function f .

The intuition behind the construction of C is the following.
We replace each variable y ∈ Y , by 2k + 1 copies yi of it.
Assigning a variable y ∈ Y to a value b ∈ {0, 1} will then
correspond to assigning a majority of variables yi to b, i.e.,
assigning at least k + 1 variables yi to b. In order to encode
this transformation in the constraints of C, intuitively, we
will replace each occurrence of a variable y by the conjuction
ψy =

∧
1≤i1<···<ik+1≤2k+1(yi1 ∨ · · · ∨ yik+1), and replace

each occurrence of a literal ¬y by a similar conjunction. We
will then multiply the resulting formula out into CNF. Note
that whenever a majority of variables yi is set to b ∈ {0, 1},
then the formula ψy will also evaluate to b.

In the construction of C, we will directly encode the CNF
formula that is a result of the transformation described above.
For each literal l = y ∈ Y , let li denote yi, and for each
literal l = ¬y with y ∈ Y , let li denote ¬yi. For each literal
l over the variables X ∪ Y , we define a set σ(l) of clauses:
σ(l) = (li1 ∨ · · · ∨ lik+1) : 1 ≤ i1 < · · · < ik+1 ≤ 2k+ 1 }
if l is a literal over Y , and σ(l) = l if l is a literal over X .

Note that for each literal l, it holds that |σ(l)| ≤ g(k) =(
2k+1
k+1

)
. Next, for each clause ci = li1 ∨ li2 ∨ li3 of ψ, we

introduce to C a set σ(ci) of clauses: σ(ci) = { d1 ∨
d2 ∨ d3 : d1 ∈ σ(li1), d2 ∈ σ(li2), d3 ∈ σ(li3) }. Note that
|σ(ci)| ≤ g(k)3. Formally, we let C be the set of constraints
corresponding to the set

⋃
1≤i≤u σ(ci) of clauses. Since

each such clause is of length at most 3(k + 1), representing
a clause by means of a constraint can be done by specifying
≤ 23(k+1) − 1 tuples, i.e., all tuples satisfying the clause.
Therefore, the instance (Z,D,C, k) can be constructed in
fpt-time. A full proof that (ϕ, k) ∈ ∀k∃∗-WSAT(3CNF) if
and only if (Z,D,C, k) ∈ ROBUST-CSP-SAT can be found
in the technical report.

8 Conclusion
We developed a general theoretical framework that supports
the classification of parameterized problems on whether they
admit an fpt-reduction to SAT or not. Our theory is based on
two new hierarchies of complexity classes, the k-∗ and ∗-k
hierarchies. We illustrated the use of this theoretical toolbox
by means of two case studies, in which we studied the com-
plexity of the consistency problem for disjunctive answer set
programming and a robust version of constraint satisfaction,
with respect to various natural parameters. There are many
more problems that occur in knowledge representation and
reasoning where our theory can be used. In the technical
report corresponding to this paper, we use our theory to ana-
lyze various additional problems, including the problem of
minimizing DNF formulas and the problem of minimizing
implicant cores. Additionally, we illustrate the robustness of

90

our theory by showing a number of complete problems for
the newly introduced classes from various domains, as well
as providing alternative characterizations of the complexity
classes based on first-order model checking and alternating
Turing machines. There are many more problems that can be
analyzed within our framework.

We focused our attention on the range between the first
and the second level of the PH, since many natural problems
lie there (Schaefer and Umans, 2002). In general, any fpt-
reduction from a problem whose complexity is higher in the
PH to a lower level in the PH would be interesting. With
this more general aim in mind, it would be helpful to have
tools to gather evidence that an fpt-reduction across some
complexity border in the PH is not possible. We hope that
this paper provides a starting point for further developments.

References
Abramsky, S.; Gottlob, G.; and Kolaitis, P. G. 2013. Robust con-
straint satisfaction and local hidden variables in quantum mechanics.
In Rossi, F., ed., Proceedings of the 23rd International Joint Con-
ference on Artificial Intelligence, IJCAI 2013. AAAI Press/IJCAI.
Ben-Eliyahu, R., and Dechter, R. 1994. Propositional semantics for
disjunctive logic programs. Ann. Math. Artif. Intell. 12(1):53–87.
Biere, A.; Cimatti, A.; Clarke, E. M.; and Zhu, Y. 1999. Sym-
bolic model checking without BDDs. In Cleaveland, R., ed., Tools
and Algorithms for Construction and Analysis of Systems, 5th In-
ternational Conference, TACAS ’99, Part of the European Joint
Conferences on Software, ETAPS’99, Amsterdam, The Netherlands,
March 22-28, 1999, Proceedings, volume 1579 of Lecture Notes in
Computer Science, 193–207. Springer Verlag.
Biere, A.; Heule, M.; van Maaren, H.; and Walsh, T., eds. 2009.
Handbook of Satisfiability, volume 185 of Frontiers in Artificial
Intelligence and Applications. IOS Press.
Biere, A. 2009. Bounded model checking. In Biere, A.; Heule,
M.; van Maaren, H.; and Walsh, T., eds., Handbook of Satisfiability,
volume 185 of Frontiers in Artificial Intelligence and Applications.
IOS Press. 457–481.
Brewka, G.; Eiter, T.; and Truszczynski, M. 2011. Answer set
programming at a glance. Communications of the ACM 54(12):92–
103.
Cai, J., and Hemachandra, L. 1986. The boolean hierachy: hardware
over NP. In Proceedings of the 1st Structure in Compexity Theory
Conference, number 223 in Lecture Notes in Computer Science,
105–124. Springer Verlag.
Downey, R. G., and Fellows, M. R. 1995. Fixed-parameter tractabil-
ity and completeness. II. On completeness for W [1]. Theoretical
Computer Science 141(1-2):109–131.
Downey, R. G., and Fellows, M. R. 1999. Parameterized Complexity.
Monographs in Computer Science. New York: Springer Verlag.
Eiter, T., and Gottlob, G. 1995. On the computational cost of
disjunctive logic programming: propositional case. Ann. Math.
Artif. Intell. 15(3-4):289–323.
Fages, F. 1994. Consistency of Clark’s completion and existence of
stable models. Methods of Logic in Computer Science 1(1):51–60.
Fichte, J. K., and Szeider, S. 2013. Backdoors to normality for
disjunctive logic programs. In Proceedings of the Twenty-Seventh
AAAI Conference on Artificial Intelligence, AAAI 2013, 320–327.
AAAI Press.
Flum, J., and Grohe, M. 2003. Describing parameterized complexity
classes. Information and Computation 187(2):291–319.

Flum, J., and Grohe, M. 2006. Parameterized Complexity Theory,
volume XIV of Texts in Theoretical Computer Science. An EATCS
Series. Berlin: Springer Verlag.
Garey, M. R., and Johnson, D. R. 1979. Computers and Intractabil-
ity. San Francisco: W. H. Freeman and Company, New York.
Gebser, M.; Kaufmann, B.; Neumann, A.; and Schaub, T. 2007.
Conflict-driven answer set solving. In Proceedings of the 20th
International Joint Conference on Artificial Intelligence, IJCAI
2007, 386–392. MIT Press.
Gelfond, M., and Lifschitz, V. 1991. Classical negation in logic
programs and disjunctive databases. New Generation Comput.
9(3/4):365–386.
Giunchiglia, E.; Lierler, Y.; and Maratea, M. 2006. Answer set
programming based on propositional satisfiability. Journal of Auto-
mated Reasoning 36:345–377.
Gomes, C. P.; Kautz, H.; Sabharwal, A.; and Selman, B. 2008.
Satisfiability solvers. In Handbook of Knowledge Representation,
volume 3 of Foundations of Artificial Intelligence. Elsevier. 89–134.
Gottlob, G. 2012. On minimal constraint networks. Artificial
Intelligence 191-192:42–60.
de Haan, R., and Szeider, S. 2014. Fixed-parameter tractable
reductions to SAT. Manuscript, submitted, February 2014.
Janhunen, T.; Niemelä, I.; Seipel, D.; Simons, P.; and You, J.-
H. 2006. Unfolding partiality and disjunctions in stable model
semantics. ACM Trans. Comput. Log. 7(1):1–37.
Lee, J., and Lifschitz, V. 2003. Loop formulas for disjunctive
logic programs. In Palamidessi, C., ed., Logic Programming, 19th
International Conference, ICLP 2003, Mumbai, India, December 9-
13, 2003, Proceedings, volume 2916 of Lecture Notes in Computer
Science, 451–465. Springer Verlag.
Lifschitz, V., and Razborov, A. 2006. Why are there so many loop
formulas? ACM Trans. Comput. Log. 7(2):261–268.
Lin, F., and Zhao, X. 2004. On odd and even cycles in normal logic
programs. In Cohn, A. G., ed., Proceedings of the 19th national
conference on Artifical intelligence (AAAI 04), 80–85. AAAI Press.
Malik, S., and Zhang, L. 2009. Boolean satisfiability from theo-
retical hardness to practical success. Communications of the ACM
52(8):76–82.
Marek, V. W., and Truszczynski, M. 1999. Stable models and an al-
ternative logic programming paradigm. In The Logic Programming
Paradigm: a 25-Year Perspective. Springer. 169–181.
Meyer, A. R., and Stockmeyer, L. J. 1972. The equivalence problem
for regular expressions with squaring requires exponential space. In
SWAT, 125–129. IEEE Computer Soc.
Niedermeier, R. 2006. Invitation to Fixed-Parameter Algorithms.
Oxford Lecture Series in Mathematics and its Applications. Oxford:
Oxford University Press.
Papadimitriou, C. H. 1994. Computational Complexity. Addison-
Wesley.
Pfandler, A.; Rümmele, S.; and Szeider, S. 2013. Backdoors to
abduction. In Rossi, F., ed., Proceedings of the 23rd International
Joint Conference on Artificial Intelligence, IJCAI 2013. AAAI
Press/IJCAI.
Sakallah, K. A., and Marques-Silva, J. 2011. Anatomy and empir-
ical evaluation of modern SAT solvers. Bulletin of the European
Association for Theoretical Computer Science 103:96–121.
Schaefer, M., and Umans, C. 2002. Completeness in the polynomial-
time hierarchy: A compendium. SIGACT News 33(3):32–49.
Stockmeyer, L. J. 1976. The polynomial-time hierarchy. Theoretical
Computer Science 3(1):1–22.
Wrathall, C. 1976. Complete sets and the polynomial-time hierarchy.
Theoretical Computer Science 3(1):23–33.

91

